Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN:
Online ISSN:


  About JISM
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
Journal of Multimedia Processing and Technologies (JMPT)
International Journal of Web Application (IJWA)

 

 
Journal of Electronic Systems
 

Predictive Process-based Modeling of Aquatic Ecosystems
Nina Vidmar, Nikola Simidjievski, Sašo Dzeroski
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia & Jozef Sefan Institute, Ljubljana, Slovenia & Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
Abstract: In this paper, we consider the task of learning interpretable process-based models of dynamic systems. While most case studies have focused on the descriptive aspect of such models, we focus on the predictive aspect. We use multi-year data, considering it as a single consecutive dataset or as several one-year datasets. Additionally, we also investigate the effect of interpolation of sparse data on the learning process. We evaluate and then compare the considered approaches on the task of predictive modeling of phytoplankton dynamics in Lake Zürich.
Keywords: Dynamic Systems, Sparse Data, Phytoplankton, Predictive models Predictive Process-based Modeling of Aquatic Ecosystems
DOI:https://doi.org/10.6025/jes/2019/9/4/123-130
Full_Text   PDF 647 KB   Download:   277  times
References:[1] Langley, P. W., Simon, H. A., Bradshaw, G., Zytkow, J. M. (1987). Scientific Discovery: Computational Explorations of the Creative Processes. MA: The MIT Press, Cambridge, MA, USA. [2] Dzeroski, S., Todorovski, L. (2003). Learning population dynamics models from data and domain knowledge. Ecological Modelling, 170, 129– 140. [3] Bridewell, W., Langley, P. W., Todorovski, L., Džeroski, S. (2008). Inductive process modeling. Machine Learning, 71, 1–32. [4] Cerepnalkoski, D., Taškova, K., Todorovski, L., Atanasova, N., Džeroski, S. (2012). The influence of parameter fitting methods on model structure selection in automated modeling of aquatic ecosystems. Ecological Modelling, 245 (0) 136–165. [5] Taškova, K., Silc, J., Atanasova, N., Dzeroski, S. (2012). Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with metaheuristic optimization. Ecological Modelling, 226, 36–61. [6] Atanasova, N., Recknagel, F., Todorovski, L., Dzeroski, S., Kompare, B. (2006a). Computational assemblage of Ordinary Differential Equations for Chlorophyll-a using a lake process equation library and measured data of Lake Kasumigaura. In: Recknagel, F.(Ed.), Ecological Informatics. Springer, 409–427. [7] Atanasova, N., Todorovski, L., Dzeroski, S., Remec, R., Recknagel, F., Kompare, B. (2006c). Automated modelling of a food web in Lake Bled using measured data and a library of domain knowledge. Ecological Modelling, 194 (1-3), 37–48. [8] Whigham, P., Recknagel, F. (2001). Predicting Chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms. Ecological Modelling, 146 (13) 243–251. [9] Bridewell, W., Asadi, N. B., Langley, P., Todorovski, L. (2005). Reducing overfitting in process model induction. In: Proceedings of the 22nd International Conference on Machine learning. (ICML ’05). ACM, 81–88. [10] Simidjievski, N., Todorovski, L., Džeroski, S. (2014). Learning ensembles of population dynamics models and their application to modelling aquatic ecosystems. Ecological Modelling (In Press). [11] Todorovski, L., Dzeroski, S. (2007). Integrating domain knowledge in equation discovery. In: Džeroski, S., Todorovski, L. (Eds.), Computational Discovery of Scientific Knowledge. Vol. 4660 of Lecture Notes in Computer Science. Springer Berlin, 69– 97. [12] Todorovski, L., Bridewell, W., Shiran, O., Langley, P. W. (2005). Inducing hierarchical process models in dynamic domains. In: Proceedings of the 20th National Conference on Artificial Intelligence. AAAI Press, Pittsburgh, USA, 892–897. [13] Durillo, J. J., Nebro, A. J. (2011). jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 42, 760–771. [14] Storn, R., Price, K. (1997). Differential Evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11 (4) 341–359. [15] Cohen, S. D., Hindmarsh, A. C. (1996). CVODE, a stiff/nonstiff ODE solver in C. Computers in Physics, 10 (2) 138–143. (March). [16] Breiman, L. (1984). Classification and Regression Trees. Chapman & Hall, London, UK. [17] Dietzel, A., Mieleitner, J., Kardaetz, S., Reichert, P. (2013). Effects of changes in the driving forces on water quality and plankton dynamics in three swiss lakes long-term simulations with BELAMO. Freshwater Biology 58 (1) 10–35. [18] Atanasova, N., Todorovski, L., Dzeroski, S., Kompare, B. (2006b). Constructing a library of domain knowledge for automated modelling of aquatic ecosystems. Ecological Modelling, 194 (13) 14–36. [19] Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83. [20] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30. (December).


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info