
Journal of Data Processing Volume 4 Number 1 March 2014 1

An Agent-Based Linked Data Integration System

Xuejin Li, Zhendong Niu, Chongyang Shi
School of Computer Science
Beijing Institute of Technology
Beijing, China
xuejinli7@gmail.com, {zniu, cy_shi}@bit.edu.cn

ABSTRACT: With the advent of the Web of Linked Data, new challenges to federated query processing are emerging. Different
from traditional federated database systems which do static data integration, this Web of Data is open and ever-changing. In
this paper, we present a agent-based architecture providing a flexible and decoupled solution for the federated queries over
Linked Data. Based on the presented architecture, a Linked Data Management System (LDMS) has been developed. LDMS
manages Linked Data in a virtual way, i.e., it does not load remote data into a local data store. With an application scenario,
we demonstrate the scalability and extensibility of the presented architecture.

Keywords: Linked Data, Data Management, Web Data, Scalability, LDMS, Agent Architecture, Database Systems

Received: 11 November 2013, Revised 18 December 2013, Accepted 23 December 2013

© 2014 DLINE. All rights reserved

1. Introduction

The Web of Linked Data enables new types of applications which can aggregate data from different data sources and integrate
fragmentary information from multiple sources to achieve a more complete view. This Web of Data is open and has grown
considerably. Today it comprises over 31 billion RDF triples, which are interlinked by around 504 million RDF links (September
2011)1. Traditional federated database management systems have been focused on the relatively static environments of distributed
databases. In these environments, the structure of data is consistent and data query performance can be optimized using pre-
computed indices. Hence, these data management systems do not scale up and do not cope well with open and dynamic
environments. An effective Linked Data management system has become one key challenge for many Semantic Web applications.

Due to the open and dynamic nature of the Web, Linked Data management systems must provides flexible, extensible means to
manage these data sources. To achieve this flexibility and openness, we accommodate the technologies of agent into our
system and propose an agent-based architecture. In this paper a system is presented which has ability in monitoring, managing
and querying data sources over the Web of Linked Data. It is not attached to any other projects, but developed as an independent
system. In the current version, the proposed system requires data sources accessible via SPARQL endpoints. However, it is
expect to have the ability of accessing any Linked Data sources in the following version.

1http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

2 Journal of Data Processing Volume 4 Number 1 March 2014

2 http://www.mcc.com/projects/infosleuth

3http://drogo.cselt.stet.it/fipa/spec/fipa97.htm

The remainder of this paper is structured as follows. In Section 2 we review related work. We discuss the architecture of the
system in Section 3. Section 4 describes the agent design and implementation. A data integration application in life science
domain and cross domain is briefly presented in section 5. Finally, section 6 gives the conclusion and future work.

2. Related Work

The agent technology has been widely used in Internet applications. In the environment of web, agent technology enables a
high degree of decentralization which is the key to system scalability and extensibility. The University of Michigan Digital
Library (UMDL) architecture encapsulates the many functionalities required in a digital library as a population of modular, goal-
oriented, specialized ‘agents’ [1]. A mobile agent architecture for managing distributed information is presented in [2]. Different
from the scenarios which these systems applied in, developers can not exert any influence on remote data sources over the Web
of Linked Data. As the most relevant work of the presented system, the InfoSleuth [3] project extends the capabilities of the
Carnot technologies developed in MCC2 into querying distributed, dynamic information sources in the World Wide Web. In
traditional Web, data formats used in information sources are various. InfoSleuth has to use additional ontologies to specify
both the infrastructure underlying the agent-based architecture and characterize the information contents in the underlying data
repositories. In this paper, we adjust this agent-based architecture to linked data query processing.

Garlic [4] is one of the first mediator system aiming at the integration of heterogeneous distributed multimedia data. It was
developed by IBM at the Almaden research center during the nineties. [5] introduces the implementation of a federated
geospatial catalogue system using the mediatorwrapper framework.

While approaches to federated query processing over linked data are still in their infancy, some prototype systems exist.
SemWIQ [6] uses a mediator-wrapper architecture to provide a transparent access to multiple distributed data sources. It
requires data sources register themselves at the mediator by sending HTTP POST requests with RDF documents attached.
However, this requirement is infeasible in the Web of Linked Data because that we can not require data publisher to do more
things than publishing their data. DARQ [7] extends the popular query processor Jena ARQ to an engine for federated SPARQL
queries. It adopts architecture similar to SemWIQ with not providing ability of monitoring data sources. The presented architecture
was designed to monitor the Web of Linked Data and automatically discover, register and abandon data sources.

3. Agent-based Architecture

The agent technology has been widely used in internet applications. In the environment of web, agent technology enables a
high degree of decentralization which is the key to system scalability and extensibility. InfoSleuth [3] provides capabilities of
querying distributed, dynamic information sources in the World Wide Web. While data formats used in information sources
being various in traditional web, the Web of Linked Data is in different case. Data published in this Web of Data must comply
with Linked Data principles. In this paper, we adjust the agent-based architecture of InfoSleuth to linked data query processing.

3.1 Architectural Overview
The proposed architecture is comprised of a network of cooperating agents communicating by means of FIPA ACL3. Users
submit SPARQL queries via user agents which provide user interfaces. The queries are routed by brokerage agents to specialized
agents for data retrieval from remote data sources and integration of intermediate results.

Agents register their network addresses and services in the broker agent. When an agent has accomplished its work or needs
help from other agents, it will send a request to the broker agent which routes this request to an appropriate agent or send back
an address of the needed agent. The overall architecture of our prototype is shown in Figure 1, in terms of its agents. Brief
descriptions of the functionalities of each of agent are given below.

• Management Agent: Manages data sources in system. It provides an interface for system managers to add, update or delete
data sources.

Journal of Data Processing Volume 4 Number 1 March 2014 3

Figure 1. The presented architecture

4http://docs.ckan.org/en/latest/api.html

Broker
Agent

Manager
Agent

Statistic
Agent

User
Agent

Discover
Agent

Monitor
Agent

Query
Agent

Model
Agent

Execution
Agent

Execution
Agent

Execution
Agent

Resource
Agent

Resource
Agent

Resource
Agent

• Monitor Agent: Monitors all known data sources. If a data source is updated or inaccessible, monitor agent will inform the
management agent updating or deleting it.

• Discovery Agent: Discovers new data sources. Traditional www search engines navigate the overall network starting by some
seed information sources. The similar way can be used to discover new data sources. Unfortunately, we can not decide whether
a data source provide the SPARQL endpoint when we enter into it by looking up IRIs. In the current version of the system, we
periodically access the raw data of Linked Data cloud via the CKAN API4.

• Statistic Agent: Generates the statistic model for data sources. When a new data source is detected, it collects the relevant
information about this data source, such as the SPARQL endpoint and the statistical model, and transforms them to the model
agent.

• Model Agent: Maintains the local statistic model store.

• Broker Agent: Routes requests of other agents. It is the central agent in the architecture.

• User Agent: Receives user queries. It verifies user queries, transfers them to query agent and shows query answers.

4 Journal of Data Processing Volume 4 Number 1 March 2014

• Query Agent: Decomposes original queries into some sub-queries, makes query plans and integrates the intermediate results.

• Execution Agent: Executes query plans. It interacts with resource agents for executing join operations.

• Resource Agent: Retrieves data from remote data sources.

3.2 Sample Scenarios
In the following, two sample scenarios are used to demonstrate how agents in the presented architecture interact with each
other.

During system start-up, all other agents register their addresses and capabilities in the broker agent at a wellknown address. The
model agent loads statistic models and IP addresses of SPARQL endpoints of all known data sources. System managers can
manually add or delete data sources through the interface provided by the management agent.Besides, the management agent
maintains a list of messages received from the discovery agent. System managers decide whether a new data source needs to be
added into the system. When a new data source is selected, the management agent triggers the statistic agent which constructs
the statistic model of the data source. A completed statistic model is transferred to the model agent, and then is stored into a local
model store.

A user submits a query by the user interface provided by the user agent. After being verified, the query is sent to the query
agent. Then, the original query is decomposed into some sub-queries according to the information provided by the model agent.
Each of decomposition triggers an execution agent. According to the statistic information, an optimal way of executing join
operations is selected. Execution agents distribute sub-queries to their respective relevant resource agents which retrieve data
from remote data sources and interact with other resource agents for join operations. All intermediate results returned from all
execution agents are integrated into the final query answers by the query agent. The user agent shows query answers according
to the format selected by the user.

4. Agent Design and Implementation

We have implemented the presented architecture in a Linked Data Management System(LDMS5), which has ability of adding,
updating and abandoning data sources and provides efficiently query service for end users. The agent-based system is
developed by JADE6, a well-established multi-agent system development framework, allowing us to put our main attention on
the business layer of the system. For example, communications between agents are simplified to send ACL Messages (enclosed
in the ACLMessage class of JADE). In this section, we describe the functionality, design rationale, and implementation of each
of the LDMS agents.

4.1 User Agent
The User Agent is the user’s intelligent interface to the LDMS network. It assists the user in committing queries, and in
displaying the results of queries in a manner sensitive to the user’s context.

After initialization, the User Agent advertises itself to the Broker Agent, so that other agents can find it based on its capabilities.
It provides users with options of the displaying format of query results. When the query agent has obtained a result, it engages
in an ACL “conversation” with the user agent, in which the results are incrementally returned and displayed.

The User Agent is autonomous and maintains the user’s context between browser sessions. It supports concurrent ACL
interactions with other agents. Hence, the User Agent does not suspend its activity while waiting for the result of one query to
be returned. It is implemented via Java applets which provide a flexible, platform-independent, and context-sensitive user
interface. The User Agent is capable of saving user preferences and displays different interfaces for different users according
to user query histories.

5LDMS is only available as Java source code (eclipse project) from the SVN repository:
https://svn.code.sf.net/p/semwldms/code/LDMS/trunk

6http://jade.tilab.com/

Journal of Data Processing Volume 4 Number 1 March 2014 5

4.3 Query Agent
The Query Agent has a familiar capability to traditional federated systems. It decompose a user query into some subqueries
based on a local statistical model dataset maintained by the Model Agent; sub-queries are respectively sent to their relevant
data sources, and then integrates the intermediate results into the final query answers.

The Query Agent is implemented in java based on Jena API. The parser shipped with ARQ is used to parse the original query
string into some query components (e.g. BGPs, result vars, the limit to the number of query answers). Based on statistical models
of known data sources, each triple pattern is decided to be relevant to some data sources. All triple patterns relevant to the same
one data sources are used to construct a sub-query. Because a triple pattern may have more than one relevant data sources,
decomposition plan may be more than one. The hierarchy of query decomposition is shown in Figure 2.

Each of decomposition plan is sent to a execute agent. The final query answers are the union of intermediate results returned by
all Execute Agents.

4.4 Execute Agent
The Execute Agent coordinates the execution of information gathering tasks. It estimates the cardinality of all subqueries. The
sub-query with the least number of intermediate results is evaluated firstly. To avoid cartesian product of results for two sub-
queries, the second sub-query evaluated should join with the first query. That is, BGPs contained by these two sub-queries
should share at least one variable. For the same reason, the third sub-query evaluated should join with the first sub-query or the
second one, and so forth.

Figure 2. The hierarchy of query decomposition

Sub-Query

SPARQL Query

Decomposition Plan

Sub-Query

Decomposition Plan

4.2 Manager Agent
The Manager Agent is the system manager’s interface to the set of available resource agents in LDMS. With the Manager
Agent, the system manager can add, delete or update data sets used to evaluate user queries.

When the Discover Agent finds new data sources, it sends an ACL message to the Manager Agent which maintains a list of new
found data sources. System managers decide to whether adding or omitting a data source. If a new data source is selected to add
to LDMS, the Manager Agent triggers the Statistic Agent which collects the relevant information about this data source, such
as the SPARQL endpoint and the statistical class graph, and transforms them to the model agent. When the Monitor Agent
detects a data source being changed or unavailable, it also sends a ACL message to the Manager Agent. In the window of the
list of all resource agents existed in LDMS, different labels are used to label changed data sources and unavailable data sources.
Then, system managers decide to update or delete a resource agent.

Same to the User Agent, the Manager Agent is implemented as a stand-alone java application. The interface is also provided via
Java applets.

6 Journal of Data Processing Volume 4 Number 1 March 2014

7 FedBench can be downloaded at http://code.google.com/p/fbench/

Data set Triples(k) Model size(KB) Time(m)

DBpedia 43.6M 13,126 235.3

NYTimes News 335k 103 1.9

LinkedMDB 6.15M 368 27.6

Jamendo 1.05M 33 5.2

Geo Names 108M 68 523.7

SW Dog Food 104k 646 0.5

KEGG 1.09M 42 5.5

Drugbank 767k 195 2.2

ChEBI 7.33M 23 25.2

Table 1. Benchmark Datasets

Join operations are executed in the Execute Agent. Currently, there are mainly three ways to execute join operations: nested-
loop, pipe line and semijoin. Nested-loop needs download all intermediate results to the mediator. The nestedloop does not fit
for coping with distributed join operations. Semijoin uses the way of value constraints to execute join operations over remote
datasets. Pipelining join execution involves a great number of initiations of transaction (one for each solution of prior sub-
query). LDMS uses group-join execution which restrains the number of the cached solutions in the mediator. In contrast to
cache all solutions of the prior sub-query in Semi-Join, these solutions are divided into some groups, each group of solutions
is used to construct value constraints of the next sub-query.

The Execute Agent evaluates sub-queries in parallel way. In a producer thread, the results of the first sub-query are fetched and
written to a data stream one by one. A consumer thread monitors the data stream and takes away the previous results which are
used to join with the results of the second query and start another producer thread.

4.5 Broker Agent
The Broker Agent is the core agent of LDMS. It pairs agents seeking a particular service with agents that can perform that
service. The Broker Agent is running on a well-known address and firstly started. Other agents advertise their services to the
broker agent via ACL. When an agent needs assistant of other agents, the Broker Agent responds to it with information about
the other agents that have previously advertised relevant service. Due to the existence of the Broker Agent, other agents need
not store information of all agents in the system, thus lower costs of network traffic required to accomplish an agent’s task.

An agent advertisement minimally includes its location, name and capability. Additionally, agents may advertise some special
information. For example, a resource agent need tell the Broker Agent the name of the data source it connected. The execute
agent distributes sub-queries into resource agents according by these information.

4.6 Resource Agent
The Resource Agent retrieves data from remote data sources. It acts as a wrapper of heterogeneous data sources, providing a
common interface, i.e. a SPARQL endpoint. Currently, LDMS is used integrating Linked Data, requiring data sources providing
a query service.

The Execute Agent needs the help of the Resource Agent for answering SPARQL queries. The Statistic Agent obtains the
statistical model of a remote data source through the Resource Agent. Hence, the most importance information the
Resource Agent telling the Broker Agent is the address of its SPARQL endpoint.

5. Experiments

In this section, we demonstrate the use of LDMS in data integration applications, and we present a data integration example from
the life science application domain and the cross domain.

We use data from FedBench7 [8] to simulate a real word application. FedBench includes two subsets of data sources in the

Journal of Data Processing Volume 4 Number 1 March 2014 7

Query BGPs Patterns Answer size

Q 1.1 2 1,2 90

Q 1.2 1 3 1

Q 1.3 1 5 2

Q 1.4 1 5 1

Q 1.5 1 4 2

Q 1.6 1 4 11

Q 1.7 1 4 1

Q 2.1 2 1,1 1159

Q 2.2 2 1,2 333

Q 2.3 1 5 9054

Q 2.4 1 7 3

Q 2.5 1 7 393

Q 2.6 1 5 28

Table 2. Benchmark Queries

Linked Data cloud: cross-domain and life sciences. While the former comprises of six data sources, the later includes four data
sources. For each data set, it defined seven queries. Answering anyone query needs access more than one data sources. For the
limits of this paper on graph patterns,thirteen of fourteen queries are adopted in our experiments.The overview of the data sets
is shown in Table I in terms of the number of triples and the size of statistical models and the time taken to create them. Queries
are shown in Table 2 in terms of the number of BGPs and patterns in the WHERE clause and the answer size.

LDMS provides a general interface for accessing multiple data sources. Adding a new data source to the system simply entails
adding a new Resource Agent, along with its statistical model. The brokering and query decomposition capabilities increase the
efficiency of queries by committing local queries only to the databases that are likely to contain the matched data.

Query Pipe line(s) Nested-loop(s) Semi-join(s) Group-join(s)

Q 1.1 3.1 Time out 3.1 3.1

Q 1.2 0.1 0.2 0.1 0.1

Q 1.3 15.6 33.5 7.8 7.8

Q 1.4 1.6 40.2 1.5 1.5

Q 1.5 6.2 113.2 1.7 1.6

Q 1.6 117.2 Time out 128.7 33.0

Q 1.7 70.2 Time out 3.1 4.6

Q 2.1 11 213.5 7.9 10.8

Q 2.2 7.0 Time out 3.2 3.2

Q 2.3 Time out Time out Time out 553.3

Q 2.4 0.7 335.2 1.4 0.1

Q 2.5 Time out Time out 173.6 93.9

Q 2.6 31.3 112.6 1.6 1.6

Table 3. The Comparison Of Returning Completed Answers

8 Journal of Data Processing Volume 4 Number 1 March 2014

120

100

80

60

40

20

0
Q1.1 Q 2.1 Q2.2

Size = 10

Size = 20

Size = 30

Size = 50

Size = 100

T
im

e (
m

s)

Query

Figure 3. The Comparison of Returning Complete Answers with Different Group Sizes

5.1 Evaluation of Returning Completed Answers
Benchmark queries were respectively evaluated with four ways of execution of join operation: pipe line, Nested-loop, semi-join
and group-join. For group-join, the size of group was set to 100. The value of time out was set to 10s. Table III shows the time
for returning completed answers.

Due to all intermediate results being transformed over network, the time performance of materialization is in the worst situation.
However, if all triple patterns in a query have good selectivity, it still can be comparable to other ways, i.e. Q 1.2. Group-join can
always answer these queries in active time.

5.2 Different Group Size
We also report the time for returning complete answers when the size of group is set to other number. Q 1.1, Q 2.1 and Q 2.2 were
randomly selected as the testing queries. The comparisons are illustrated in Figure 3. An interesting observation is that the time
performance is insensitive to the group size for some queries like Q 2.2. When the group size being larger than the maximum size
of intermediate result sets, Group-join will always be equivalent to Semi-join. In other words, different sizes of group can have
influence on the time performance only if they can lead to different times accessing remote data sources or different amount of
network transmission. How to find the optimal size of group for each query is in our future work.

6. Conclusion and Future Work

In this paper, we have presented an agent-based architecture and introduce the functionality of all agents. A Linked Data
management system (LDMS) has implemented the presented architecture. LDMS is scalable and flexible. This is because of the

Journal of Data Processing Volume 4 Number 1 March 2014 9

use of collaborative agents, and the Java based development platform JADE. LDMS can be easily deployed in different
environment. All agents are platform-independent. Besides, the user interface and the manager interface GUIs are written as Java
applets, which can be executed from any browser on any platform.

The agent-based design of LDMS is well suited for managing data sources in a dynamic environment. Additionally, it integrates
lined data sources while maintaining their local autonomy. We have demonstrated that the use of agent technology is a key
element for system scalability and extensibility.

With the ever-increasing amount of data sources accessible via SPARQL endpoints, the linked data integration has attracted
more and more attentions [9]–[11]. However, federated query systems for Linked Data are still in their infancy. Improving the
query performance of these systems is always in the center of their work. We outline two key factors concerning the performance
of federated query systems: Firstly, the decomposition of original queries must be accurate as far as possible. Secondly,
distributed join operations should be effectively executed. We focus on improving the query performance of LDMS in our future
work.

7. Acknowledgment

This work was supported by the National Natural Science Foundation of China (#61272361).

References

[1] Durfee, E. H., Kiskis, D. L., Birmingham, W. P. (1997). The agent architecture of the university of michigan digital library, IEE
Proceedings- Software, 144 (1) 61–71.

[2] Dale, J. (1997). A mobile agent architecture for distributed information management, Ph.D. dissertation, University of
Southampton. [Online]. Available: http://eprints.ecs.soton.ac.uk/00000849/05/thesis. ps.gz

[3] Bayardo Jr, R. J., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M., et
al. (1997). Infosleuth: agent-based semantic integration of information in open and dynamic environments, in ACM SIGMOD
Record, 26 (2) 195–206. ACM.

[4] Haas, L., Kossmann, D., Wimmers, E., Yang, J. (1997). Optimizing queries across diverse data sources.

[5] Shao, Y., Di, L., Bai, Y., Wang, H., Yang, C. (2013). Federated catalogue for discovering earth observation data, Photogrammetrie-
Fernerkundung- Geoinformation, (1) 43–52.

[6] Langegger, A., Woß, W., Blochl, M. (2008). A semantic web middleware for virtual data integration on the web, in The
Semantic Web: Research and Applications. Springer, p. 493–507.

[7] Quilitz, B., Leser, U. (2008). Querying distributed rdf data sources with sparql, in The Semantic Web: Research and Applications.
Springer, p. 524–538.

[8] Schmidt, M., Gorlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T. (2011). Fedbench: a benchmark suite for federated
semantic data query processing, in The Semantic Web–ISWC. Springer, p. 585–600.

[9] Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M. (2011). Fedx: optimization techniques for federated query
processing on linked data, in The Semantic Web–ISWC. Springer, p. 601–616.

[10] Gorlitz, O., Staab, S., Splendid: Sparql endpoint federation exploiting void descriptions. in COLD.

[11] Hoefler, P., Granitzer, M., Sabol, V., Lindstaedt, S. (2013). Linked data query wizard: A tabular interface for the semantic web,
The Semantic Web: ESWC 2013 Satellite Events. Springer, p. 173–177.

