A Multi-Bands Circular Polarized of Series Triangular Microstrip Patch Antenna Array

Adnan M. Affandi, Abdullah M. Dobaie, Navin Kasim, Nawaf A. Al-Zahrani
Electrical and Computer Engineering
King Abdulaziz University

Abstract: In this paper, the microstrip line fed wide band triangular patch antenna with rectangular slot has been designed and simulated by using ADS software in order to study the effects of various parameters on the antenna’s radiation characteristics. Also, two, four, eight and sixteen elements of triangular microstrip patch antenna array has been discussed. The effect on the antenna parameters due to increase in the antenna elements (array) is clearly observed on antenna bandwidth. This type of antenna can be used for Astronomy and Remote Sensing applications.

Keywords: Triangular Microstrip Antenna, Circular Polarization, Antenna Array, Series Feeding Network, Wide Bandwidth

Received: Received: 14 July 2014, Revised 2 September 2014, Accepted 14 September 2014
© 2014 DLINE. All Rights Reserved

1. Introduction

Microstrip patch is one of the most widely used radiators for circular polarization. Figure 1 shows some patches, including square, circular, pentagonal, equilateral triangular, ring, and elliptical shapes which are capable of circular polarization operation. However square and circular patches are widely utilized in practice.

Electric field vectors of a circularly polarized electromagnetic wave have a constant magnitude but their direction changes in rotary manner as showing in Figure 2.

The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electrical and magnetic fields is

\[E(r, t) = |E| \text{Re} \{ Q | \psi > \exp[i(kz - \omega t)] \} \] \hspace{1cm} (1)

\[B(r, t) = \hat{\phi} \times E(r, t) \] \hspace{1cm} (2)

where \(k \) is the wave number,

\[\omega = ck \] \hspace{1cm} (3)

The circularly polarized antennas can be obtained by different types of configuration and feeding such as dual feeding, single feeding and thin slot on the patch [1].

In this paper, novel type of microstrip patch antenna with thin slot on ground plane technique is used to obtain the circular polarization.
2. Antenna Design

A triangular patch antenna with thin slot on ground plane has been designed in single layer of Alumina dielectric material with dielectric constant, $\varepsilon_r = 9.6$. Table 1 shows the antenna specifications.

<table>
<thead>
<tr>
<th>Operating Frequency, f</th>
<th>55GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric material</td>
<td>Alumina</td>
</tr>
<tr>
<td>Dielectric thickness, h</td>
<td>25mm</td>
</tr>
<tr>
<td>Dielectric constant, ε_r</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Table 1. Antenna Specifications
Figure 3 shows the triangular patch antenna with rectangular slot along with single microstrip line feeding method.

A Special program Advance Design system (ADS) has been used to analyze and simulate the antenna parameters. The antenna parameters are S_{11} *Return Loss* = (-25) dB at operating frequency $f = 55$ GHz with **Bandwidth** = 16 GHz for return loss less than (-10) dB as showing in Figure 4. Moreover, the *antenna Gain* = 10.09 dB and *Directivity* = 10.09 dB. Finally, The antenna polarization is circular polarization as showing in Figure 5.
3. 2x1 ANTENNA ARRAY
This design is used as an element to generate a 2x1 array in order to improve the antenna efficiency, directivity and gain for the radiating system. The 2x1 triangular patch antenna array is shown in the Figure 6.

S11 response of the antenna and radiation pattern are showing in Figures 7 and 8 respectively.

4. 4x1 Antenna Array
Further design is used as an element to generate a 4x1 array in order to improve the antenna efficiency, directivity and gain for the radiating system. The 4x1 triangular patch antenna with series feed array is shown in the Figure 9.

S11 response of the antenna and radiation pattern are shown in Figures 10 and 11 respectively.
5. **8x1 ANTENNA ARRAY**

Upper level of antenna array is designed by using 8x1 array in order to continue the improvement in the antenna efficiency, directivity and gain for the radiating system. The 8x1 triangular patch antenna with series feed array is shown in the Figure 12.

S11 response of the antenna and radiation pattern are shown in Figures 13 and 14 respectively.
6. 16x1 Antenna Array

Upper level of antenna array is designed by using 16x1 array in order to continue the improvement in the antenna efficiency, directivity and gain for the radiating system. The 16x1 triangular patch antenna with series feed array is shown in the Figure 15.

S11 response of the antenna and radiation pattern are shown in Figures 16 and 17 respectively.
Figure 16. S11 Response of 16x1 Antenna Array

Figure 17. 3D Antenna Radiation Pattern of 16x1 Antenna Array

<table>
<thead>
<tr>
<th>Element</th>
<th>Geometry</th>
<th>Gain Obtained</th>
<th>Directivity Obtained BW</th>
<th>(S11 < -10 dB) (dB)</th>
<th>Return Loss</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Element</td>
<td>Triangular with</td>
<td>10.086dB</td>
<td>10.088dB</td>
<td>16GHz</td>
<td>-25</td>
<td>Multi Bandwidth</td>
</tr>
<tr>
<td></td>
<td>slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Array</td>
<td>Triangular with</td>
<td>10.82dB</td>
<td>10.824dB</td>
<td>14GHz</td>
<td>-45</td>
<td>Dual Bandwidth</td>
</tr>
<tr>
<td></td>
<td>slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Array</td>
<td>Triangular with</td>
<td>10.02dB</td>
<td>10.027dB</td>
<td>14GHz</td>
<td>-40</td>
<td>Dual Bandwidth</td>
</tr>
<tr>
<td></td>
<td>slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Array</td>
<td>Triangular with</td>
<td>15.76dB</td>
<td>15.77dB</td>
<td>3GHz</td>
<td>-35</td>
<td>Dual Bandwidth</td>
</tr>
<tr>
<td></td>
<td>slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Array</td>
<td>Triangular with</td>
<td>13.27dB</td>
<td>13.32dB</td>
<td>15GHz</td>
<td>-38</td>
<td>Dual Bandwidth</td>
</tr>
<tr>
<td></td>
<td>slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Comparison Results Summary
7. Simulation Results Discussion

From comparison results summary Table 2, Circular polarization has been obtained from Triangular patch Antenna with thin slot as illustrated in summary table which shown antenna parameters by using the antenna arrays in series arrangement and increasing the number of the antenna arrays up to 16x1 array. We obtain circular polarization with very wide bandwidth around 15 GHz and there is some improvement observed in the return loss. However, the antenna gain and directivity are mostly same with little bit improvement as indicated in above table for the same.

Furthermore, we got dual and multi bandwidths which can be utilize in several frequency bands applications.

The major applications for such extremely high frequency range for this kind of antenna are Astronomy and Remote Sensing applications.

8. Conclusion

In this paper, a triangular microstrip antenna element and its integration into 2x1, 4x1 and 8x1 and 16x1 planar arrays are introduced. This array can be used in Astronomy and Remote Sensing applications. The proposed element consists of only one single dielectric material with two metal layers, which makes it cheaper than other elements of more layers usually used for this application.

Acknowledgments

The authors acknowledge Engineering Faculty in King AbdulAziz University (KAU), Saudi Arabia, for supporting the research.

References

