Game Theoretic Resource Allocation in Cloud Computing
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ABSTRACT: Considering the proliferation in the number of cloud userson an everyday basis, the task of resource provisioning
in order to support all these users becomes a challenging problem. When resource allocation is non-optimal, users may
facehigh costs or performance issues. So, in order to maximize profit and resource utilization while satisfying all client
requests, it is essential for Cloud Service Providers to come up with ways to allocate resources adaptively for diverse
conditions. This is a constrained optimization problem. Each client that submits a request to the cloud has its own best
interests in mind. But each of these clients competes with other clients in the quest to obtain required quantum of resources.
Hence, every client is a participant in this competition. So, a preliminary analysis of the problem reveals that it can be
modeled as a game between clients. A game theoretic modeling of this problem provides us an ability to find an optimal
resource allocation by employing game theoretic concepts. Resource allocation problems are NP-Hard, involving VM
allocation and migration within and possibly, among data centers. Owing to the dynamic nature and number of requests,
static methods fail to surmount race conditions. Using a Min-Max Game approach, we propose an algorithm that can
overcome the problems mentioned. We propose to employ a utility maximization approach to solve the resource provisioning
and allocation problem. We implement a new factor into the game called the utility factor which considers the time and
budget constraints of every user. Resources are provisioned for tasks having the highest utility for the corresponding
resource.

Keywords: Cloud Computing, Game Theory, Utility based, Fair Allocation, Cloud Architectures

Received: 10 November 2013, Revised 14 December 2013, Accepted 20 December 2013

© 2013 DLINE. All Rights Reserved

1. Introduction

1.1 General Introduction

Cloud and cloud based services are gaining popularity at a very fast pace. Users these days want portability and accessibility
at the same time. Cloud services help them to access datafrom any device at any time. For example, Evernoteisavery popular

application with more than 10 million downloads. Some of itsfeaturesinclude taking notes, setting remindersetc. Itisavailable
for all devices, beit your PC, mobile or tablet. The data can be edited and accessed from any of the devices at any time.
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Stats collected on public I T cloud service point out that the worldwide revenue exceeds $21.5 billion in 2010 and is expected to
reach $72.9 billion in 2015, representing acompound annual growth rate (CAGR) of 27.6%. It isfour timesthe projected growth
for theworldwide I T market asawhole (6.7%) [1].

Cloud is not an independent phenomenon in the I T industry but acts as the core part of the bigger picture of theindustry. The
boom in cloud technology is complimented by the growth of portable devices, growing availability of wireless broadband and
scores of big datatools available.

The soaring popularity of cloud computing in scalable computing and data store are due to its shared nature of computing
resources that are distributed around the globe. Cloud-based infrastructures automate the management of similar resources as
asingle entity and provide services like computational and storage facilities to the end users. Cloud-based services integrate
distributed resources around the world into a coherent computing platform.With this ever increasing demand and scale,
Resource Allocation/Provisioning is a problem that holdsimmense rewards for efficient solutions and strategies.

1.2 Problem Satement

The problem involves modeling, mathematically, the interactions between requests and available resources and developing a
strategy to provision available resources to tasks such that the Cloud Service Provider obtains a maximal profit while also
optimally satisfying resource requests of thetasks. Therefore, it isan optimization problem. The goal isto find such an optimal
allocation.

2. Related Work

Cloud computing is an on-demand service and owing to this data and computational resources can be acquired or freed on-
demand. Consumers rely on cloud service providers for uninterrupted and scalable solutions to meet their needs. Service
providers strive to maintain the quality of serviceand try to optimizeit according to the users need. Game theoretic solutionsare
being explored by the cloud community [9, 10, 11, 12, 13, 14, 15,16].

Chonho, et a. [13] proposed an algorithm called Nudge that all ows applicationsto adapt their locations and resource all ocation
to the environmental conditionsinacloud. In another work, Wei,G,, et al. [ 14] considered aquality of serviceresource allocation
problem. In this problem the consumerstried to solve acomplicated parallel computing problem. The solution consisted of two
steps, first to solve the problem independently and then using an evol utionary mechanism to takeinto account optimization and
fairness. Rajkumar, et al. [15] also used a game theoretic method to schedul e related computational cloud computing services.
Fel, et al [16] used aBayesian Nash Equilibrium Allocation algorithm to solve resource all ocation problem in cloud computing.
The experiments carried out in the work show that cloud users can receive Nash equilibrium allocation solutions by gambling
stage by stage and the resource will convergeto the optimal price.Self-organized M obile Ad-hoc Networks (MANNES) are P2P
networks put more emphasis on selfish behavior of entities[17, 18, 19, 20, 23, 24, 25, 26]. Each nodeis specified asaplayer is
under the authority of a self interested user in such networks.

3. Proposed Algorithm

The working of the allocation method consists of mainly three stages. Users and brokers act as the requesters; Physical
machines are the actual resources which are virtualized to hide the original properties. Hence, there are a certain number of
virtual machines created in the datacenter. The second stage is the SLA resource allocator which does the accounting and
pricing of the resources and finally dispatches the virtual machines.

Input: M, the set of all requests. N, the set of all resources.

Output: Allocation Matrix indicating the requests and resources provisioning as determined by utility maximization method.

3.1Algorithm

3.1.1 Utility Calculation
Theutility value from which the matrix isformed is cal culated using the formul a:
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wherew, = Weightage for money.
V= Cost per seconds.

A = Length of each request.

w, = Weightage for time.

K= Capacity of each request.

3.1.2Calculation of L ocal Maximums
L ocal maximum of utility valuesiscalculated using theformula:

LocalMax = max, U)v,e M @
WhereU, = Utility value for the task.
3.1.3Calculation of Global Maximums
GlobalMax = { e (mevg (U). Uy e LocalMaxv.e Mandje N )
max (R), Uje LocalMax !

Where max; indicates the maximum value over all tasks.
max indicates the maximum value over al resources

R] isthe revised utility value.

3.2 Seps
» Classify the requests into reservation queue and general game queue. This is done in the initial stage of service level
agreement.

 Choose the game queue as the problem to be solved.

* Invokethefirst round game and find utility valuesfor every request - resource pair based on weightage to budget and deadline
constraints.

* Calculatelocal and global maximum values and populate the 2-D array where the row numbers represent requests and column
numbers represent resources.

* Allocatethefirst resourceto the request with maximum utility (global max).

« |f there are multiple requests with same utility factor for aresource, put them into wait - queue of the same resource.
» Continue theiteration and allocation to all resources.

* Print the all ocation matrix and utility valuesfor alocated VM-cloudlet pair.

* |f there are any more requests, then start another round of game. Else, exit.

3.3 Calculating the Utility Value
1

Yi
(7, G+ ()

uU.
ij

A solution of the scheduling problem isanon-negative matrix m rows, one for each task, and m columns, one for each resource.
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Theentry tij istask allocated to resource tj. Lett, represent theith row of matrix a Then allocation vector a saIisfiersaIj € a and
a =k.
ij i

w and e denote the weights of completion time and expense, respectively. Therefore, the U, (a) denote the utility of task S We
consider equal weightage for expense and the time. So the weightage coefficient w, and w, will beequal. Sincewe are not dealing
with the communication of subtasksin the current algorithm, the total timeisthe value calculated by the following formula.

Execution time = Total length / capacity in mips. Q)

Where mips = Million instructions per second.

Algorithm Name Utility Maximization

Input: Cloudlets: Request makerswho desire to get the resources (Virtual Machines), their
demand for number of execution or processing units coupled with weightage to bud
get and deadline constraints.

Output: Allocation matrix representing allocated VM -request pair and corresponding utility fac
tor values.

1. Classify (Req) — (General (Req), Reservation(Req))

2. Choose Game (Queue) — problemto solve.
Choose the set of requests to be considered in the game.

3.find Utility_vaue (Req)
Resource pair based on weightage to budget and deadline constraints.Cal culate utility value of each task by using
theformulal.1

Invoke Game (req)
The gamewill start by taking the utility values of al thetasksand form autilization matrix for further cal culation.

4. Cdculatelocal and global maximum values:
Maxarray < Globalmax (Localmax ( (Utility_value))

Populate the 2-D array where the row numbers represent requests and column numbers represent resources. L ocal
and Global maximumsare calculated using theformula1.2 and 1.3.

5. Allocatethefirst resourceto the request with maximum utility (global max):

Allocatted «— Req (Globa max).

6. If there are multiple requests with same utility factor for a resource, put them into wait - queue of the same
resource;

V mqueue < Push (Req)

7. Continue the iteration and allocation to all resources.

8. Print the allocation matrix and utility valuesfor allocated VM-cloudlet pair.

9. If there are any more requests, then start another round of game. Else, exit.

4. Motivation

In this section, we provide results of an experiment that corroborate our main hypothesis. existing resource allocation policies
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with non-optimal strategies can cause clients to incur unnecessarily higher costs as compared to when the resource allocation
policy isoptimal. This servers as our preliminary motivation to carry out the work and come up with anew novel approach to
optimize the method. The tabulations made in the results section shows requests from clients of diverse characteristics and
demands. Sub optimal allocations made by |oad shared model or thefirst comefirst serve model in contrast to optimal allocations
made by our Utilization Maximization model arereflected inthe same.

We demonstrate the effect of resource contention in acloud simulation environment by performing various experiments on the
Cloudism. We run computationally highly intensive and lessintensive custom jobs using data generated by afront end random
writer. We perform different types of experiments using different input data sizes and processing entity demands. Thishelpsus
understand the effect of contention in the network.

In this paper, we address the problem of resource all ocation via utilization maximization model using Game Theory.
5. Cloud ResourceAllocation

In this section, we define and present Cloud Resource Allocation Games (CRAGs). CRAGs model theresource allocationina
cloud and capture the provider-client interactions. We introduce the concept of Utilization factor and propose mechanisms
which ensure that the cost incurred by the system at highest utility is close to the global optimum. In this paper, we only
consider astatic scenario in which aset of clients submit their jobsto acloud asabatch. We leave modeling of the dynamicsthat
can existin practiceto futurework.

5.1Modeling resour ceallocation in clouds
In our model, the clients of a cloud are modeled as the players in a CRAG. A client's strategy is represented by the client's
resource allocation. We make the following assumptions about the various entities involved in a cloud:

» The cloud hosts different types of resource (e.g., CPU) and all clients are concerned with the usage of cheapest resource which
satisfiesits demands. This general case with multiple types of resources hel ps tabulate results obtained in real cloud environ-
ment.

« Each client acts selfishly and the cloud provider triesto optimize thetotal utility of the clientswhile ensuring efficient resource
usage. Although cloud providerswould be interested in maximizing their revenue, they would not want to charge their clients
unnecessarily high pricesin order to retain them. Thisfollowsfrom the fact that cloud computing isacompetitive market with
achoice of multiple providersfor clients.

* Clients are charged based on per CPU time consumed. Thisimpliesthat the amount of money aclient hasto pay the cloudis
directly proportional to the amount of time the requested amount of resourcesisused by the client. Thisassumesafixed number
of processing entities requested by aclient at atime.

» The cloud may or may not have sufficient amount of resources to accommodate the resources requested by all the clients. So,
aqueue existsto contain alimited number of requests which could potentially maximize the profit with ahigh utilization factor
computed based on its characteristics and constraints coupled with the cloud resources and their characteristics.

5.2CRAGsin Practice

In the earlier subsection we have shown how the resourceallocation in clouds can be modeled using CRAGs. In thissection, we
show how these mechanisms can be adopted in practice. The resource allocation based on the utility maximization takes place
inrounds. At the start of each round, all the clients submit the jobsthat have to be run in that round, to the cloud. The actual set
of clients can vary across rounds. The provider first calculatesits resource allocation vector by deriving a solution to min max
problem. This results in allocation of resources in best-fit manner to cloudlets in the cloudlet pool. This satisfies all the
conditions outlined earlier and maximizes the profit of the resource provider while also making allocation to handle service
reguestsfairly, in spite of selfish strategies employed by selfish players.The description of the system designisshown infigure
1

6. System Design

Here, we provision resources for requests (used interchangeably with "task") based on the utility value calculated by employ
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ing the proposed algorithm and then finding the suitable task for which to provision the available resources. The process starts
with the creation of virtual machines. All the virtual machines are created in one or more datacenters. The status of these virtual
machines is tracked continuously. After the virtual machines are created, the broker decides which requests to schedule first.
The broker performs the task of choosing the request with highest expected utility from the entire set of waiting requests for
which to allocate the requested resources.

Find thelocal
maximum utility
for atask
corresponding to
each resource

No

|| tasks\

?ed/’/

Find the global
maximum utility
corresponding to
the resource

Describe

resource
alocation

After thisinitial phase, the actual process of the algorithm starts. It starts with the computation of utility value for each pair of
task and resource. Thus, we construct a utility matrix with rows representing the tasks and columns representing the resource
(i.eVM). We then consider the problem of expected utility maximization asamin-max problem. In this case, since we want to
implement afair allocation policy and want to strike a balance between fair all ocations and maximize revenue generated for Cloud
Service Providers, we must first determine the local maximum utility value for each task. We must then identify the global
maximum utility value for each resource from among theselocal maxima.

To accomplish this, we use an evolutionary mechanism that changes the strategies chosen in the initial optimal allocation as
determined by the local maxima. It does so by modifying theinitial solution according to the global maxima. Thisevolutionary
optimization technique ensures that each resource is schedul ed to execute the task for which it has the highest utility whichin
turn means that the task will be executed faster and that it has bid for the resource at a higher price, thereby, guaranteeing
maximized returnsfor the cloud service provider.

It finds the maximum utility in each column. After the Local Max cal cul ation, we compute global max of utility once again, where
we check the maximum of maximums. That isfor each column's maximum utility we again check for the maximum utility in each
row. If wefind only one max for one resource then allocate the virtual machinewith that id to that cloudlet with the correspond-
ing id. Repeat the procedure until all thetasksare analyzed. If there are multi ple maximum utility values, then push thelineup the
tasks with equivalent utility values to the resource queue/waitlist. Finally, the resources are fairly allocated to all the tasks
according to their utility value. Figure 2 shows the sequence of operations between the three major entities Consumer, Broker
and the Datacenter.

Therequests obtained by the users handled by the broker and the avail ability of corresponding virtual machines are checked by
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Wt/iwm Average Utility value Improvement Factor
Utility (Game Utility (Default
Theoretic Approach) Cloudsim Approach)

0.0/1.0 111.992 79.2493 1413161
0.10.9 123.8317 87.643 1.41291
0.2/0.8 138.4709 98.0254 1.412602
0.3/0.7 157.0358 111.1986 1.41221
04/0.6 181.3504 128.4625 1.411699
0505 214.5758 152.0735 1.411001
0.6/04 262.7114 186.3211 1.409993
0.7/0.3 338.7042 240.4876 1.408406
0.8/0.2 476.62 339.0993 1.405547
0.9/0.1 804.5843 575.1692 1.398865
1.0/0.0 2629.5804 1925.1514 1.365908

Table 1. Graphical Representation of Obtained Improvement

sending a request to datacenter. Upon availability the datacenter sends a response to datacenter broker. Then the resource
allocation request is made to the datacenter where the algorithm is employed and allocation is made. Finally a successful
allocation message is displayed to the user and resource is provided to that consumer.

7.1mplementation

Thisimplementation provides:
» support for modeling and simulation of large scale Cloud computing data centers

* support for modeling and simulation of virtualized server hosts, with customizable policiesfor provisioning host resourcesto
virtual machines

« support for modeling and simulation of energy-aware computational resources

« support for modeling and simulation of data center network topol ogies and message-passing applications
« support for modeling and simulation of federated clouds

« support for dynamic insertion of simulation elements, stop and resume of simulation

» support for user-defined policies for alocation of hosts to virtual machines and policies for allocation of host resources to
virtual machines

8. ResultsObtained

Thefigure 3 depictsthe resulting improvement in the game theoretic approach to resource provisioning against the default |oad
shared approach adopted in Cloudsim's DatacenterBroker package. We measure Average Utility value that is approximately
140% of the value seen in Cloudsim approach and in FCFS approach. We have seen an even higher improvement over the
standard FCFS approach. Results are tabulated in table 1.

Our main objective of taking up this project wasto maintain afair and equitable environment towards resource provisioning and
allocation. Through our approach, the cloud consumer's requirements are taken into account and it isin the best interest of the
cloud consumer as well asthe cloud service provider since profits/benefits are maximized to either party. All consumers share
equal chances of obtaining the resource in demand as our approach involves allocation of resources to tasks taking the least
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timefor execution. Observed improvement over existing approach is> 40%. |mplementing this at the Cloud Service Provider's
end will result in dramatically increased revenueto the CSP aswell as efficient execution of requestsin the event of large number
of requests for a limited number of available resources given time and budget constraints. Also, all customers are assigned
resources that are best suited for the specified constraints and computational nature of the task.

We compare the execution time of the Utility Maximization approach and the L oad Shared approach for tasks of both varying
and uniform load characteristics. We notice that the reduction in execution time, and hence, the improvement in efficiency, is
non-uniform over the different tasks. Using the approach suggested in this paper, The execution time could be reduced to
approx. 27% in the best case and approx. 50% in most cases. In some cases, there is no reduction observed. This happens
routinely in tasks which are so resource hungry that they do not share resources. Therefore, we note that the worst case of the
proposed approach is not worse than the default approach.

8.1 Qualitativeimprovements
Qualitative characteristicsrefer to qualities or properties of cloud computing, rather than specific technological requirements.
One qualitative feature can be realized in multiple ways depending on different providers. The proposed approach forecasts

Execution Time Comparision

(Varying Request Characteristics)
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B

S s)
F s
3
T 3 431
3 T
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1 431
0 5 10 15 20 25 30
Cloudlet/Task Execution Time

mDefault Cloudsim Broker = Utility Maximization Broker

Figure4. Results
improvement intermsof Elasticity.

» Eladticity meansthat the provision of servicesis elastic and adaptable, which allows the usersto request the service near real -
time without engineering for peak loads. The services are measured in fine-grain, so that the amount of offering can nearly
perfectly match the consumer's usage. As it has been illustrated in the resulting graphs, such elasticity will assist in fair
allocation of resources for heterogeneous and homogenous requests alike.

* Availability refersto arelevant capability that satisfies specific requirements of the outsourced services by acloud broker. QoS
metrics like response time and throughput must be guaranteed, so as to meet advanced quality guarantees of cloud users. Since
execution time on all available virtual machinesisreduced to optimal condition using our strategy, processing entities become
available sooner for upcoming requests and can handle more number of requests than in a non-optimal resource allocation
environment.
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8.2 Economic I mprovements
* Ener gy Efficiency: Asit hasbeenillustrated in the two graphs, processing times are reduced by approximately 27% and about
34% correspondingly for homogeneous and heterogeneous requests.

Considering dynamic nature of the cloud services and demands, heterogeneous requests out number homogeneous requests.
This best illustrates the best-fit processing time reduction improvement and thereby energy-efficiency resulting from our
Utilization-Maximization strategy in actual commercial cloud environment.

» Reduced Operational Expenditure: Pricing on autility maximization strategy basisisfine-grained with usage based options, so
cloud customers need not worry about paying for what has not been their share of operational service. Operational Expenditure
isgreatly reduced.
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Figure5. Results

9. Conclusion

The Utilization Maximation [UM] model isproposed in this paper and the model focuses on the resource allocation problemin
cloud computing. Firstly, we made use of Cloudsim platform to simulate different entitiesinvolved in cloud resource all ocation
environment and the interactions and procedures between involved entities. Then, the algorithms of clients and resource
brokers are proposed. Specificaly, in order to find and minimize the unfairness due to the participation of selfish players, we
introduce autilization cal culation method in the resource broker's algorithm. The user broker creates an allocation matrix taking
into account the utility factors of each request-resource pair. Then, based on the alocation matrix local and global maximas, the
broker allocates available resources to requests with highest utility factor. Simulation results show that, the UM algorithm
allocation isbetter in maximizing overall utility factor against theload shared model and the FCFS model [First comefirst serve].
It can be compared to the best-fit strategy algorithms employed at kernel level in operating systems. Thisalleviatesthe overall
execution time of available virtual machines (resources) and thereby QoS is partly assured. Selfish players do not get undue
advantage since the allocations are dependant on utility factor. What's more, we analyzed the performance based on the
simulation results and the computational load of the UM model is superior to other models. It isworthwhileto note that the UM
model is much more applicable than some basic allocation models. However, the network delay, fraud user, reliability of re-
sources problems are not considered in this paper. Thus, how to make the model realistic, fulfill the complete QoS requirements
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of users and improve the resource scheduling algorithms form the next step of our work.
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