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ABSTRACT: Low level data processing purposes are like FIR filtering, recognition of patterns or correlation, whereas the
parallel implementation is upheld bythe design matched distinct intention arithmetic; elevated throughput FPGA routes
facilely output waveform even for the most advanced DSP processors. In this paper the examination of  a high-speed non-linear
Adaptive median filter implementation is presented. Next the Adaptive Median Filter solves the dual intention of removing the
impulse noise from the image and cutting to distortion in the image. Adaptive Median Filtering can be accomplish the filtering
procedure of an image corrupted alongside impulse noise.
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1. Introduction

Lowering the dynamic power of a very-large-scale integrated circuit is an experienced method to cut the total power consumption.
One of the best methods to cut the dynamic power dissipation is to minimize the switching activities, i.e., the number of gesture
transitions in the circuit .The token-ring architecture, adopted in the design of a mixed-timing first-in–firstout (FIFO) interface
proposals the possible for low power consumption as data are immobile in the FIFO. In their designs, after data is queued, it will
not be motivated and is plainly dequeued in place. A token, that is embodied as logic state 1 in the token list, is utilized to
manipulation the dequeuing of aged data and queuing of new data at the alike time. All the token lists form a token ring, that is a
series of nodes interconnected in a circular manner. The token-ring design alongside precisely one token will be adopted in our
design for lowering the power consumption of a one dimension (1-D) median filter.

A median filter is a nonlinear filter extensively utilized in digital signal and image processing for the flattening of signals,
suppression of impulse noise, and  frontier preservation The median filter replaces a example alongside the middle-ranked worth
amid all the examples inside the example window, concentrated concerning the example in question. Reliant on the number of
examples processed at the alike series, there are two kinds of architectures for hardware design, i.e., word-level architectures and

A Low Power and High Speed Pipeline Architecture using adaptive Median Filter
for Noise Reduction in image Processing

S. Nirmal Raj1, S. Ashok2, P. Bala Vengateswarlu3, G.Vishnu Vardhan Rao4

1,2,3,4 Department of Electronics and Communication Engineering,
1,2,3,4 Veltechmultitech Dr.Rangarajan Dr.Sakunthala Engineering College,
Avadi, Chennai, India
nirmal.vlsi2014@gmail.com1, sashok@veltechmultitech.org2, balavenkatesh@veltechmultitech.org3,
vishnuvardhan@veltechmultitech.org4



 42        Journal of  Electronic Systems  Volume  6  Number  2   June   2016

bitlevel architecture. In the word-level architectures, the input examples are sequentially processed word by word, and the bits of
the example are processed in  parallel. On the contrary, the bit-level architectures process the examples in parallel and the bits of
the incoming examples are sequentially processed .In this brief, the word-level architectures will be adopted in the design of a low-
power median filter for useful use. The median of a set of examples in the word-level sorting web is frequently computed by early
sorting the input examples and next selecting the middle value. In their methods, the input examples are sequentially processed
word by word, and the incoming example is inserted into the correct locale in two steps. In the early pace, the oldest example is
removed from the window by advancing a little of the stored examples to the left. In the subsequent pace, the incoming example
is contrasted alongside the by now sorted examples and next inserted in the right locale by advancing a little of them to the right.

The distinction between the two architectures in is that these two steps are individually performed in two clock cycles,but in this
it takes only one cycle. In both of their methods, though some of the stored examples have to be shifted left or right, depending
on their values when a early input samples enters the window. For some applications that require a better example width, more
signal transitions in the circuit are needed; i.e., more dynamic power will be obsessive. To overcome this trouble, a new median
filter architecture  targeting low power consumption is projected. as a substitute of sorting the samples physically in the window,
the stored samples are kept immobile there. Only the rank of each sample, which uses fewer bits, has to be efficient at each latest
cycle when an input sample enters the window. Since our architecture is implemented as a two-stage pipeline, the median output,
which is the sample with median rank, will also be generated at each cycle. The development in power consumption is achieved
by utilizing a token ring in our architecture. Since the stored samples in the window are stationary, our architecture is appropriate
for low-power applications.

2. Existing System

2.1 Architecture
Figure 1 gives an overview of our low-power median filter design alongside window size N. It consists of a  circular array of N
identical cells and three auxiliary modules: rank calculation (Rank Cal), rank selection (Rank Sel), and median selection (Median
Sel). All the cells are additionally related to a globe input list X, across that they accord the incoming example, and the median is
stored in the output list Y. The design is  requested as a two-stage pipeline, whereas the lists in all the cells assist as the inner
pipeline registers. All the lists in the design are synchronized by the rising frontier of a globe clock. Every single cell block ci is
composed of a rank creation (Rank Gen) module, a comparator module “==,”and three registers: an m-bit (m = log2 N) locale list
(Pi),a data list (Ri), and a 1-bit token list (Ti).

Register Ri stores the worth of the example in cell ci, list Pi keeps the rank of this example, and the enable signal (en) of Ri is stored
in list Ti. All the examples in the window are ranked according to their benefits, even though of their physical locations in the
window.

In our design, a cell alongside a larger example worth will be associated alongside a larger rank. Though, for two cells ci and cj,
whose example benefits are equal, ci will be given a larger locale if Ri is newer than Rj (or Rj is older than Ri); i.e., the example in
cj enters the window preceding than the example in ci. The locale is hence exceptional for every single cell. For a window
alongside size N, the locale starts from 1 for a cell alongside the least example worth, and ends  alongside N for a cell alongside the
biggest example value. The median of the window can next be obtained from the example worth Ri of a cell ci whose locale Pi is
equal to (N + 1)/2, assuming N is an odd number.

In the design, the input example enters the window in a FIFO manner. Later it is queued, it will not be advanced and is plainly
dequeued in place. A token, that is embodied as logic state 1 in the token list of a little cell, is utilized to manipulation the dequeuing
of aged example and queuing of new input example at the alike time. Later the token is utilized, it will be bypassed to the
subsequent cell at a new cycle.

All the token lists form a token ring alongside precisely one token. Whenever an input example enters the window at a new series,
the rank of every single cell has to be updated. It could have to be recalculated, or could be the aged rank decremented by 1,
incremented by 1, or retained unchanged. The new rank of every single cell, that is denoted by signal Qi in the cell, is generated
by the rank Gen module. Every single rank Gen module receives gesture A from the rank Cal module and signal B from the rank Sel
module. Signal  A is the recalculated rank of a cell ci that encompasses the token and signal B is the aged rank of ci. Moreover,
signal Yi is the output of a comparator module “==,” that assesses the worth of rank Pi alongside a steady worth (N + 1)/2 so that
Yi = 1 if Pi is equal to (N + 1)/2, else Yi = 0. This signal issused to indicate if the corresponding cell ci encompasses the median in
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Ri. Comparable to the Locale Sel module, the Median Sel module transfers the worth of Rito the output list Y if Yi = 1;  i.e., if the
median is stored in Ri. The figure 1 shows the low-power filter architecture.

2.2 Circuit Behavior
At every single contraption series ti, the early period of our two-stage pipelined filter performs the pursuing procedures for the
input example X: compute the new rank of every single cell, insert X in a cell that  encompasses the token, and bypass the token
to the subsequent cell . This way that for all Pi, Ri, and Ti lists, their new benefits will be computed and ambitious at this period
so that they can be notified at the subsequent series ti+1. At the alike period, the subsequent pipeline period computes the median
worth for the input example that enters the window at the preceding series ti-1. That is, for the output list Y , its new worth will be
computed at this period so that it can additionally be notified at the subsequent series ti+1.

For every single cell ci, the benefits of its Pi, Ri, and Ti lists are all shown in the figure. Initially, at series t0, to make the early input
example be stored in the early cell c1, the last cell c5 is projected to encompass the token (T5 = 1).The rank and example benefits
(Pi and Ri) of every single cell, alongside alongside the benefits of the two input/output lists X and Y , are all reset to be zero.

When the early example 12 enters the window at series t1, the token has been advanced from c5 to c1 (T1 = 1 and T5 = 0). The worth
of P5 has additionally been notified to be 5 as the early zero of X (now stored in R5) is indulged as a adjacent example at the early
series t0. To design for the subsequent series t2, the new worth of R1 will be ambitious as 12 to store the input example as c1
encompasses the token. The new worth of P1 will be computed as 5 as example 12 (to be stored in R1) is larger than the example
benefits of the supplementary four cells.

Finally, the new benefits of T1 and T2 will be ambitious as 0 and1, suitably, to indicate that the token will be advanced from c1to
c2. All the benefits of Pi, Ri, and Ti will next be notified at the subsequent seriest 2. After the window is fully inhabited alongside
valid data at series t6, cell c1 holds the token once more (T1 = 1).The new worth of the median output Y for the subsequent series
t7will be ambitious as the worth of  R4 (47) as rank P4 is equal to 3, i.e., (5 + 1)/2. As the counseled design is a two-stage pipeline,
after Y is notified to be 47 at series t7 for the input example 66, the benefits of all Pi, Ri, and Ti will additionally be notified at this
series for the subsequent input example 52. It can be perceived from this example that after an input example is inserted into the
window, the aged example in every single cell will not be moved. Instead, the rank of every single cell is recalculated so that the
new median can be obtained in a cell whose rank is equal to (N + 1)/2.

2.3 Rank Updating
This section explains how to determine the new rank for each cell. Two types of cells will be separately discussed: a cell with the
token and a cell without the token.

Figure 1. Low-power filter architecture
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Table 1. Example illustrating the insertion of nine input samples into a window

2.4 Cell with the Token
For a cell ci with the token, its sample value Ri will be replaced by the input sample X, and its rank Pi has to be recalculated. The
new value of Pi can be obtained by comparing X with the sample values of all the other N - 1 cells that do not contain the token.
For these cells, if K is the number of cells whose sample value is less than or equal to X, the new value of Pi will be K + 1. At cycle
t6 of Figure 2, for example, the new value of rank P1 will be calculated as 2 + 1 at the next cycle t7.

2.5 Cell without the Token
For a cell ci without the token, its sample value Ri will not be affected when an input sample X enters the window. However , its
rank Pi may be affected by the sample value Rj of another cell cj that contains the token. Since the value of Rj will be replaced by
X, the relation between Ri and Rj may change. However, the sample value Rk of any other cell ck that does not contain the token
will not affect Pi since the value of Rk will not be changed. Depending on the relation between Pi and Pj, and the relation between
Ri and X, the new value of Pi may be decremented by 1, incremented by 1, or kept unchanged when an input sample X is inserted
into the window. The change of rank Pi can be explained as the following five cases, where cell ci does not contain the token, but
cell cj does.

Case 1: (Decremented by 1) Pi > Pj and Ri <= X: If rank Pi is greater than rank Pj, Ri is greater than or equal to (but newer than)
Rj at the current cycle. If Ri is less than or equal to the input sample X, Ri will be less than or equal to (but older than) the new value
of  Rj at the next cycle. In other words, Rj will change from a value that is less than or equal to (but older than) Ri to a value that
is greater than or equal to (but newer than) Ri. Therefore, the number of cells whose sample value is less than or equal to (but older
than) Ri will be decremented by1 at the next cycle; i.e., Pi has to be decremented by 1. Take rank P4 at cycle t6 of Figure 2, for
example, its value will be decremented by 1 (from 3 to 2) at the next cycle t7.

Case 2: (Incremented by 1) Pi < Pj and Ri>X: Similar to Case 1, if rank Pi is less than rank Pj, Ri is less than or equal to(but older
than) Rj at the current cycle. If Ri is greater than the input sample X, Ri will be greater  than the new value of Rj at the next cycle.
Therefore, the number of cells whose sample value is less than or equal to (but older than) Ri will be incremented by 1 at the next
cycle; i.e., Pi has to be incremented by 1.

Case 3: (Kept Unchanged) Pi <Pj and Ri<= X: If Pi is less than Pj, Ri is less than or equal to (but older than) Rj at the current cycle.
If Ri is less than or equal to X, Ri will also be less than or equal to (but older than) the  new value of Rj at the next cycle. Therefore,
the number of cells whose sample value is less than or equal to (but older than) Ri at the current cycle will be equal to that at the
next cycle; i.e., Pi has to be kept unchanged. For example, at cycle t7 of Figure  2, the  value of rank P3 has to be kept unchanged
at one at the next cycle t8.

Case 4: (Kept Unchanged) Pi > Pj and Ri > X: Similar to Case 3, if Pi is greater than Pj and Ri is greater than X,  the number of cells
whose sample value is less than or equal to (but older than) Ri at the current cycle will also be equal to that at the next cycle; i.e.,
Pi has to be kept unchanged.
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Case 5: (Kept Unchanged) Pi = Pj:This case occurs when the window is not yet fully occupied with valid data. At the initial state,
the rank of each cell is reset to be zero. After the window is fully occupied, each cell will be assigned a non zero and unique rank.
If rank Pi is equal to rank Pj, the values of Pi and Pj are both zero, and neither cell ci nor cell cj contains valid data.

The new value of Pi at the next cycle will still be zero since ci does not contain the token; i.e., Pi has to be kept unchanged at zero.
At cycle t3 of Figure 2, for example, the value of rank P4 will still be zero at the next cycle t4.It can be obtained from the above
discussions that for a cell ci that contains the token, its rank Pi has to be recalculated at a new cycle. If ci does not contain the
token, its rank Pi maybe decremented by 1, incremented by 1, or kept unchanged .Therefore, there are four sources for ci to update
its rank.

2.6 Ranksel and Mediansel Modules
The RankSel module is accountable for transferring the rank Pi of a cell ci to its output B if ci encompasses the token; i.e., after
Ti = 1. Figure 2(a) displays a easy implementation of this module employing AND/OR gates. It can additionally be requested by
tri-state buffers in Figure 2(b), where as B is the output of a globe data bus that accumulates the output signals of all the tristate
buffers. As there exists precisely one cell that encompasses the token at each time; i.e., there exists precisely one Ti signal whose
worth is equal to 1, the worth of B will always be valid.

Figure 2. Implementation of the RankSel module

(a) Using AND/OR gates. (b) Using tristate buffers
The MedianSel module can additionally be requested in a comparable way ( Figure 2). It transfers the worth of Ri to the output list
Y if Ri is the median; i.e., after Yi = 1. Though, if it is requested by tristate buffers, the median will be valid merely after there exists
at least (N + 1)/2samples in the window; or else, it will stay in a elevated impedance state.

2.7 Rankgen and Rankcal Modules
For the RankGen module in a cell ci, its implementation is given in Figure 4(a). signal Fi is the output of a comparator module“<=,”
that assesses the worth of Ri alongside that of the input example X so that Fi = 1if Ri is less than or equal to X (Ri<=X), else Fi =
0 (Ri > X). signal Ai is the output of a logic AND  gate so that Ai = 1 if Ti = 0 and Fi = 1; i.e., if cell ci does not encompass the token
and Riis less than or equal to X, else Ai = 0. The Ai signal of every single cell is related to the RankCalmodule, that computes the
new rank of a cell that encompasses the token. New rank is computed as K + 1, whereas K is the number of cells, that does not
encompass the token and whose example worth is less than or equal to X; i.e., K is equal to the number of logic 1’s on the Ai signals
of all the cells.

The RankCal module can be requested by a multiinput adder that adds all the Ai signals and next increments the sum by 1. If cell
ci encompasses the token, the output A of the RankCal module will be its new rank at the subsequent series. On the contrary, if
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Figure 3. (a) Implementation of the Rank Gen module. (b) Implementation of the Ctrl module

(a)

cell ci does not encompass the token, its new rank will be ambitious by the supplementary signals. signal Gi is the output of a
comparator module “>,” that assesses the worth of rank Pi alongside that of signal B so that Gi = 1 if Pi is larger than B, else Gi
= 0. As the worth of B is the rank Pj of one more cell cj that encompasses the token, the meaning of Gi can additionally be
delineated as Gi= 1 if Pi is larger than Pj(Pi >Pj), else Gi = 0 (Pi <= Pj). signal Ei is the output of a compactor module “==,” that
additionally assesses the worth of Pi alongside that of B so that Ei = 1 if Pi is equal to B, else Ei = 0. Likewise, the meaning of Ei
can be delineated as Ei = 1 if Pi is equal to Pj(Pi = Pj), else Ei = 0. Joining these two signals Ei and Gi, for the three relations amid
Pi and Pj(Pi >Pj, Pi =  Pj, and Pi < Pj), the corresponding worth of Ei Gi will be 01, 10, and 00, respectively.

2.8 CTRL Module
For a cell ci, since there are four possible sources to update its rank, a 4-to-1 multiplexer is used to select one of these sources for
signal Qi in Figure 3(a).

Then, the worth of rank Pi will be notified by the worth of Qi at every single cycle. The multiplexer is manipulated by two selection
signals S1 and S0; and these two signals, that are generated by the Ctrl module, are ambitious by four signals Ti, Ei, Fi, and Gi.
If cell ci encompasses the token (Ti = 1),its new rank is obtained from the output A of the RankCal module; i.e., the worth of S1S0
ought to be 11 when Ti = 1. If cell ci does not encompass the token (Ti = 0),there are five cases for this. In Case 1 after Pi >Pj(EiGi=
01) and Ri <= X (Fi = 1),the rank of ci will be decremented by 1; i.e., the worth of S1S0 should be 10 after EiFiGi =  011. Comparably
in Case 2, after Pi  <Pj (EiGi = 00) and Ri> X (Fi = 0),the rank of ci will be incremented by 1; i.e., the worth of S1S0 ought to be
01when EiFiGi =  000. Finally, after Pi <Pj(EiGi= 00) and Ri<= X (Fi = 1) in Case 3, Pi  > Pj(EiGi =  01) and Ri>X (Fi =  0) in Case
4, and Pi = Pj(EiGi = 10) in Case 5, the rank of ci will be retained unchanged; i.e., after EiFiGi = 010,001, or 1 - 0, the worth of S1S0
ought to be 00. Figure 3 (b) depicts a easy implementation of the Ctrl module.

(b)
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3. Proposed System

3.1 Adaptive Median Filter
The Adaptive Median Filter is projected toremove the setbacks confronted alongside average median filter. The frank difference
amid the two filters is that, in the Adaptive Median Filter, the size of window encircling every single pixel is variable. This variation
depends on the median of the pixels in the present window. If the mediansof pixel worth is an impulse, next the size of the window
is expanded. Otherwise, more processing is completed on portion of the image inside the present window specifications.

‘Processing’ the image basically entails the following: The center pixel window is assessed to confirm whether it is an impulse or
not. If it is an impulse, next new worth of that pixel in filtered image will be the median worth of the pixels in that window. If, though,
the center pixel is not an impulse, next the worth of the center pixel is retained in the filtered image. Thus, unless the pixel being
believed is an impulse, the grayscale worth of the pixel in the filtered image is the alike as that of the input image. Thus, the
Adaptive Median Filter solves the dual intention of removing the impulse noise from the image and cutting distortion in the image.
Adaptive Median Filtering can grasp the filtering procedure of an picture corrupted alongside impulse noise of probability larger
than 0.2. This filter additionally smoothens out supplementary kinds of noise, therefore, providing a far larger output image than
the average median filter.

Figure 5. Implementation of a 3*3 filter window

3.2 Parallel Sorting Strategy
To make fair analogy of parallel sorting strategy opposing wave sorter strategy in words of the finished number of needed   steps
sort an array, it is vital to ponder the steps utilized to elucidate data from recollection and the steps needed to store sorted data
back to memory. The counseled way is established on alike construction of lists array utilized in the wave sorter strategy. With this
kind of array, data can be stored in the array by dispatching a datum to the early list and afterward, after subsequent datum is
dispatched to the early list, the worth on the early array is advanced to subsequent register. Thus, for every single datum
dispatched to the array to be stored, benefits in lists advanced to their corresponding adjacent registers. This procedure needs
to n steps. The alike number of steps is needed to seize data out from the array. This way permits store a new set of data in the array
as the preceding set is being dispatched back into the memory. As remarked in serving 2, suffix sorting could imply extra than one
sorting iterations. If k sorts are needed, next parallel sorting needs ((n + n/2) * k + n) to sort an array of n data.

Figure 6. Parallel sorting
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