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ABSTRACT: In this paper, we present a formal contextual security model for pervasive computing applications. This
model is developed by addressing the required featurs such as - support of authorization and obligation policies, monitoring
and dynamic revocation of access rights, support of personalized security rule contexts, and support of collaborative
applications. Besides we design the model in a way to be logic-based. The mdoel is thus elegant as it enables the use of
formal policy conflict and dynamic system analysis techniques.
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1. Introduction

Traditional access control models like [8] considered static permissions. More recent models like [1, 10, 15, 4] integrated
contextual conditions. Both these systems simply provided a yes/no answer to access requests.

New interactive smart environments introduced new challenges and requirements. In particular, in these highly dynamic
environments, one must consider usage controls [13]. Usage controls are conditions which must be satisfied before, while or
after access. Usage controls may take the form of obligations. For instance, consider the two requirements “Before a subject
is granted access to the research lab, the subject must be properly authenticated” and “When a patient is admitted to the
emergency room, the patient should be examined by one of the doctors within 10 minutes.” These two obligations represent
a pre- and postusage control requirements respectively.

Usage controls may also take the form of state conditions which must hold while access occurs. For instance, consider the
permission “a professor may control the projector while there is an ongoing lecture”. The enforcement of this permission
requires that the professor’s access right to the projector be revoked whenever the lecture is ended.

To enable the specification of fine-grained contextual security rules, personalized rule contexts need to be supported. For
instance, consider the permission “a patient’s secret files may only be consulted by the doctor assigned to the patient during
the day”. This permission specifies two constraints: a particular relationship between the security rule subject (the doctor)
and object (the patient), and a state constraint (by day). A contextual security model should enable the specification of such
personalized state constraints.

In smart environments, there is often a need to support collaborative applications. For instance, consider the permission
“During a meeting application, a subject may only display on the screen information that may be viewed by all subjects
present in the meeting.” The support of this type of applications requires that authorization policies be sensitive to change
in state conditions and in subjects’ access rights.

In this paper, we present a security policy management framework which satisfies the above requirements. The framework
extends contextual security policies in the OrBAC model [6] to support permission monitoring and revocation. We also
integrate obligations into the framework. The proposed framework is formalized. This enables the use of advanced logic-



  Journal of E-Technology  Volume  2  Number  1   February    2011                                          27

based policy analysis techniques [2].

The paper is organized as follows. Section 2 presents a motivating example. Basic concepts are introduced in Section 3.
Section 4 presents our access control policy language. The dynamic management of authorization policies is discussed in
Section 5. Section 6 presents our context language. The obligation policy language is presented in Section 7. Section 8 gives
an application example. Finally, Section 9 discusses related works and Section 10 concludes the paper.

2. Motivating Example

To motivate our work, we consider the following security policy of an intelligent campus. Some of the examples are inspired
from [14].

p1: A professor may start a lecture only when there is more than 5 students present in the classroom.

p2: When a professor starts a lecture, only the professor is allowed to control the projector.

p3: During a lecture, Students in the classroom may only read and write on the white board.

p4: During a meeting, only information that all present subjects are allowed to consult may be displayed on the screen.

o1: When the professor starts a lecture, the professor should turn on the video projector within 5 minutes.

The correct enforcement of the policy above requires the support of authorization and obligation policies, the dynamic
reconfiguration of authorization policies and permission revocation, and the support of personalized contexts, e.g. to activate
the permission to use the projector only for the professor who initiated the lecture application.

3. Basic Concepts

3.1 System Object & State Representation
We consider a sorted first-order language which includes finite sorts for subjects S, objects O, actions A, contexts C, rule
identifiers N, predicate symbols Q and variables V. To enable the specification of security rules for groups of subjects,
actions and objects, we also consider the sorts roles (R), activities (A) and views (V  ), respectively. Constants and variables
are terms of the language. A rule is a formula written as A B1,...,Bn where A,B1, ...,Bn are atoms. An atom is a formula Q(t1,...,ti)
where Q is a predicate symbol and each ti is a term. Variable free atoms are facts. Facts, also called fluents, may change over
time.

3.2 The OrBAC model
The Organization-Based Access Control Model is a logic-based contextual security model. In this paper, we consider the
following OrBAC relations1 .

- Empower is a predicate over domains SxR. If s is a subject and r is a role, then Empower(s, r) means that subject s is
empowered into role r.

- Use is a predicate over domains O xV . If o is an object and v is a view, then Use(o, v) means that object o is used in view v.

- Consider is a predicate over domains AxA. If α is an action and a is an activity, then Consider(α ,a) means that action α
implements activity a.

- Permission is a predicate over the domains N x RS x AA x OV x C where SR = R  US, AA=  A U A and OV = V  UO. A relation
Permission(n, sr, aa, ov, ctx) specifies that permission n states that the subject/role sr may take the action/activity aa on the
object/view ov in the context ctx. A fact Permission represents an abstract system permission.

- Permitted is a predicate over the domains N x S x A x O x C. A relation Permitted(n, s,α ,o,ctx) denotes that permission n
currently authorizes subject s to perform action α on object o until the context ctx ends. A fact Permitted represents a
concrete permission.

- Hold Security policies specify whether a subject S is permitted, prohibited, obliged or dispensed to take some action A on
some object O. The specification of conditions over the security rule triple (S,A,O) and on the system state is made using the
predicate Hold defined over the domains SxAxOxC. A relation Hold(s,α , o, c) means that the set of conditions identified by
1In our framework, security policies are sets of permissions, prohibitions, obligations and dispensations. However, in this paper, only
permissions and obligations are considered.



   28        Journal of E-Technology  Volume  2  Number  1   February   2011

c holds for the subject s taking the action α on the object o. The specification of contextual conditions using the Hold
predicate is discussed in Section 4. The obligation language will be introduced in Section 7.

3.3 Dynamic System Modeling (Lactive)
To formalize access and usage control policies management operations, we use the language Lactive. Lactive enables the
description of dynamic systems. It borrows its concepts from action specification languages. A translation of the language
into logical programs is presented in [3].

The alphabet of Lactive consists of four sorts: (1) Fluents: are time-varying propositions representing the system state. (2)
Actions: represent possible actions in the system. Actions update the state by adding and removing fluents to and from the
state. (3) Events: are used to specify state conditions at which policy management operations are needed. (4) Rule Names:
unique identifiers of Event Condition Action (ECA) rules. ECA rules, also called active rules, are used to initiate policy
management operations when events are detected. An ECA rule states that when the event occurs and if conditions are true,
then actions are executed.

The language has the following three propositions:

(EL ) a(X) causes f(Y ) if p1(X1) ,..., pi(Xi)

(ED ) e(Y ) after a(X) if p1(X1) ,..., pi(Xi)

(AR ) r(Xr): e(X) initiates [α] if p1(X1) ,..., pi(Xi)

Where the symbols f,p1,..., pi are fluent symbols, a is an action symbol, e1,..., ei are event symbols and r is an active rule
identifier. An effect law proposition (EL) states that the execution of a(X) in a state where the fluents p1(X1),...,pi(Xi) are true
causes f(Y ) to be true in the next state. An event definition proposition (ED) states that if the conditions p1(X1),..., pi(Xi) are
true in the state following the execution of the action a(X), then event e(Y ) is produced. An active rule proposition (AR)
states that every new detection of the event e(X) initiates the execution of the sequence of actions [α] if the rule conditions
are true.

The operational semantics of Lactive defines a transition function which given a state and a (possibly empty) sequence of
actions produces a new state as follows. Actions in the input sequence are processed successively. For every action, effect
laws are evaluated and the fluent state is updated. If after the execution of the action, conditions in some event definition are
true, the event is generated. The newly generated events trigger active rules. Identifiers of these triggered rules are added to
the triggered rules set. When the last action in the input sequence is evaluated, if the triggered rules set is not empty, an
action selection function selects the sequence of actions appearing in one of the rules in the triggered rules set to process.
The state stops evolving after the processing of all the actions in an input sequence if the triggered rule set is empty. One of
the main advantages of the language is that, due to its simplicity, it is amenable to efficient implementation.

4. Access Control Policy Specification

Access control requirements are specified using the OrBAC policy language. For instance, the permission p1 in Section 2 is
specified as follows:

Permission(p1, professors, start, lecture,
more_Than_5_Students)

The context more_Than_5_Students is specified using the predicate Hold(S,A,O,Ctx as follows:

Hold(S,_,_,more_Than_5_Students) Location(S,
           classroom), Nb_Of_Students_In_Classrrom(N,classroom),

N>5

The rule above specifies that the context more_Than_5_Students should hold for a subject if the subject is in the classroom
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and there is more than 5 students in the classroom. The rule above defines more_Than_5_Students in terms of conditions on
the fluent. Therefore, it is called a state context rule. The context more_Than_5_Students is called a state context. State
context rules enable the specification of many types of contextual conditions [6], e.g. spatial, temporal, etc.

5. Dynamic Access Policy Management

The policy in Section 4 specifies contextual permissions which enable the system to provide a yes/no answer to access
requests. However, it does not enable the monitoring and revocation of permissions. In this section, we extend the model to
support permission monitoring and revocation.

Our proposal consists of the following. First, we describe the system dynamic behavior using Lactive effect laws, i.e. by
specifying the effects of action occurrences on the state fluents. Using this description and state context rules, we derive two
types of Lactive event definitions. Events of the first type have the form Holde(S,A,O,start(Ctx)). They specify the conditions
at which state contexts should begin to hold. Events of the second type have the from Holde(S,A,O,end(Ctx)). They, on the
other hand, specify the conditions at which state contexts should seize to hold. These events are then used to update the
applied access policy using active rules.

5.1 Dynamic State Description
The dynamic behavior of the system is described using Lactive effect law propositions presented in Section 3.3. Effect laws
specify the effect of the occurrence of actions on the state fluents. For instance, effects of the actions enter and exit on the
fluents Location and Nb Of Students are specified as follows.

Do(S, enter, classroom)
causes Nb_Students_In_Classroom(N, classroom),
               Nb_Students_In_Classroom(N+1, classroom)
if Empower(Sm students),
   Nb_Students_In_Classroom(N, classroom)

Do(S, exit, classroom)
causes Nb_Students_In_Classroom(N, classroom),
               Nb_Students_In_Classroom(N-1, classroom)
if Empower(S, students),
   Nb_Students_In_Classroom(N, classroom)

Do(S, enter, classroom)
causes Location(S, classroom)

Do(S, exit, classroom)
causes Location(S, classroom)
if Location(S, classroom)

5.2 Deriving State Context Start and End Conditions
From the dynamic state description and state context rules, we are able to derive using algorithm 1 the conditions at which
state contexts are activated and deactivated. Before presenting the algorithm, we introduce the following definitions.

Definition 1: An action A is said to initiate a fluent F if there exists an effect law “A causes F if p1,..., pn”. An action A is said
to terminate a fluent F if there exists an effect law “A causes F if  p1,..., pn”.

Definition 2: A fluent F is said to be positively de- fined in the context definition of Ctx if F positively appears in the
conditions of the state context rule of Ctx, i.e. “Hold(S, A,O,Ctx) ...,F,...”. A fluent F is said to be negatively defined in the
context definition of Ctx if F appears in the conditions of the state context rule of Ctx, i.e. “Hold(S,A,O,Ctx) ..., F,...”.

Definition 3: An action A is said to be an initiator of the context Ctx if A is an initiator of F and F is positively defined in the
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context definition of Ctx or if A is a terminator of F and F is negatively defined in the definition of Ctx. Similarly, an action A
is said to be a terminator of a context Ctx if A is a terminator of F and F is positively defined in the context definition of Ctx
or if A is an initiator of F and F is negatively defined in the definition of Ctx.

Algorithm 12, given state context rules and effect laws, returns the event definitions necessary to monitor the activation and
deactivation of state contexts as follows. For every action A that is an initiator of the state context Ctx, the algorithm returns
an event definition which states that the event context start(Ctx) should be detected after the occurrence of A if Ctx does not
hold in the state and conditions in the state context rule of Ctx are true. If A is, on the other hand, a terminator of Ctx, the
algorithm returns an event definition which states that the event context end(Ctx) should be detected after the occurrence of
A if Ctx holds in the state and conditions of its state context rule are no longer true.

For instance, the execution of algorithm 1 returns event definitions of the following form for the state-based contexts and
effect laws specified in Section 4.

Holde(S,_ ,_ ,start(more_Than_5_Students))
after Do(S’, enter, classroom)
if Hold(S,_ ,_ ,more_Than_5_Students),
     Location(S, classroom);
     Nb Of Students In Classroom(N, classroom),N > 5

Holde(S,_ ,_ ,end(more_Than_5_Students))
after Do(S’, exit, classroom)
if Hold(S,_ ,_ ,more Than 5 Students),
   (Location(S, classroom),
    Nb Of Students In Classroom(N, classroom),N > 5)

2To simplify the notation, we write A to denote an action Do(S’,A’,O’), Ctx to denote a context
Hold(S,A,O,Ctx) and F to denote a state fluent.

The first event definition states that after the execution of the action Do(S’,enter,classroom), if the number of students
exceeds 5 and that the state context Hold(S, , ,classroom) does not hold for a subject in the classroom, then this state context
should be started. Note that in our framework, state contexts are updated in the state following action execution.

5.3 Dynamic Management of State Contexts
When the event Holde(S,A,O,start(Ctx)) is detected, the fluent Hold(S,A,O,Ctx) is inserted into the state to mark that the
context Ctx now holds for the triple (S,A,O) using the active rule context Activation below. An active rule is similarly
specified to remove the fluent Hold(S,A,O,Ctx) from the state when the end of the state context is detected.
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context_Activation : Holde(S, A,O,start(Ctx))
initiates Activate_Context(S, A ,O,Ctx)

         Activate_Context(S, A,O,Ctx)
         causes Hold(S, A,O,Ctx)

5.4 Permission Activation and Deactivation
The following two active rules update the authorization policy after the activation/deactivation of state contexts.

activate_Permission : Holde(S, A,O,start(Ctx))
initiates Insert_Permitted(N, S, A,O,Ctx)
if Permission(N,R, Act, V,Ctx),
    Empower’(S, SR),Consider’(A,AA),Use’(O,OV )

deactivate_Permission : Holde(S, A,O, end(Ctx))
initiates Remove_Permitted(N, S, A,O,Ctx)
if Permitted(N, S, A,O,Ctx)

The condition Empower’(S, SR) specifies that S should either (1) be empowered into the role SR or (2) be the subject SR. The
conditions Consider’(A,AA) and Use’(O,OV) are similarly defined. Formally, Empower’(S, SR) is speci- fied as follows:

Empower’(S, SR) Role(SR),Empower(S, R)
Empower’(S, S) Subject(S)

The active rule activate Permission above simply adds concrete permissions to the state whenever the contexts of abstract
permissions are started. Concrete permissions have the form Permitted(N,S,A,O,Ctx). A concrete permission denotes that
rule N authorizes the subject S to take the action A on the object O until the end of the context Ctx. Concrete permissions
remain in the state until their context (Ctx) ends. At this moment, they are removed from the state by the active rule
Deactivate_Permission.

6. Context Language

Context composition enables the construction of powerful contextual conditions in security rules. We support the composition
of contexts using the logical operators conjunction (Λ), disjunction (V) and negation ( ). This allows the expression of more
sophisticated contextual conditions, e.g. the contexts (more_Than_5_Students _ campus Director Present) and (low_Noise_
LevelΛ low_CPU Load).

The activation and deactivation of composed contexts are obtained using the following context detection rules. These rules
are applied only for the finite set of composed contexts which are used in the policy. This ensures that composed event
detection after action occurrences always terminates.

In the following, we only present the detection conditions of the start of composed contexts. The detection conditions of
their end are obtained by simply replacing the start term by the end term.

The conjunction (Λ) The start of a conjunction (Ctx1Λ Ctx2) is detected if the start of one of the contexts in the conjunction
is detected while the other context holds in the state. This is represented as follows.

start(Ctx1 & Ctx2)
        (Ctx2, start(Ctx1)) V (Ctx1, start(Ctx2))

The disjunction (V) The start of a disjunction (Ctx1 V Ctx2) is detected if the start of one of the contexts in the disjunction
is detected while the other context does not hold. This is represented as follows.

start(Ctx1 V Ctx2) 
        ( Ctx2, start(Ctx1)) V ( Ctx1, start(Ctx2))
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Negation ( ) The detection conditions of the start of a negated context are the detection conditions of its end.

start( Ctx) end(Ctx)

7. Obligation Policies

We consider obligation policies which are closed ground facts of the following form:

Obligation(N, SR, AA, OV, Ctx, Ctxv)

Where N is a unique security rule identifier, SR is a subject or a role, AA is an action or an activity, OV is an object or a view,
Ctx and Ctxv are contexts.

The context Ctx is called the obligation context and it specifies when the obligation holds (is active). More precisely, an
obligations is activated when this context is started and is deactivated if this context is ended while the obligation holds.
Obligations are also associated with a violation context (Ctxv) which, if started while the obligation holds, the obligation is
violated. An obligation seizes to hold if it is fulfilled. For further details on the obligation language, the reader is referred to
[7]. For instance, the obligation o1 in Section 2 may be specified as follows:

   Obligation(o1, professors, turn On, projector,
lecture_Initiated_By_Professor, delay(5.minutes))

The context lecture Initiated By Professor may be speci- fied using a state context rule. It may also be specified using event
context rules as follows.

Holde(S,_,_,start(lecture_Initiated_By_Professor))
after Do(S, start, lecture)
if Empower(S, professors)

Holde(S,_,_,end(lecture_Initiated_By_Professor))
after Do(S, end, lecture)
if Empower(S, professors)

The context delay(Nb.TimeUnit) is a context that is detected Nb time units after the obligation is activated and represents
a relative temporal deadline.

Thus, the obligation above specifies that when a professor starts a lecture, the professor should turn on the projector within
5 minutes. However, the obligation is deactivated if the lecture is ended before its deadline.

7.1 Obligation Activation and Deactivation
Obligations are managed as follows. When the obligation context is started, a concrete obligation Obliged(N,S,A, O,Ctx,Ctxv)
is added to the state. A concrete obligation denotes that S is obliged to take A on O Ctx is true before Ctxv occurs. The
obligation is deactivated if the obligation context Ctx ends.

activate Obligation : Holde(S, A,O, start(Ctx))
initiates Insert Obligation(N, S, A,O,Ctx,Ctxv)
if Obligation(N,R, Act, V,Ctx,Ctxv),
     Empower’(S,R),Consider’(A, Act),Use’(O’ V )

deactivate Obligation : Holde(S, A.O, end(Ctx))
initiates Remove Obligation(N, S, A,O,Ctx,Ctxv)
if Obliged(N, S, A,O,Ctx,Ctxv)

7.2 Obligation Fulfillment and Violation
Actions required by concrete obligations are monitored using the event Holde(S,A,O,obligation Fulfilled). This event
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indicates that the obliged operation (S,A,O) has been performed. The detection of this event triggers an active rule to remove
the fulfilled obligation from the state by initiating the action Fulfill. Similarly, the detection of the obligation violation context
is indicated by the initiation of the action Violate.

fulfill_Obligation : Holde(S, A,O,obligation_Fulfilled)
initiates Fulfill(N, S, A,O)
if Obliged(N, S, A,O,Ctx,Ctxv)

violate_Obligation : Holde(S, A,O,start(Ctxv))
initiates V iolate(N, S, A,O)
if Obliged(N, S, A,O,Ctx,Ctxv)

8. Application Example

In this section, we reconsider the example policy presented in Section 2. Permission p1 is presented in Section 4. The
remaining permissions may be specified as follows.

Permission(p2, professors, control, projector, lecture_Application Λ application_Initiator)

Permission(p3, students, use, white_Board, lecture_Application)

Where the permission contexts lecture_Application and Application_Initiator are specified as follows:

Hold(S,A,O, lecture_Initiator) Location(S,L),
Application Initiator(lecture,S,L)

Hold(S,A,O, lecture_Application) Location(S,L),
Active Application(lecture,L)

To enable the monitoring of the above access control policy, one needs to specify the effects of the occurrence of the
domain-dependent actions on the fluents Application Initiator and Active Application. These effects are specified as
follows.

Do(S, start_Application, App)
causes Active_Application(App,L),
             Application Initiator(S, App,L)
if Location(S,L)

Do(S, end Application, App)
causes Active_Application(App,L),
            Application_Initiator(S, App,L)
if Location(S,L)

Finally, we consider the permission p4 as an example of authorization policies for collaborative applications. This permission
states that “When there is an ongoing meeting in the meeting room, only information to which all present subjects are
allowed to consult may be displayed on the screen”. This permission may be specified as follows.

Permission(p4, any_Subject, display, screen_Info,
      meeting_Default_Mode)

Where the context meeting_Default_Mode is specified as follows:
Hold(S, display, O, meeting_Default_Mode)

        Location(S,meeting_Room), Active_Application(meeting,
meeting_Room), :(Location(S’,meeting_Room),

Permitted(N,S’,view,O,Ctx))
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The above context specifies that the context meeting_Default_Mode holds for a subject S who wants to display an object O
only if S is in a meeting and that there is no subject in the meeting room who is not authorized to view the object O.

Several other collaborative contexts may be specified in our framework. For instance, the collaborate mode [14] where all
subjects who are present share their access rights may be specified using the following context rule.

Hold(S, display, O, meeting_Collaborate_Mode)
Location(S,meeting_Room),

     Active_Application(meeting_Room, meeting),
       Location(S’,L), Permitted(N,S’,view,O,Ctx)

9. Related Work

Other access control models have been proposed to enable the specification of contextual access control policies. Some
models have focused on particular constraint types. For instance, the GEO-RBAC [4] model considers the restriction of role’s
visibility to specific geographic areas, and the GTRBAC model [10] introduces mechanisms for the enabling and disabling of
roles based on temporal constraints. Our model is more general since it enables the specification of different constraint types
including temporal and spatial constraints [6]. We also support obligation policies.

Among models which support general context specification is the GRBAC model [5]. The model introduces environment
roles to allow the specification of environmental conditions. However, GRBAC does not enable the specifi- cation of
personalized contexts since it only captures general state conditions, e.g. the time of the day and a high CPU load. The
DRBAC model [15] uses state machines to maintain the role subset for a user and the permission subset for each role. The
model uses event condition action (ECA) rules to make state transitions. It does not however support permission revocation.

General remarks can be made over the models discussed above. All these models are RBAC-based models. Therefore, they
introduce a large number of roles in an access control system which complicates the specification and the management of the
policy. In addition, since the central idea to specify contextual conditions in the RBAC model is to specify constraints on the
different components of the model namely permissions, roles, and the user-role and permission-role assignments, all these
models fail to capture conditions denoting relationships between the permission subject, action and object, e.g. consider the
permission “a patient’s files may be only consulted by the patient’s assigned doctor”. Therefore, we argue that our model is
more suitable for the specification of personalized security rules.

In [11], a programming framework for specifying and enforcing context-based access control requirements is introduced.
The presented model introduces several extensions to the RBAC model to enable the specification of personalized permissions
and to support ongoing authorizations. In contrast, our model is simpler. Therefore, contextual security rule specification and
interpretation are more intuitive and straightforward. In addition, we have presented a formalization of our model. This
enables us to use logic-based techniques to analyze and detect inconsistencies in the policy. We also integrate obligation
policies.

In [9], a team-based access control using contexts is presented. The model introduces teams to represent a group of users
having the objective of completing a specific activity in a particular context. Team role permissions may be combined in
different ways, e.g. using the sum of or the maximum or minimum of access permission sets of team members. The model does
not however consider permission monitoring and revocation.

The UCON model [13] is introduced to support a broad range of usage controls. With respect to our work, in UCON, ongoing
authorizations are enforced by periodically evaluating decision predicates and access is revoked if the evaluation fails. In
contrast, in our framework, the system automatically derives the events which should be monitored to enable an automatic
revocation of permissions. The UCON model also does not support the specification of general or global obligations since
obligations are always associated with resource usage.

In [12], the secure evaluation of authorization policy conditions is studied and a generic condition specification and evaluation
service is presented. In contrast, we have studied the contextual management of security policies as opposed to how context
can be acquired or evaluated in a secure way. In a practical security framework, both these aspects surely need to be
addressed.
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In [6], the expression and evaluation of different types of contexts (e.g. temporal, spatial, provisional, etc) in the OrBAC
model is studied. However, context monitoring and dynamic update of the authorization policy are not considered. This work
presents an extension to the work in [6] which addresses this issue. Furthermore, we show how this enables the integration
of obligations in the policy language.

10. Conclusion

In this paper, we presented a formal contextual security policy model for pervasive environments. The model supports the
specification of personalized contextual authorization and obligation policies, dynamic permission revocation, and the
specification of policies of collaborative applications. Future work consists of integrating group obligations [7] into the
model.
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