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ABSTRACT: All-optical long-haul network in a rapid development to increase the optical communication systems capacity.
As a point in this direction we report the optimum values of the bandwidth of the optical for a system of high mode coupling
optical fibers using DPSK modulation format for the input signal with considering the impairments CD, PMD, PDL, and the
noise. Furthermore, we did get the optimum electrical filters bandwidth as well.
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1. Introduction

With increasing the bit rates, as the main point for developing the optical fiber communications systems, we need to develop
each device in the optical fiber systems. Highly sensitive direct-detection receivers are the most important device in the
designing of high-speed communication systems. In fact, optically preamplifier receivers show the best performance when
employing match optical filters [1, 2]. On the other hand, nonmatched filters are commonly used these days. Fabry-Perot filters
are the most ones that used today in order to maximize receiver sensitivity [3-5]. In order to maximize receiver sensitivity,
optimum optical filter bandwidths ranging from 0.9 to 8 times the data rate have been proposed for nonreturn-to-zero (NRZ),
ON-OFF kenning (OOK) transmission [5-7]. In this work, we present optimum optical filter bandwidth for Fabry-Perot filters
for return-to-zero (RZ), Differential phase shift keying (DPSK) with considering the impairments chromatic disperstion (CD),
polarization mode dispartion (PMD), polarization dependent loss (PDL), and the noise. Furthermore, we did get the optimum
electrical filters bandwidth for the a fifth-order Bessel type.

2. The System Modeling

In our modeling system, figure (1) for DPSK, the optical signal s
in

 t is launched into the fiber system with two lumped chromatic

dispersion (CD
1
 and CD

2
), lumped PMD (PMD

1
 and PMD

2
), and lumped PDL (PDL

1
 and PDL

2
) in linear regime. Then it is

amplified by a flat gain amplifier G. This amplifier added amplified spontaneous emission (ASE) noise. The normalized ASE
G − 1

G
hv, where n

sp
N

0
 = n

sp
noise is considered as additive white Gaussian noise n

in
 t with two-sided power spectral density

≥ 1 is the spontaneous-emission or population inversion parameter and hv is the photon energy. We consider that G >> 1 so
that N

0
 = n

sp
 hv [8]. ASE noise from the flat gain amplifier G is partially polarized due to the PDL [9] then the signal is optically

filtered using an optical filter. The optical filter is followed by photo detector. Finally the detected current is electrically filtered
by the post detection filter and sampled at the time t

k
.
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The instantaneous current at the decision circuit can be written as

y t,t = <E
out

 t, t  E
out

 t>  +  <E
out

 t  E
out

 t, t> / 2

t = 0 (OOK), t = T
b
  (DPSK)

Using Fourier transform E t = dt e−iωt  E (ω), the instantaneous current is1
2π

y t, t =
1
2π

dω  dω ei ω−ωt eiωt + e−iωt  H
r
 ω−ω  H

o
 ω  H

o
 ω  × < E

out
 ω E

out
 ω>*

We are dealing with two sections of PMD, two sections of PDL and two noises, so the output field has the form

E
out

 ω = ei  Ψ
CD
L1

ω  +  Ψ
CD
L2 T α

2
 T τ

2 
,ω  T α

1
 T τ

1 
,ω

E
in
 ω >= ei  ΨL2

CD
ω T α

2
 T τ

2 
,ω  e

1
   ω >(n)

Where e
1 

  and e
2  

  representing ASE noise optical fields.(n) (n)

The PMD Jones matrix has the form, T τ
1 
,ω  = exp (−i 1

2
ω τ

j 
 . σ ), PDL Jones matrix is T α

j
 = exp (− α

j
 / 2) exp (α

j
 . σ) / 2 and the

chromatic dispersion up to the 3rd order is  Ψ
j
    = L

j
 [ 1

2
β

2
ω2 + ( 1

6
) β

3
ω3 ]. j denoted to the number of the section (j =1, 2).

E
out

 ω >= S
1
 + S

2
 + S

3
,

S
1
 = ei  ΨL1

ω  +  ΨL2 T α
2
 T τ

2 
,ω

  T α
1
 T τ

1 
,ω , E

in
 ω >

CD

S
2
 = ei  ΨL2

ω T α
2
 T τ

2 
,ω , e

1
 ω >

CD n

and S
3
 = e

2
 ω >n

For the critical expression <E
out

 ω  E
out

 ω> we have nine distinct terms a

<E
out

 ω  E
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 ω> = S
1 

 S
1
 + S

2 
 S

2
  + S

3 
 S

3
 + S

1 
 S

2
 + S

2 
 S
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+ S

1 
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3
 + S

3 
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+ S

2 
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+ S

3 
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2
* * * * * * * * *

In order to proceed with the noise fields averaging, we introduce the following short hand notation

f ω, ω, t,t = 1
2π

ei ω−ω t eiωt + e−iωt  H
r
 ω−ω  H

o
 ω  H

o
 ω*

Also, we introduce a super noise field vector (depending on the noise fields dimensions)

N ω >=
e

1
  ω >

e
2
  ω >

(n)

Furthermore, by discarding the noise expressions in the last eight terms of <E
out

 ω  E
out

 ω> we can introduce a ket-vector

< b ω = dω f (ω, ω, t,t) S
1 
 S

2    dω f (ω, ω, t,t) S
1 
 S

3
**

b ω >=
dω  f (ω, ω, t,t) S

2 
 S

1

dω  f (ω, ω, t,t) S
3 
 S

1

*

*

On the other hand we will combine the terms S
1 
 S

2 
and S

1 
 S

3 
to introduce the bra-vector* *

Finally, we introduce the square block matrix Q containing the terms S
2 

S
2
, S

3 
S

3 
, S

3 
S

3 
and S

3 
S

2 
as* * * *

dω  f (ω, ω, t,t) S
2 
 S

2    dω  f (ω, ω, t,t) S
2 
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3

dω  f (ω, ω, t,t) S
2 
 S

2    dω  f (ω, ω, t,t) S
2 
 S

3

*

* *

*

Q =

(1)

(2)

(3)

CD

For simplicity we will rewrite equation (5.4) as following

CD

(4)

(5.a)

(5.b)

(5.c)

(6)

(n) (7)

(8.a)

(8.b)

(9)

+ e
2
   ω >(n)
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With the new vectors; the ket-vector N ω > , the bra-vector < b ω, the ket-vector b ω > and the square matrix Q, we can rewrite
the instantaneous detecting current at the decision circuit as

y t, t = <N Q N> + <b N> + <N b> + dω  dω  f (ω, ω, t, t) S
1 
 S

1

1
2π

*

In fact, this equation is just another photo to equation (5.2). Mathematically, y t, t is a physical variable which is a function of
complex Gaussian variable, in this case we can get the moment generation function as following: for a physical variable ξ
which is defined in a quadratic form as ξ = c + λw* w + b* w + bw* and w = x + iy is a complex Gaussian variable. Then ξ =
c + λx2 + y2 + 2xRe b + 2y Im(b) and its characteristic function is

eisξ = dx P
G

 x− ∞
∞

dy P
G

 y
− ∞
∞ eisξ =

1 − σ 2 λis

1
e[isc

σ 2 b  s

1 − σ 2 λis
]

Using inverse Fourier transform, from the characteristic function we can get the probability density function as

p ξ = ds e−isξ
− ∞
∞

)< eisξ > = 1
2π

( ds e−is(ξ − c)

− ∞

∞

1 − σ 2 λis

1
e[isc

σ 2 b  s

1 − σ  λis
]

For M complex random i.i.d. Gaussian variable we have ξ = c + , The moment generation func-diag λ
j 
w

j
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j
 + b

j
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j
 + w

j
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j
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1
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j
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and the probability density function is
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Now if compare ξ with our current y we find that

c = y
ss

 = dω  dω f ω, ω, t,t  S
1 
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1
*

ξ − c = I
n
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j 
w

j
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j
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j
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j
 + w

j
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j
∗ ∗ ∗M
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=< N Q N> + <b N> + <N b>

With the known λ
j 
 and by replacing is → s and using the inverse Laplace transform we have

ρ y
ss

 + I
n 

=
u0 + i∞1

2iπ
( )

u0 − i∞
ds e− s(Ι n )

M

j = 1 1 − σ 2 λ
j 
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1
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σ     bj  s

1 − σ 2 λ  s
]

j

2 22

σ 2 max {λ
j 
  }

1
− < u

0
 <

σ 2 max {λ
j 
  }

1
+

Here λ
j 
, λ

j 
 stands for the positive and negative λ

j
, respectively. Therefore, to evaluate the probability density function as a

function of the whole detecting current (y = y
ss

 + I
n
) we need to get the values of the integration as a function of the part

related to noise (I
n
); the noise-noise beating and the signal-noise beating.

For moment generation function given in equation (5.14), we can rewrite the probability density function as

+ −

ρ
y
   ς 

 
= 1

2iπth

u0 + i∞

u0 − i∞
ds Ψ

t 
 s e− s ς, σ 2 max {λ

j 
  }

1
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0
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σ 2 max {λ
j 
  }

1
+

k

P y
ss

 < y
th 

=
− ∞

y
th ρ

y
   ς 

 
dς  =

th − ∞

∞ ρ
y
   ς 

 
u(y

th 
− ς) dς

th

where y
th is the detection threshold, and u (x) is a unit step function. Using the inverse Laplace transform we get

P {y
ss

 < y
th 

}= 1
2iπ

u0 + i∞

u0 − i∞

Ψ
t 
 s
k

s
e− sy

th ds ,
σ 2 max λ

j 
  }

1
− < u

0
 < 0

 (10)

2 2

 (11)

2

2 2

 (12)

 (13)

2  (14)

 (15)

 (16)

 (17)

 (18)

               (19.a)
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where the restriction on the u
0
 range is necessary for the convergence of the inner integral in the last two equations.The right-

hand tail probability can be evaluated in similar manners
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=
− ∞
y
th

ρ
y
   ς 

 
dς  =
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k
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∞
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Ψ
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s
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Duo to the independency of the line integral of an analytic function and the integration path, we can rewrite both the left-hand
tail and the right-hand tail as

P y
ss

 < y
th 

= − 1
2iπ c−

Ψ
t 
 s
k

s
e− sy

th ds ,

P y
ss

 > y
th 

= 1
2iπ c +

Ψ
t 
 s
k

s
e− sy

th ds.

The integration contours c± are conveniently chosen to closely approximate the paths of steepest descent passing through

the saddle points u
0
  of the integrands on the real x-axis.

Ψ
t 
 s
k

s
e− sy

th = e Φ    (s)Let us take a look to the integrands in the last two equations; we can write, tk , taking the logarithmic fu-

nction of the both sides gives
Φ

t
   s = log Ψ

t 
 s − log s − sy

thk k

Substitute the value of Ψ
t 
 t from equation (5.14) gives

The roots of this equation are the saddle points u
0
  and u

0 
. These two roots (saddle points) can be found by using a numerical

method. Using Newton’s method we can get the saddle points, the paths of steepest descent c± are well approximated by

k

− +

parabolas of the form: s = u
0  

 + 1
2

kv2 + iv k =±
Φ′′′ t

k
 u

0
±

3Φ′′ t
k
 u

0
±

where Φ′′′ t
k
 u

0
±

is the third derivative of Φ t
k
 u

0
±
. In order to eval-

uate the probabilities given in equations (5.24.a.), (5.24.b), we rewrite those two equations as

P y
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th 

=
1
π Re {eΦ

0

∞
kt ( u   +

0
+ 1

2
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(1 − ikv)}
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th 

=  − 1
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0

∞
kt ( u   +

0
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2
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 + iv)2
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These two integrations are evaluated by the trapezoidal rule to get

P y
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 > y
th 

≅ −
∆γ
π n =1

∞[ 1
2

f   0 + f (n∆γ)]

For the Zero bit, and for the One bit we have

P y
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 < y
th 

≅ −
∆γ
π n =1

∞[ 1
2

f   0 + f (n∆γ)]

where f γ = Re {eΦ kt ( u   +
0
- 1

2
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 + iv)2

1 − ikv} and the initial step size is ∆γ = 1
2Φ′′ t

k
 u

0
±

The sum of f (n∆γ) can be stopped when

f (n∆γ) becomes negligible and halving the step size until the result is stabilized in desired accuracy. The bit error rate can
be obtained using the form [8, 10]

± 1
2π i c ±

Ψ
t 
 s
k

s
e− sy

th dsBER
y 
   t

k 
=

th

where + and c
+
 correspond for y

ss
 < y

th
, while – and c− for y

ss
 > y

th
. Averaging BERs over all bits in the De Bruijn sequence gives

(19.b)

±

(20)

(21.a)

(21.b)

(22.a)

(22.b)

 (23)
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BER
  
= BER

th 
(t

k
)
  
/ N

k = 0

N−1

and t
k
 = t

0
+ kT

b
. To include the intersymbol interference, we used a 32-bit sequence (16-Zeros and 16-Ones). Hence, the

probability of error in Zeros bits is P
0
 =

P
0
 t

kk = 0
15

16
. Similarly, the probability of error in Ones bits is P

1
 =

P
1
 t

kk = 0

16

probability of error (assuming bits One and Zero are sent with equal probability) is BER =

The total

P
0
 + P

1

2
. When the system input

has a on-off keying (OOK) modulation format, the sequence a
n
 has taken 25-bit de Bruijn sequence [8, 10-12], i.e., 0000 0111

0111 1100 1011 0101 0011 0001. Repetition of this sequence yields all possible configurations of a 5-bit string from 00000 to
11111 [8,10]. For the system with a balanced DPSK receiver shown in Figure (5.4.b), a

i
 = (∈{ei0, eiπ}) is determined by requiring

the received codes at sampling instants t
k
 ( t

k
 = t0 + kT

b
, k = 0,..., N −1, normalized as “0” or “1” with no signal distortion, form

a de Bruijn sequence. Different signal pulse shapes mean different spectral bandwidth, while different modulations can result
in different correlations between adjacent signal bits and thus leads to different signal spectral distributions. The first-order
PMD (i.e., DGD) causes the difference in arrival times of the two orthogonal modes of optical signal and leads to pulse
broadening in time domain. Thus the RZ signal should be more tolerant to the PMD-induced intersymbol interference (ISI)
than the NRZ signal, because the PMD effect on the RZ signal can be viewed as the increment of its duty cycle. Furthermore,
RZ-DPSK has lower peak power and constant pulse amplitude which reduces the effect of fiber nonlinearity. Therefore, we
used RZ-DPSK as input signal. The amplitude of the input signal s

in
 t can be assumed to be a periodic repetition of signal

dt
  
= a

i 
p (t − iT

b
)

i = 0

N−1
with period NT

b
, s

in
 t = s

in
 t =

a
i 
and determines the logic value of the ith bit. When N is large enough st is a pseudorandom signal. In this case we can use

∞
n = −∞ d (t − nNT

b
) Here p (t) determines the elementary input pulse shape

a mathematical tractability with physical properties close to the real situations. This amplitude is n = −∞
∞ d t − nNT

b 
≡

l = −∞
∞
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l
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l
 =b
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A
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l
=
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e-2iπ ml/N, with P f

l
 = dt p t e−2iπ fl t/N, f

l
 = l / NT

b 
.0

Tb In the low-pass configuration, pt

is the elementary input pulse shape. We consider a raised cosine as input pulse. The raised cosine pulse [10] is given as pt =

, where E
b 
is the optical energy per transmitted bit. Due to its periodicity, the input signal s

in
 t can be expa-2E

b
 T

b
 cos cos2

2
π t
T

b

π

nded in Fourier series as s
in

 t = s
in

 t p
s
  >=

input signal are polarized in the same direction represented by a constant unit vector p
s
  >= [x, y]T in 2D Jones space.

When the overall impulse response of the pre- and postdetection filters at the receiver has finite time duration T
0
, then the

value of the sample y(t
k
) is solely determined by the values that the input waveform of the optical filter takes on in the time

interval (t
k 
− T

0
, t

k
). Real filters, practically, have finite impulse responses. However, theoretical filters may not have finite

duration impulse responses. Therefore, from practical point of view, with the overall impulse response duration T
0 

we could

replace their input waveform with another one which coincides only in the time interval (t
k 
− T

0
, t

k
). This leaves the value of the

sample y(t
k
) unchanged. The above discussion means that an exact description of the input noise wave in the aforementioned

time interval has a sufficient statistics. Hence, we can write a Karhunen-Loéve [8,10] expansion for n
in

 t in the interval t
k 
− T

0 
<

t < t
k 
only.

The noise n
in

 t is an Additive White Gaussian noise (AWGN) which allows us to choose any orthonormal base for the

l = −∞
∞ (s

in
) 

l 
e−i

 NT
 2π lt
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( ) p

s
 >. For simplicity, we assumed that all Fourier components of

1
T

0

e2iπ m(t - t  + T  ) / T0 0kexpansion [8,10]. For a Fourier base {ϕ
m

 t = } m = −∞
∞  the relevant noise process is nt = m = −∞

∞ n
in m

ϕ
m

 (t), t
k 
−

T
0 

< t < t
k 

. Here the expansion coefficients are treated as complex independent and identically distributed (i.i.d) random

variables (r.v.) with Gaussian pdfs of zero mean and variance σ2 = N
0
 / (2T

0
)[8,10]. The value of  T

0 
depends upon the optical

and postdetection filters.

optical function is [13] H
0
 =

1 +
2if
B

0

1
The optical filter we have used in our code was assumed to be Fabry-Perot. The low-pass transfer function of the Fabry-Perot

, where B
0 
is the 3-dB bandwidth ( full-width at half-maximum) of the optical filter. A fifth-

 (24)

15
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order Bessel type was used as a low-pass electrical filter in the code, its transfer function is [13] H
e  

  f = 945/iF 5 + 15F 4 − i105F3

− 420F 2 + i945F + 945), where F = 2.43 f / B
e
 and B

e 
is the bandwidth of the electrical filter. Both B

0 
and B

e 
are defined in terms

of the bit rate R, which is the reciprocal of the bit duration T
b
 (R = 1/ T

b
).

By introducing a polarizer before or after the optical filter, the signal and the noise can be aligned in the same direction. Figure
(5.5.b) describe our system in DPSK cases. These two figures are equivalent to those in figures (5.3) with an additional
polarizer located before (or after) the optical filter. In this case we can rewrite the vector forms of the input signal and noise as

[s
in

 (t)]
l
  = 

l 
s

in l 
e−i2π lt/(NT  ),s

in
 t =
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∞

b [n
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N
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m

  ≡ N
in m 

e−i2πm/(t - t  + T  ) / Tk 0 0, due to the optical filter response H
0
(t) [or H

0
( f ) ], only those components

with frequencies within the filter bandwidth B
0 

need to be considered. According to this, we can introduce Dirac bra-ket

s
in 

t
k
 >= s

in   - L 
e

i2πLtk
NTb ,..., s

in 
 
L 

e
−i2πLtk

NTb
notations for the input signal as

T

where L is defined as L = ηN B
0 
T

b
, η is a dimensionless

parameter must be determined iteratively. Similarly, the Dirac bra-ket notations for the input noise is n
in 

t
k
 >= N

in 
>= N

in −M

,..., N
in  M  

, < n
in 

t
k
 < N

in 
= N

in −M 
,..., N

in  M  
MT * *

has the definition M = µ B
0 

T
b
, µ a dimensionless parameter can be determined

iteratively.

Figure 1. Signal and Noise Aligned in the Same DirectionPolarizer

3. Results and discutions

The effects of CD on optical performance are closely related with how signal spectrum is distributed near the carrier frequency,

H
CD

  f = 
 
e−i2π   β    f   L . To increase the CD limited transmission, the phase effect

2 2 2
since the signal is distorted by CD according to

in the modulation can be used. The optical and electrical filters are used to limit the spectral bandwidths of the signal and ASE
noise. The CD index is defined as  ξ = 10−4 D λ LR2 in the unit of  10−4 (Gb/s)2 ps nm, where R = 1 Tb is the bit rate in Gb/s. We
considered 10 Gb s a as the bit rate and λ = 1550 nm which yields D λ ≈ 17 ps nm km. Alternatively, the CD impact can be studied
by considering a value of SNR. Here the required SNR is defined to be E

b
 N

0
, with N

0 
the two-sided power spectral density of

ASE noise [8,10,13] and E
b 
is the optical energy per transmitted bit.

3.1 The Optical Filter
We used Fabry-Perot (FP) type as optical filter in our calculation. To get an optimum value of the bandwidth of this optical
filter we plot log BER as a function of SNR for several values of the optical filter bandwidth, and we found that the best output
BER can be gotten when B

0
 T = 1.2, as shown in figure (2). PMD has a values of 20ps in each section, PDL has 0.5dB in each
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section, and CD =17 in each section.

3.2 The Electrical Filter
The electrical filter which we had used was the fifth order Bessel type, as we had done with the optical filter; we did with the
electrical filter to get a best output. The best BER is found at B

e
 T = 0.65. Also, here, PMD has a values of 20ps in each section,

PDL has 0.5dB in each section, and CD=17 in each section. This is presented in figure (3).

Figure 2. Log (BER) versus SNR for several values of The optical filter (B
e

= 0.65/T ) PMD
1
 = PMD

1
 = 20 ps, PDL

1
 = 0, PDL

2
 = 1dB, CD

1
 = CD

2
 = 17

Figure 3. Log (BER) versus SNR for several values of The electrical filter (B
e

= 1.2/T ) PMD
1
 = PMD

1
 = 20 ps, PDL

1
 = 0, PDL

2
 = 1dB, CD

1
 = CD

2
 = 17)
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