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ABSTRACT: Condition monitoring systems using vibration measurements and supervised classifiers can be used to auto-
mate the diagnosis process of rotating machines. In this paper, we describe an automatic diagnosis system for detection and
classification of defects in ball bearings using a time varying parametric spectrum estimation method for analyzing
nonstationary vibration signals. The classification task is accomplished by an adaptive neural fuzzy inference system. The
designed system was developed to be able to classify four types of preestablished defects in ball bearings operating under
several shaft speeds and load conditions. The system was tested with experimental data collected from drive end ball bearing
of an induction motor driven by mechanical system.
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1. Introduction

Identifying the cause of process abnormalities is very important for process supervision. Today’s world of highly automated
complex machinery requires elaborated decision and advanced condition monitoring systems to truly fulfil the goals of Computer
Aided Manufacturing (CAM). Machine failure occurs when a component, structure, or system is unable to accomplish its
intended task, resulting in its retirement from usable use. Condition-based maintenance involves the collection and interpretation
of data relating to the operating condition of critical components of the equipment, predicting the occurrence of failure, and
consequently the determination of appropriate maintenance strategies.

Despite the progress that has been made in the maintenance area, there still a need for further improvements in order to increase
the diagnosis accuracy and to reduce the human errors. A considerable amount of research has been carried out previously for
the development of many vibration analysis techniques. Most of them use either time or frequency domain representation of
vibration signals, on the basis of which many specific features are defined, allowing the recognition with a classification scheme
between various operating faulty states.

In recent years, soft computing techniques such as fuzzy logic, neural and neuro-fuzzy networks have been used successfully
in pattern recognition tasks and their suitability for fault diagnosis purposes has also been demonstrated. Statistical pattern
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classification is a traditional technique  in which the parameters of the distributions are computed using all training data. Many
researchers have paid attention to neural networks classifiers because of the capability of approximation and trainable systems,
neural networks with the abilities of real-time learning, parallel computation and self-organisation make pattern classification
more suitable to handle complex classification problems. In order to predict the remaining service life of a machine, once a defect
is identified, it is further important for the monitoring system to provide an estimate of the defect’s severity level. To this end,
both feed-forward and recurrent networks have been investigated for artificially induced defects [10].

This paper focuses on the development of a neuro-fuzzy system as a condition monitoring tool. The features are derived from
a time-varying parametric spectrum representation. The neuro-fuzzy system is applied to faults recognition. Whatever the
adopted approach, the problem to be solved is reduced to the construction of an optimal partition space in which the various
classes can be well separated.

The structure of the paper is as follows: Section II gives a brief overview of vibration analysis. Section III presents signal
processing methods and feature extraction. Then in section IV, the general scheme for condition monitoring is described. The
application of the proposed methodology to the design of ball bearing diagnosis system is presented in section VI. Finally, some
concluding remarks are also given.

2. Vibration Analysis

The vibration analysis is based on the processing of the vibration signals; in order to examine the health of the revolving
machines, that lies within the scope of the estimated maintenance of the production equipments, the objective of the monitoring
of these systems are: (i) Reduction of the number of system stops; (ii) Reliability of the production equipments; (iii) Increase in
the availability of the system; (vi) Better managing of the stock.

The mechanical vibrations are oscillating movements around an average position of balance; these movements can be periodic
or not periodic (transients or random). The periodic vibrations can correspond to a pure sinusoidal movement or a periodic
movement which one breaks up with a nap of elementary sinusoidal movements (harmonic components). Transient vibrations
are generated by discontinuous forces (shocks); as for the random vibrations are characterized by a random movement oscillating
these vibrations are represented mathematically only by probabilistic relations. The measuring equipment of the vibrations
includes:

- Transformation of the mechanical vibration into electric signal,
- Recording of the signal in numerical form,
- Signal analysis.

The chipping of a track of bearing causes shocks and a resonance, and this phenomenon appears in high frequencies.

3. Signal Processing for Condition Monitoring

Since the morphology of a vibration signal varies from incipient faults to complete failure, it is necessary to find out some
advanced signal processing techniques, which allow the extraction of a compact feature set, which can still capture most of the
useful information inherent in the original signal, is thus very important. Suitable feature extraction methods highlight the
important discriminating characteristics of the data, while simultaneously ignoring the irrelevant attributes, i.e., the noise. The
common parameters computed in the time domain include the root mean square value (RMS), kurtosis, skew, and crest factor
[13], [3], [8]. Since the skew is generally zero for raw vibration data, rectified skew has also been used. This consists of rectifying
the vibration signal and then computing the skew for the data. The autoregressive modeling have also been applied to analyzing
the spectra of defective bearings for classification purpose [2]. Other bearing characteristic parameters such as BPFO (Ball-pass
frequency of outer ring), BPFI (Ball-pass frequency of inner ring) and BSF (Ball spin frequency) have also been used extensively
as frequency domain characteristics [7]. They represent the amplitudes at specific frequencies only, thus do not provide a
wholesome measure of bearing health. Since time and frequency domain parameters alone have been found to of limited
effectiveness for detection of incipient faults, a multi-domain representation combined with an appropriate dimensionnality
redution seems to be an effective way to capture vital fault information. In the present study, the features are derived from time-
domain, frequency domain and wavelet domain.
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3.1 Statistical time-domain features
The time-domain parameters are able to effectively indicate early faults occuring in rotating machinery. Here, seven of them,
which are usually used for the fault diagnosis  of rotaing machinery, are shown as follows.

1) RMS value xrms

xrms = N
n =1∑ x (n)2 / N

2) Skewness value (SK)

SK =
(x (n) - x )3

(N - 1) σ 3

N
n =1∑ _

where x is the mean value of time series X defined as:
_

x =
∑N

n =1 x (n)

N

and σ  is the stabdard deviation of the sample X defined as:

σ  = 1
(N - 1)∑

N
n =1

(x (n) - x )2_

3) Kurtosis (KU)
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(N - 1) σ 4

(x (n) - x )4N
n =1∑

_

4) Crest factor (CF)

CF =
max | x (n) |

N
n =1∑ x (n)2 / N

5) Clearance indicator (CLI)

CLI =
max | x (n) |
N
n =1∑ | x(n) | / N )(

3.2 Statistical frequency-domain features
The spectral analysis of a signal can reveal some information that cannot be found in time-domain. The conventional approach
using the fast Fourier transform (FFT) cannot handle arbirary and more complex signals. Therefore, the high-resolution spectral
estimation can be achieved by the parametric model-based technique, which involves designing a parametric model based on
the vibration signal recorded. A frequency spectrum is then generated from this model. In this study, the autoregressive (AR)
model is used to estimate the power spectrum density (PSD) of a process and to extract some frequency-domain features. The
AR modeling consists in representing the signal x (n) as follows:

 -∑ ak x (n - k) + e (n)x (n) =
k =1

p

where e(n) is white noise with zero mean and variance σ 2, p is the order of the model and ak are known as the autoregressive
coefficients.

The Power Spectral Density (PSD) of an AR process is given by:
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P(  f ) =
σ 2 / fs

∑ ak e1 +
k =1

p

where fs is the sampling frequency. The following spectral characteristics are chosen to represent the vibration pattern:

(1) Center of gravity frequency: It is defined as

CGF =
P (  fk ) × fk

P (  fk )

∑
k

∑
k

where fk is frequency and P( fk) is the estimated power spectral density.

2) Spectral Skewness value (SSK)
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(P (k) - P )3

(M - 1) σ 3

M
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where P is the mean value of time series P defined as:

P =
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k =1
 P (k)

M
and σ  is the stabdard deviation of the sample X defined as:
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_
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where M is the number of the frequency points.

3) Spectral Kurtosis (SKU)

SKU =
(M - 1) σ 4

(P (k) - x )4M
n =1∑

_

4) Normalized subband energies : the frequency domain is divided into eight equally spaced frequency subdands Bi, i = = 1, 2,
··· ,8 and the subband energies are computed as

Ei =∑ | P(  fk ) |
2

f  ∈B

and the normalized subband energies are given by

Ei = Ei  / ET

_

where the total energy is given by: ET  =∑
i =1

8
Ei

5) The Shannon entropy is computed by

 -∑ENT =
i =1

Ei ln Ei

8 _ _

As a result, 12 statistical frequency-domain features are computed.
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3.3 Wavelet analysis
The theory of wavelet transform is a coherent mathematical framework for several signal processing techniques, such as the
multi-resolution analysis applied in the field of computer vision and data compression [12]. In this work, the wavelet transform
will be used for time-frequency analysis, because it allows to separate the signals of high frequency such as the impacts of
bearing from the vibrations, and low frequency, such as the rotational frequency of the machine. The wavelet transform is
defined as the integral of the signal s(t) multiplied by scaled, shifted versions of a basic wavelet function ψ (t):

c (a, b) = s (t) dt, a ∈ R+ - {0}, b ∈ Rψ t - b
∫ a

1 ( )a

Where a is the so-called scaling parameters, b is the time localisation parameter. Associated with wavelet ψ, which is used to
define the details in the decomposition, a scaling function φ is used to define the approximations. To avoid intractable computations
of the continuous wavelet transform (CWT), scales and positions can be chosen based on a power of two, i.e., dyadic scales and
positions. The discrete wavelet transform (DWT) analysis is more efficient and accurate [4]. In this scheme a and b are given by:

( j, k) ∈ Z2  : a = 2 j, b = k2 j, Z = {0, ±1, ±2, . . .}

This allows us to define the scaled and shifted versions of the mother wavet and teh mother scaling function, respectively.

ψj, k(t) = 2-j/2 ψ (2-jt - k) φj, k(t) = 2-j/2 φ  (2-j t - k)

A wavelet filter with impulse response g, plays the role of the wavelet ψ, and a scaling filter with impulse response h, plays the
role of scaling function φ. Thus, the DWT can be described mathematically as:

s (n) gj, k (n)c (  j, k) = ∑
n ∈Z

a = 2 j, b = k 2 j, j ∈ N, k ∈ N

The details at level j is defined as:

Dj(t) = c ( j, k) ψj, k (t)∑
k ∈Z

and the approximation at level L:

AL-1 =∑
j > L

Dj

In practice, the decomposition can be determined iteratively, with successive approximations being computed, such that the
analysed signal is decomposed into many lowerresolution components. At each level of the decomposition, the signal can be
reconstructed by using the reconstruction filters and upsampling [4], [12].

In the present study, the Daubechies wavelet “db1” is used to compute a five level DWT. For a given signal s(t), the DWT
feature vector is defined as

v = [v1, v2, . . . , v6]
T

where vi = σi /σir, i = 1, 2, . . . ,6, corresponds to D1, . . . , D5, A5, respectively and σi is the standard deviation of the ith

decomposition; σir is the standard deviation of the ith decomposition of a reference signal.

4. General Scheme for Condition Monitoring

The neuro-fuzzy fault diagnosis can be viewed as a pattern recognition problem. The spirit of pattern recognition techniques is
to solve the problem via the most significant features [5]. Therefore, in neural fault diagnosis the symptoms serve as the input
patterns to the recognition

(10)
R
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system which identifies the faults by the analysis of the input features. The classifier is carried out by an an adaptive fuzzy
inference system.

4.1 Neuro fuzzy system
Assume we have a complex nonlinear multi-input and multi-output (MIMO) relationship where x = [x1, . . . , xn]

T ∈ X  ⊂ R   n is

the  vector of input variables and y ∈ Y  ⊂ R   m  is the vector of ouput variables. In the multi-input and multioutput (MIMO)
neuro-fuzzy system given in Figure 1, the overal output is defined as:

^ ∑yj (x) =
i =1

H
fij φi ∑

i =1

H

 φi

where, j = 1, 2, . . . , m; i = 1, 2, . . . ,H and l = 1, 2, . . . , n;

{-(xl - cil )
2 ( σil )

2}φi = exp
l =1

n
Π

Here, we assume that cil ∈ Xi , σil > 0 and fi j ∈Yj , where Xi , and Yj are the variation domains of the input xi and output yj ,
respectively.
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Figure 1. Architecture of the neuro-fuzzy classifier

5. Hybrid Learning Scheme

The learning process is performed in two phases. Firstly, a clustering algorithm is used to find a coarse model that roughly
approximates the underlying input-output relationship. Secondly, parameter optimization procedure is performed for a better
tuning of the initial structure. In principle, once an appropriate structure is identified, the learning task can be acomplished by
any suitable training algorithm such as the standard backpropagation algorithm (BPA). However, because of slow convergence
speed of pure BPA, in the following a more efficient training method, namely the combination of gradient descent with least
squares optimization procedure will be used.

5.1 Structure identification by clustering
From the available training data that contain N inputoutput samples, a regression matrix X and an output matrix Y are constructed

(11)

(12)/
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X = [x1, ···, xN ]
T, Y = [y1, ···, yN ]

T

Since the study under consideration deals with a classification task, the clustering process uses only the input portion of the
data is used to discover an underlying structure generating the data. Clustering is a technique to partition a set of samples into
exactly c disjoint subsets. Samples in the same cluster are somehow similar than other samples in other clusters. One way to
make this problem a well defined one is to define a criterion function that measures the clustering quality of any partition of the
data.

Among the clustering methods, the Fuzzy c-means algorithm is one of the most popular. In FCM method, the loss (objective)
function is defined as follows:

Jm =
M
iku∑

i =1

c

k =1
∑
N

d
 2
ik

where, dik = || xk - vi || and uik denotes the grade of membership input vector k to fuzzy cluster i, vi is interpreted as prototype of
cluster i defined by {uik}, and weighting exponent m controls the extent of membership sharing between fuzzy clusters. For
m = 1, FCM converges in theory to the traditional c - means solution. To minimize Equation (14) subject to normalized condition:

uik = 1
i =1

c

∑

for each input vector k, using the Lagrangian multiplier method, for m > 1, local minimum of Equation (14) was demontrated if and
only if

uik =
1
dik

j =1
∑
c

djk
( )

2/(m-1)

vi =

N
k=1∑ um

ik xk
∀i

N
k=1∑ u m

ik

The FCM algorithm is characterized the parameter m that determines the behavior of the clustering algorithm. The larger m is, the
fuzzier is the partition.

5.2 Parameter optimization procedure
The parameters obtained by the identification procedure can be optimized or fine tuned by a variant of gradient descent
optimization techniques. This is achieved by an iterative two stage forward-backward optimization algorithm. In the forward
stage, with the ellipsoidal basis functions being constant, the weights of the last layer, i.e the functional models fi j i = 1, ··· , H
and j = 1, ··· , m are identified by solving a least squares problem. Then, in the backward stage, the functional models are fixed and
the parameters of the ellipsoidal functions cil , σil , i = 1, ··· , H; l = 1, ··· , n are updated by an effective nonlinear gradient-descent
(GD) optimization technique, which requires the computation of the derivatives of the objective function to be minimized with
respect to the parameters cil and σil .

The optimization algorithm uses a variable step learning rates. Given a set D  = {(x p,d p)}N  , such that x p∈X  ⊂ R   r, d p ∈Y  ⊂
R  m; the objective is to find sub-systems yj(x p )  occurred. The parameters are then updated by in the form of (11), such that the
mean squared error (MSE) function

p=1

ˆ

E =
1
2

∑
i =1

m
yj - d

p
j( )2

x p ∈D

is minimized. The problem is reduced to the adjustment of the fi j , and the mean (ci j) and variance σil of the ellipsoidal functions,
so that the MSE is minimized.

(13)

(14)

(15)

(16)

(17)

(18)ˆ
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Now it can be seen that the network output yj , and hence E, depends on cil and σil only through φi, where yj , fij , b and ψi are
represented by the following equations:

ˆ ˆ

∑
i =1

H
yj = fi j ψi

ψi = (φi / b) and b = ∑
i =1

m
φi

Derivatives of E w.r.t cil and σil

∂E
∂cil

=
∂E
∂φi

∂φi

∂cil

=
j =1

m

∑ ∂E
∂yj

∂yj

∂φi
)( ∂φi

∂cil

ˆ

ˆ

∂E
∂σil

=
∂E
∂φi

∂φi

∂σil

=
j =1

m

∑ ∂E
∂yj

∂yj

∂φi
)( ∂φi

∂σil

ˆ

ˆ

Finally, the results of the chain rules are written as follows:
∂E
∂σil

= A ·{ 2 · φi · (xl - cil) /( σil)
2 }

∂E
∂σil

= A·{ 2 · φi ·(xl - cil) / ( σ)3 }

with A =( )
m

j =1
∑ ˆ( yj - dj).( fi j - yj) / b

Let us assume that the task is to find an optimal vector of parameters w which minimizes some objective function J(w). In the
case of the neural system under consideration, all the parameters defining the ellipsoidal functions are stacked in a single vector
w. The optimization algorithm is a variant of gradient descent in which each parameter wj has its own step size ηj , and the step
sizes are adapted during the optimization process, depending on the learning performance and more specifically on the progress
of the objective function and on the sign of its derivatives at successive iterations. Let t be the iteration index. Then, if the
objective function has decreased between iteration t -1 and t, the following rule is applied to update each step size ηj

ˆ

ηj(t) =
⎧
⎨
⎩

βηj(t -1), i f (t -1) · (t) > 0

γηj(t-1),   otherwise

∂J
∂wj

∂J
∂wj

where β  > 1 and γ  < 1 are two coefficients. Hence, the step size is increased if the derivatives have kept the same sign during two
iterations, and it is increased if the sign of the derivative has changed, because a jump over a minimum has occured. The
parameters are then updated by

wj(t +1) = wj(t) - ηj(t) (t)∂J
∂wj

If now the objective function has increased between iterations t -1 and t, all step sizes are decreased simultaneously

ηj(t) = δηj(t -1) ∀ j

wj(t +1) = wj(t -1) - ηj(t) (t)∂J
∂wj

For the study under consideration, the following numerical empirical values of the coefficients are used:

β  = 1.2 γ  = 0.8 δ  = 0.5

ˆ (19)

(20)

(21)

(22)

(23)

(24)
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Type size

time-domain   5

frequency-domain  12

wavelet-domain   6

multi-domain  23

Table 1. The Various Parameters Extracted From a Vibration Signal

Method          Training            Testing
time-domain 0.7 0.85
frequency-domain 0.8 1.1
wavelet-domain 0.8 1.1
multi-domain 0.54 0.6

Table 2. Average Error in  %  For Training  and Testing Dataset
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6. Experimental Results

To demonstrate the effectiveness of the proposed condition monitoring scheme, data was collected experimentally from both
healthy and defective bearings. The database treated represents five classes one of operation normal and four represent faults
in bearings.

Figure 2. Parametric spectral analysis of vibration signals
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l1 - new ball-bearing
l2 - outer race completely broken
l3 - broken cage with one loose element
l4 - damaged cage, four loose elements
l5 - no evident damage; badly warned ball-bearing
Ball-bearing type 6204 (steel cage)
Rotational frequency = 24.5625 Hz (Tacho-signal used for the measurement)
Measured signal: acceleration (m/s2)
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Figure  3. Wavelet decomposition of vibration signals
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Sampling frequency: 16384 Hz
Minimum frequency: 0.7 Hz
Data acquisition system (B & K analyser)
Each file consists of 10-12 vectors including 2048 samples.

Figure 2 gives the parametric spectral for two vibration signals. The difference between different conditions indicate the
efficiency of the features that are derived from the frequency domain. Figure 3 shows the results of wavelet decomposition of
vibration signals. As a comparison, the neuro-fuzzy system was trained using features derived from time domain, parametric
spectral analysis and wavelet transform (WLT) as indicated in table I. The available input vectors being classified have been
divided in two groups: one used for the learning purposes and the other for testing the network. This was done to test the
generalization ability of the network as in practical case it is not possible to have defect vibration data for all possible defect and
operating conditions.

The results of the II show the relative effectiveness of the various feature sets for the fuzzy classifier. The best classification rate
of 99.46% is obtained for composite feature vector combining the three domain parameters

7. Conclusions

In this paper, an automatic diagnosis system for condition monitoring of rotating machines has been developed. Various
defects, which have mechanical origin, are detected by the analysis of the vibration signals recorded for these bearings under
different operating conditions. Neuro-fuzzy systems can be used successfully to detect faults in rotating machinery, using
statistical estimates of the vibration signals  as input features.
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