
116 Journal of Electronic Systems Volume 2 Number 3 September 2012

Efficient High Level Methodology for Design, Simulation and Hardware

Implementation of Min-Sum LDPC Decoders

Abdessalam Ait Madi1, Ali Ahaitouf1, Anas Mansouri2

1 Sidi Mohammed Ben Abdellah University

Faculty of Sciences and Technology

Signals Systems and Components Laboratory

B.P, 2202, Fez, V.N 30000 Morocco
2 National School of Applied Sciences of Fez

Signals Systems and Components Laboratory

Fez, Morocco

{aitmadi_abdessalam, ali_ahitouf, anas_mansouri}@yahoo.fr

ABSTRACT: In this paper we propose a hardware implementation of a regular (3,6) LDPC decoder. Two processing units

corresponding respectively to the variable and Check Node are designed in order to be used in Low Density Parity Check

(LDPC) decoding by the Min-Sum Algorithm (MSA). These Units are fully parallel and flexible to be used for different block

length when a regular (3, 6) LDPC codes are required. The two proposed units have been first designed and implemented in

software by using the high level methodology Simulink tool following a modular design approach. In a second step, these

blocks were wired in order to construct a decoder block for the LDPC code (10,5). These units are also described and

simulated using Very High Speed integrated circuits Hardware Description Language (VHDL). These three kinds of imple-

mentations show that the proposed high level approach is efficient for testing and validating digital circuits before being

implemented on desired Field Programmable Gate Array (FPGA) device.

Keywords: MSA, LDPC, VHDL, Hardware, Implementation, FPGA

Received: 22 June 2012, Revised 2 August 2012, Accepted 14 August 2012

© 2012 DLINE. All rights reserved

1. Introduction

LDPC codes are widely used in more applications for next generation data assessment such Digital Video Broadcasting for the

second generation digital satellite and terrestrial television broadcasting system (DVB- S2) [1], (DVB-T2) [2]. The LDPC codes

[3] can be efficiently decoded with the original belief propagation (BP) algorithm or the sum-product algorithm (SPA). The BP

algorithm outperforms the turbo-code decoding algorithms by its good error correcting performance [4]. However, it needed

many multiplications to update check and variable nodes units which make it difficult to use for efficient hardware implementation.

Several modified versions of the BP decoding algorithm have been introduced such log- likelihood ratio belief propagation

(LLR-BP) in which the multiplications are transformed in additions. In spite of this considerable simplification, the LLR-BP

remains still more difficult for digital circuits’ implementation. In fact it needs the Look-Up Table (LUT) to implement the non-

linear functions such the hyperbolic tangent and the involution transform function − log (tanh (x)) in the “ tanh− rule ” and the

Gallager’s approach LLR-BP based algorithm. However, the use of the LUTs introduces quantization effects and decoding delay

leading to some performances degradations. Thus, the non- LUT-based approaches, which employ only

 Journal of Electronic Systems Volume 2 Number 3 September 2012 117

Figure 1. VNPU block diagram considering parallel configuration:

update of the message sent from the VN “n” to the CN “m”

Figure 2. Boxplus diagram considering parallel configuration

Figure 3. VNPU design ms_vnp36_top in the Simulink tool for d
v
= 3

considering parallel configuration

combinational logic only, were introduced in order to avoid the unavoidable quantization impacts and delays. For example the

MSA algorithm [5, 6] reduces greatly the hardware implementation and computation complexity, but this advantage is adversely

affected by no negligible performance degradation due to the overestimation in the outgoing message from the check to variable

node. Despite this drawback the MSA remains the main approximated version that consumes less area and simplifies greatly the

computation complexity.

Designing the entire LDPC decoder in VHDL becomes a very difficult task, especially, when the sizes of the parity check matrix

increase. The LDPC decoders can be constructed using a modular approach and the basic LDPC decoding operations. So it is

possible to use auxiliary tools in this development. In order to test and validate the design a simple Matlab application script

receives the parity check matrix of the code, interprets it and accordingly, creates and connects a full set of module units needed

to implement the required LDPC decoder. Before implementing the designs into FPGA devices we can use high level abstraction

to verify its functionality. In this case the CNPU and the VNPU designs are first developed and tested, individually, in the

Simulink tool. In second step theses units are wired and tested also in the Simulink tool. The VHDL codes for all units are then

written by hand following the modular approach. After checking errors and warnings in ModelSim tool, the correctness of the

functionality is verified by using a test bench also written in VHDL. The CNPU unit developed in VHDL codes is integrated in

118 Journal of Electronic Systems Volume 2 Number 3 September 2012

Figure 4. CNPU design ms_cnp36_top in the Simulink tool for = 6 d
c
considering parallel configuration

a Simulink tool for co-simulation [7] by using Electronic Design Automation (EDA) Simulator Link for direct hardware design

verification. The Matlab script is used to call and connect the integrated blocks and sends stimuli to running designs to be

validated and tested. As response, the designs outputs are sent back to the Matlab script. The most advantage of the co-

simulation is the real system testing, therefore suppressing all possible misinterpretations present in a pure simulator. In other

cases, co-simulation may be the only way to simulate a complex design in a reasonable amount of time.

For the following, in section II the processing units VNPU and CNPU for LDPC decoder are developed. The section III describes

the details for the VNPU and the CNPU as well as the entire decoder designing in Simulink tool while the implementation in VHDL

codes of its processing units is developed in section IV. Finally, the simulation results are shown in the section V and section VI

concludes the paper.

2. Processing Units for LDPC Decoder

Iterative decoder can be constructed by considering each variable node (VN) and check node (CN) of the tanner graph [8] as

processing units, and a connection between them as a bidirectional communication channels through which the processed

information is sent. Since, the decoder works on the soft information, the sent messages between nodes are real values. In order

to represent these values in fixed-point two’s complement representation for reduced hardware implementation, we need to

quantize them authorizing, however, some performance loss as a result of the quantization.

2.1 VN Processing unit: VNPU

The architecture of the VNPU is the same as the other LDPC decoder designs [9]. In fact, the parallel design can be developed

with only combinatorial logic; however, the maximum frequency will be reduced.

The d
v
 (degree of VN) successive L

m
 messages coming from the CNPU are added together with the messages L

c
 coming from the

channel in order to calculate the variable node output value Z . The most significant bit (MSB) of Z is the sign bit which is used

for hard decision to estimate the nth bit in the received word from the channel, one for the negative value and zero for the positive

value. To update each output Z
n
 in each iteration, the corresponding message value L

m
 sent from the CN “m” to the VN “n”

should be subtracted from Z (see figure 1). This type of implementation requires an adder Σ capable of adding d
v
+ 1 inputs of

s bits fixedpoint two’s complement representation as well as d
v
 outputs s bits subtractors to perform d

v
 subtractions, where s is

 Journal of Electronic Systems Volume 2 Number 3 September 2012 119

the length of binary fixed-point number. This means that a high number of gates is required to implement just a single processing

unit, but has the great advantage of a minimum delay system high throughput.

2.2 CN Processing unit: CNPU

This module receives c d inputs. In the same way as the VNPU, each input is a s bit fixed-point two’s complement representation

Figure 5. Decoder design in the Simulink tool for the LDPC code (10,5) considering parallel configuration

120 Journal of Electronic Systems Volume 2 Number 3 September 2012

Figure 6. VNPU functional validation in Simulink tool

Figure 7. CNPU functional validation in Simulink tool

 Journal of Electronic Systems Volume 2 Number 3 September 2012 121

number. To implement the managed CNPU mathematical equation in hardware we separate the operationinto sign and magnitude

calculations of the two incoming messages according to the following equation.

Figure 2 represents a simplified boxplus unit shown in [8] for two inputs a and b in which the overall sign Final_sign is

performed by using a logical two input, sign(a) and sign(b), XOR operator. The Final_sign signal is set to zero for the positive

sign and to one elsewhere. By using a mux block, the output min or – min of the comparator will be driven to the signal out taking

into account the sign of the Final_sign signal value.

out = sign (a) . sign (b) . min (| a |, | b |)

Figure 8. VNPU functional validation in ModelSim tool

Figure 9. CNPU functional validation in ModelSim tool

To construct a modular CNPU, the boxplus unit will be instantiated in parallel manner to carry out the d
c
 (degree of CN) messages

L
m
 . The complexity of the boxplus operation on the parallel implementation requires a boxplus chain of d

c
 inputs. As results the

122 Journal of Electronic Systems Volume 2 Number 3 September 2012

 number of gates required increases when compared to serial or semi parallel configuration. In spite of this disadvantage, parallel

configurations are still used for high throughput applications.

3. Implementation of the VNPU and the CNPU Designs in Simulink tool

3.1 VN Processing unit: VNPU

The VNPU ms_vnp36_top shown in figure 3 has been designed in Simulink using basic adder block from the Simulink library.

The variable node has fourth inputs the first three in_vn1, in_vn2 and in_vn3 are coming from various check nodes to which

Figure 11. CNPU functional validation in HDL co-simulation using Simulink tool and ModelSim

Figure 12. BER obtained for LDPC decoder from Matlab in Floating and Fixed point

 Journal of Electronic Systems Volume 2 Number 3 September 2012 123

they are connected and the fourth one is the LLR message coming from the channel communication system. The VNPU unit

passes the outputs out_vn1, out_vn2 and out_vn3 to the check nodes and then the hard decision to estimate the nth bit in the

received word is making by observing the MSB of the Z value.

To emulate quasi similar hardware functionality the blocks set used in this design works in fixed-point two’s complement format

with a fixed word length set to 8 bits, the MSB bit corresponding to the sign, the next two MSBs bits represent the integer part

and the five remain bits represent the fractional part. Thus, all the data will be delimited in the [minimum, maximum] interval in the

8 bit fixed-point two’s complement format. Consequently, if a value computed by the block is outside this interval, it will be

immediately replaced by the maximum (respectively minimum) value achievable in the used representation, depending on the

sign bit.

3.2 CN Processing unit: CNPU

The Simulink design in figure 4 represents the CNPU ms_cnp36_top. It uses various basic blocks from the Simulink library

(absolute, min, xor, switch…). The block have six outputs, a positive value |out_cni| (i=1 to 6) is the minimum of the fifth value

|in_cnj| (j=1 to 6 and j # i), as example |out_cn1| isthe minimum of the set (|in_cn2|, |in_cn3|, |in_cn4|, |in_cn5|, |in_cn6|). The

product Π sign (in_cnj) , performed by the set of the XOR logic operators, represents the sign of out_cn1. All the blocks used

in this design works also in 8 bits fixedpoint two’s complement representation, in the same way as the VNPU design.

The functionality of these designs can be verified using Simulink tool. Once the two Simulink designs VNPU and CNPU are

verified and tested, we used the Matlab script to connect them in order to construct the LDPC decoder.

3.3 Decoding Processing unit

Figure 5 shows the implementation of the decoder for the LDPC code (10,5) in parallel manner. We thus need to instantiate ten

VNPUs and five CNPUs. These units will be, thereafter, wired in order to copy exactly the Tanner graph representation [9]. The

messages are exchanged via wires between these two connected units. In this case, the Matlab script application is used to

encode the information and create the L
c
 messages coming from the simulated communication channel. These messages are the

stimuli for the LDPC decoder designed in the Simulink tool. The designed decoder iterates in the Simulink tool until finding a

Figure 13. BER obtained for LDPC decoder from Matlab, Simulink,ModelSim and Simulink co-simulation

j≠1

124 Journal of Electronic Systems Volume 2 Number 3 September 2012

valid code word or reachingthe maximum iteration. The loop between the outputs and theinputs of the two units, used in the

decoder, is allowed by using the blocks M1 to M30 which defines a memory region, for use by the Data Store Read and Data

Store Write blocks used to write and read thirty L
m
 messages coming from each six outputs of each CNPU unit. A strict of control

of the order of execution of the data reads and writes is required. That is if a data store’s read occurs before its write, latency is

introduced into the algorithm: the read obtains the value that was computed and stored in the previous time step, rather than the

value computed and stored in the current time step. Such latency may causes the system destabilization and avoid correct

operating. For example, an error may occur during simulation when the data store is read before being updated by the Data Store

Write. As a guard against these errors we introduce a set of delay unit associated with the Data Store Read.

Each input Z
n
 of the VNPU unit receives one L

m
 message read from the Data Store Read associated to the CNPU unit to which

it is connected. Note that the VNPU inputs and outputs are respectively denoted L
i
 (i =1 to 3) and i Z (i =1 to 6) , when the CNPU

inputs and outputs are denoted Z
i
 (i =1 to 6) and L

i
 (i =1 to 6).

4. Implementation of the VNPU and the CNPU Designs Using VHDL Codes

The work consists of transforming the two developed designs into computerized representation by using the Very High speed

Hardware Description languages (VHDL). The blocks used in these designs are described and tested individually following a

modular approach. After checking the eventual errors and warnings in each module, all the elements were wired to produce the

required top designs. The VNPU top design ms_vnp36_top includes six adders, three unary minus operator and one comparator

to zero which is used to make the hard decision. The CNPU ms_cnp36_top include twelve instantiated boxplus unit connected

by internal signals. Each boxplus is implemented according to the figure 2. All theblocks used in this designs works in 8 bits

fixed-point two’s complement representation.

5. Results and Discussions

5.1 Validation of the Simulink design

The Simulink environment is used in this design approach. On figure 6, the test vector (0.5,-1, 1,-1) is applied to the VNPU unit

designed in the Simulink tool, the outputs are (-1, 0.5, 1.5, 1). From this result, one can see that the estimated bit value is one. We

can also see the equivalent in 8 bits fixed-point of the inputs in (in1_sf, in2_sf, in3_sf, llr_sf) displays. As seen in figure 7, the

CNPU units also designed in the Simulink tool yield the output vector (0.4375, -0.4375, 0.4375, -0.4375, - 0.4375, -0.437) as a result

for the corresponding 8 bits fixedpoint inputs values (0.4375, -1.969, 1.438, -4, -0.4375, -0.9688) displayed in (in1_sf, in2_sf, in3_sf,

in4_sf, in5_sf, in6_sf).From this example of simulation, the output magnitude |out_cn1| is equal to 0.4375, which correspond to

the minimum value of the set (1.969, 1.438, 4, 0.4375, 0.9688). Because, the number of a negative sign in the set (-1.969, 1.438, -4,

-0.4375, -0.9688) is even, the sign of the output out_cn1 will be positive.

5.2 Validation of the VHDL design

In the same way as in the Simulink designs, similar test vectors are applied to the VHDL model via a testbenchs written

furthermore in VHDL. The VNPU and the CNPU behavioral simulations are shown in figure 9 and 10, which represents both the

inputs and the outputs, signals in 8 bits fixed-point two’s complement representation, and their equivalent in real format. The

signs of the inputs and the outputs values are indicated by the MSBs value, a zero in MSB yield a positive result otherwise the

results is negative. As example, the VNPU output value out_vn1 is 11100000 in binary 8 bits fixed-point two’s complement

representation and -1 in real representation, for the CNPU the magnitude value |out_cn1| is 00001110 in binary 8 bits fixed-point

two’s complement format when 0.4375 is his value in the real format. It can be easily seen that we obtain the same results as

shown above in Simulink design simulation.

5.3 Simulink and ModelSim Co-simulation

In this simulation, the co-simulate hardware VNPU and CNPU HDL inputs signals are coming from Simulink while the HDL

outputs signals are driven back to the Simulink tool. In order to validate and test behavioral simulation of these VHDL models,

the same stimuli used above in the Simulink designs simulations are applied to the HDL designs (see figure 10 and 11). One can

clearly, see that the similar results are obtained when comparing these HDL modules behavioral simulations with their corre-

sponding in the Simulink tool.

 Journal of Electronic Systems Volume 2 Number 3 September 2012 125

5.4 MSA algorithm performances

A regular LDPC code (10, 5) check matrix H is used in this prototype design in the same way as in ref [10]. It is very smaller than

matrix used in reality. The fixed degree node of each VN and CN are three and six, respectively. Encoded bits are binary-phase-

shift-keying (BPSK) modulated and transmitted over the simulated Additive White Gaussian Noise (AWGN) channel. The

number of maximum iterations is set to 16 at each Signal to Noise ratio (SNR) Eb/N0 value. For each SNR value, the codeword of

length 10 have been transmitted until 2000 errors occurred or 500 codeword transmitted. The simulation program halts when the

decoded codeword is valid or the maximum of the number of iterations is reached. In order to validate and simulate hardware

implementation, the processing unit VNPU and CNPU designed in Simulink tool are called from the Matlab script application.

The test scenario of the HDL co-simulation is as follow:

• The VNPU designed by the Simulink tool is used.

• The CNPU unit designed in VHDL is used as the cosimulate HDL component module instance in the Simulink tool.

• The Matlab script application calls and connects the VNPU and CNPU designs to emulate the hardware implementation LDPC

decoder using MSA algorithm.

Figure 12 shows the BER (Bit-Error-Rate) versus SNR, obtained for the LDPC decoder from Matlab in floating and fixed point.

One can clearly see the good agreement between the performances in term of the BER of the MSA algorithm in floating-point and

8 bits fixed-point representation.

When comparing the MSA implementation both in Matlab, with VNPU and CNPU in the Matlab script managed Simulink and the

designed VNPU in the Simulink associated to the VHDL CNPU modelization and the entire decoder designed in Simulink tool, we

obtain quasi similar performances of the BER versus SNR evolution as shown on figure 13. The messages exchanged between

the modules are all represented in 8 bits fixed-point two’s complement format.

6. Conclusion

In this paper we have proposed an efficient high level modular approach to design the VNPU and the CNPU blocks for the MSA.

It uses Matlab, Simulink and ModelSim. The EDA Simulator Link for use with Mentor Graphic ModelSim is used to allow

communication between hardware component and Simulink model. The proposed strategy yields great advantages in terms of

design complexity and development time.

References

[1] Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for

Broadcasting, Interactive Services, News Gathering and other broadband satellite applications. Draft ETSI EN 302 307 V1.1.1

(2004-06). European Standard (Telecommunications series).

[2] Digital Video Broadcasting (DVB); Frame structure, channel coding and modulation systems for second generation digital

terrestriel television broadcasting system (DVB-T2). Draft ETSI EN 302 755 V1.1.1 (2009- 09). European Standard

(Telecommunications series).

[3] Gallager, R. G. (1963). Low Density Parity Check Codes, Cambridge, MA: MIT Press.

[4] Mackay, D. J. C. (1999). Good Error-Correcting Codes Based on very Sparse Matrices, IEEE Trans on Information Theory, 45

(2) 399-431.

[5] Fossorier, M. P. C., Mihaljevic, M., Imai, H. (1999). Reduced Complexity Iterative Decoding of Low Density Parity Check

codes based on Belief Propagation, IEEE Trans.Commun, 47 (5) 673– 680.

[6] Chen, J., Dholakia, A., Eleftheriou, E., Fossier, M., Hu, Y. (2005). Reduced- Complexity Decoding of LDPC codes, IEEE Trans

On Communications,53(8)1288-1299.

[7] Ait madi, A., Mansouri, A., Ahaitouf, A. (2012). Design,Simulation and Hardware implementation of Low Density Parity Check

Decoders using Min-Sum Algorithm, IJCSI, 9 (3).

[8] Falcao, G., Gomes, M., Goncalves, J., Faia, P., Silva,V. (2006). HDL Library of Processing Units for an Automatic LDPC Decoder

Design, IEEE PhD. Research in Microelectronics and Electronics (PRIME), p. 349-352.

126 Journal of Electronic Systems Volume 2 Number 3 September 2012

[9] Tanner, R. M. (1987). A recursive Approach to Low Complexity Codes, IEEE Trans on information Theory, IT-27(5) 533- 547.

[10] Aziz, S. M., Pham, M. D. (2010). Implemetation of Low Density Parity Check Decoders using a New High Level Design

Methodology, Journal of Computers, 5 (1) 81-90.

