
64 Journal of E-Technology Volume 2 Number 2 May 2011

VerFlexFlow and Querying Language for Business Process Model

Mohamed Amine CHAÂBANE, Lotfi BOUZGUENDA, Rafik BOUAZIZ
Mir@cl laboratory/ University of Sfax/ISIM
Route de Tunis, km 10.
BP 242, 3021 Sakeit Ezzit, Sfax-Tunisia
{MA.Chaabane, Rafik.bouaziz}@fsegs.rnu.tn, lotfi.bouzguenda@isimsf.rnu.tn

ABSTRACT: Business process flexibility now becomes a crucial research area. In the current study we provide a Versioned
Business Process meta-Model (VBP-M for short) for describing flexible business processes. This meta-model is organized
around five perspectives (functional, process,informational, organizational and operation). Second, it proposes a language
to define, manipulate and query the business process versions conforming to the proposed VBP meta-model. Finally, this
paper shows an overview of the VerFlexFlow tool that we propose to validate our contributions.

Keywords: Business Process, Flexibility, Versions and VerFlexFlow

Received: 29 December 2010, Revised 28 January 2011, Accepted 4 February 2011

© 2011 DLINE. All rights reserved

1. Introduction

Recently, organizations are interested to development of information and communication technology to automate their
Business Processes (BP) and adopt a workflow management system to realize them. In spit of the important advances have
been done in BP management, some effectiveness of BPs in information system are not yet achieved and several challenging
issues are still to be addressed. One of the most important issues is the business process flexibility [1].

Indeed, nowadays, organizations are competitive, this competition leads them to usually change and adapt their BP to meet
new organizational and customer requirement. Currently, researchers in business process management are widely interested
in business process flexibility. Literature provides several definitions of business process flexibility. For instance in [2],
flexibility is defined as the ability to deal with both foreseen and unforeseen changes in the environment in which business
processes operate. In [3], flexibility is defined as the capacity of making a compromise between, first, satisfying rapidly and
easily the business requirements in terms of ability when organizational, functional and/or operational changes occur, and
second keeping effectiveness. So far, despites the efforts of the Business Process Management community, there is not yet
an agreement on BP flexibility.

Our previous research works defend the use of the version concept to address the BP flexibility. In fact, versions are used in
several fields of computer science in which is highlighted the need to describe evolution of entities over time. Thus, versions
are used in databases [4], [5] in software engineering to handle software configurations [6] and in conceptual models such as
the Entity Relationship or the OMT models [7] [8].

Some efforts have also been put on version management in the business process context, and partial solutions to BP version
modeling and instance adaptation and migration have been proposed in the literature. These solutions have in common the
adoption of an activity-oriented based approach to design BP. Proposed solutions define a set of operations supporting both

Journal of E-Technology Volume 2 Number 2 May 2011 65

business process schema (definition) change, and adaptation and migration of their corresponding instances ([9], [10], [11]).
Especially, we have shown in [12] how versions are useful to deal with some types of both a priori and a posteriori flexibility
according the two main taxonomies proposed in ([2], [3]). More precisely, we have proposed in [12] a BP metamodel based on
versions for describing business process versions.

The problem being addressed in this paper is “how to define, query and manipulate business process versions
modeled with this meta-model”.

This paper recalls, in the first hand, the versioned metamodel we propose to consider BP versions to address the flexibility
issue, then it proposes, in the other hand, a language to facilitate the defining, querying and manipulating processes versions
designed according the proposed meta-model.

The remainder of this paper is organized as follows. Section 2 exposes some related works. Section 3 presents briefly the
Versioned Business Process (VBP) meta-model that we provide for flexible business process designing. Section 4 presents
the language that we propose for defining, manipulating and querying versions of BP. Section 5 gives an overview of our
VerFlexFlow Tool. Finally, section 6 concludes the paper and gives our future work.

2. Related Works

The problem of flexibility has mainly been addressed in the business process context using two main approaches: an
adaptive-based approach and the version-based approach. The adaptive-based approach consists in defining a set of
operations supporting both workflow process schema change, and adaptation and migration of their corresponding instances
([9], [10], [11], [13]). In this approach, only one schema is kept for all modelled workflow processes. This approach has been
investigated intensively and the ADEPT Workflow Management System (WfMS) [13] is probably the most successful
WfMS regarding workflow process’ schema evolution.

In the version-based approach, different instances of a same workflow process can have different schemas. Thus, it is
possible to distinguish between temporary and permanent updates for workflow processes since it is possible to keep track
of chronological workflow process changes, each one representing a possible schema for the considered workflow process.

In the workflow context, where long-term processes are involved, adaptation and migration of workflow process instances
according to a new schema are not always easy and are sometimes impossible [9]. So, it is important to be able to manage
different schemas for a workflow process in order to allow several instances of this workflow process to own different
schemas [14]. Thus, the version-based approach is a promising solution to deal with business process evolution.

Although versions are used in several areas of computer science, to the best of our knowledge, only few efforts have been
put on version management in the business process (workflow) context (in the remainder of the paper, the terms workflow and
business process will be used equally).

We distinguish two main contributions about versions of business processes in literature. [14] have proposed to deal with
dynamic workflow evolution, i.e. modification of workflow process schemas in the presence of active workflow process
instances, introducing versions of workflow process schemas. This work has defined a set of operations for workflow
process schema modification and, if possible, a strategy for migration of workflow process instances. [15] have also defended
the advantages of a version-based approach to face business process evolution. More precisely, this work proposes to
model versions of workflow process schemas using graphs. It also presents a set of operations enabling updates of graphs
and defines two strategies to extract versions of workflow process schemas from these graphs.

We believe that these two propositions need to be revisited. Indeed, both [14] and [15] addressed the issue of business
process versioning only considering two perspectives: functional and processes. These perspectives describe activities
involved in the process and their coordination. But, using only these perspectives is not enough to have a comprehensive
description of business processes [16]. Three others perspectives have to be considered: the organizational, the informational
and the operation perspectives. The organizational perspective structures the business process actors and authorizes them,
through the notion of role, to perform tasks making up the process. The informational perspective defines the structure of the
documents and data required and produced by the process. These two perspectives are glued together with the process
perspective since, in addition to the tasks and their coordination, the process perspective also defines the required resources
(information, actors) to perform the tasks. The operation perspective describes elementary operations performed by actors
involved in the process.

66 Journal of E-Technology Volume 2 Number 2 May 2011

Consequently, in our works we propose to revisit the business process flexibility problem using a version-based approach
and considering the five perspectives: functional, process, operation, organizational and informational perspectives of
business processes.

3. Versions To Model Flexible Business Process

This section briefly introduces the Version Business Process (VBP) meta-model we propose to model versions of business
processes. It only focuses on the main concepts of the meta-model first introducing the notion of version, and then presenting
the VBP meta-model for BP versioning.

3.1Version Concept
As illustrated in figure 1 below, a real world entity has characteristics that may evolve during its lifecycle: it has different
successive states. A version corresponds to one of the significant entity states. So, it is possible to manage several entity
states (neither only the last one nor all the states). The entity versions are linked by a derivation link; they form a version
derivation hierarchy. When created, an entity is described by only one version. The definition of every new entity version is
done by derivation from a previous one. Such versions are called derived versions. Several versions may be derived from the
same previous one. They are called alternative versions.

A version is either frozen or working. A frozen version describes a significant and final state of an entity. A frozen version may
be deleted but not updated. To describe a new state of this entity, we have to derive a new version (from the frozen one). A
working version is a version that temporarily describes one of the entity states. It may be deleted or updated to describe a
next entity state. The previous state is lost to the benefit of the next one.

3.2 The Versioned Business Process meta-model
The Versioned Business Process (VBP) meta-model shown in figure 2 is the result of fusion of two layers: (i) BP metamodel
considering the classical BP concepts and (ii) a versioning kit helping to make some concepts (classes of the meta-model)
versionnable i.e. classes which we would like handle versions. Because of space limitation we only present, in this paper the
VBP meta-model. The interested reader can refer to the [12] [17], [18].

The main concepts of the meta-model are the Process, Activity, Control Pattern, Operation, Informational Resource, and Role
concepts. These concepts are organized around the five perspectives described previously. In the functional perspective we
describe how a composite activity is decomposed by atomic or composite activities. In the process (or control flow)
perspective, execution conditions (preconditions and post-conditions) and the coordination between activities (control
pattern) are specified. Generally, the functional perspective and the process perspective are given by the process definition.
The operational (or application) perspective defines elementary operations performed by atomic activities. Typically, these
operations are used to create, read or modify control and production data, which are often, executed using external applications.
The organizational (or resource) perspective describes relationships between roles, groups and actors giving these latter
authorizations to perform atomic activities. Finally, the informational (or data) perspective deals with production and use of
information. We can note that these perspectives have in common classes; for instance the Atomic activity class both
belongs to the process and the functional perspectives.

Figure 1. Versions to describe Entity Evolution

Journal of E-Technology Volume 2 Number 2 May 2011 67

The underlying idea of our proposition to take into account versions of business processes is to describe, for each versionable
class (presented with a grey colour), both entities and their corresponding versions as indicated in figure 1. As a consequence,
each versionable class is described using two classes: a first class, called “…”, to model entities and a second one, called
“Version_ of_…”, whose instances are the corresponding versions. For instance, versions of processes are modelled within
two classes: the Process class gathers the different modelled business process while the Version_Of_Process class gathers
the different versions of the modelled processes. These classes are linked together by two relationships: the “Is_version_of”
relationship links a versionable class with its corresponding “Version of…” class and the “Derived_from” relationship
describes version derivation hierarchies between versions of a same entity. This latter relationship is reflexive and the
semantic of both sides of this relationship are: (i) a version (SV) succeeds another one in the derivation hierarchy and, (ii) a
version (PV) precedes another one in the derivation hierarchy.

The VBP meta-model distinguishes six versionable classes. Regarding the process perspective, we propose to keep versions
for only three classes: the Atomic Activity, the Operation and the Process classes. It is indeed interesting to keep changes
history for atomic activities, operations and processes since these changes correspond to changes in the way that business
is carried out. At the atomic (activity or operation) level, versions describe evolutions in activity realization while at the
process level; versions describe evolutions in work organization (i.e. coordination of activities).

Regarding the other perspectives, it is necessary to handle versions for the informational resource class from the informational
perspective, and versions for the Role Organizational Unit classes from the organizational perspective.

Figure 2. The versioned BP meta-model

68 Journal of E-Technology Volume 2 Number 2 May 2011

4. A Business Process Versions Querying And Manipulating Language

The VBP meta-model presented in section 3, describes the basic workflow entities and their relationships to consider BP
flexibility. To facilitate the manipulation of the versions of BP and extract information from this meta-model, it is necessary to
define operations addressing versions of BP.

These operations should have clear syntax and unambiguous semantics. They need to be coherent and complete to manipulate
versioned BP.

The figure 3 gives an UML state chart which indicates when these operations are available. Some of them are available
whatever the states of the versions on which they are applied, while others are only available in some cases. In this state
chart, each operation is described using the notation Event/Action whose meaning is “if Event appears then Action is
triggered”.

When the create-order event is satisfied, the create action is performed to both create the entity and its corresponding first
version. The state of the created version is working. In this state, the version can be updated or deleted in a destructive
manner; with out keeping track of changes. If deleted, a version reaches its final state of the chart.

When a working version becomes stable, i.e. it does not need additional updates, a freeze-order event can appear to trigger
a freeze action. Its state is then frozen (long-lasting), so it can be used in or as a VBP. However, a frozen version can be
deleted, but in not destructive manner (to keep track of the process evolution), or can serve as a basis for the creation of a new
version using the derive operation. In this case, the derive action create the new version whose state is working and a new
life cycle is beginning. A deleted version can be vacuumed when its history becomes not significant.

This state chart gives just a general idea of possible actions and their effects, the operations ensuring these actions require
further details. In the remainder of this section we explain the syntax of each operation respecting the Backus-Naur Form
(BNF).

4.1 Versions Definition Operations
1) Create operation.
We distinguish for versionable class a specific syntax of the create operation. Generally, a create operation creates a new
object into a versioned class and of its first version. For a Create operation, some information’s should be defined by the
designer (e.g. name of the created object) and others complementary information’s are added automatically such as the
identifier of process, the version number, the creation date. Because of space limitation, we only detail the two most important
operations e.g create process and create atomic activity.

Figure 3. State chart of BP Version

Journal of E-Technology Volume 2 Number 2 May 2011 69

Syntax:

CREATE PROCESS (name_process, description_process,creator_name),
STRAT WITH
(VAA=<id_version_atomic_activity>|CA=<id_composed_activity>);

b. Create atomic activity allows creating a new atomic activity. An atomic activity has precondition and postconditions,
executes operations, invokes role and consumes and produces informational resources. The Create atomic activity operation
is performed only if the component elements of the new created activity are created before. When create an atomic activity
the designer must give a name for the creating atomic activity, a short description, the name of the creator, its precondition,
its post-conditions, its consumed informational resources, its produced informational resources, its operations and roles
which invoked in its execution.

Syntax:
CREATE ATOMIC_ACTIVITY (name_atomic_activity,
description_atomic_activity, creator_name,
[HAS_PRECONDITION (ID=<id_condition>),
[HAS_POSTCONDITION
(ID=<id_condition>(,<id_condition>)),]
[CONSUMES_INFORMATION(ID=<id_version_informtion>(,
<id_version_information>)),]
[PRODUCES_INFORMATION(ID=<id_version_information>(
,<id_version_information>)),EXECUTE_OPERATION(NAME
=<name_operation> (,<name_operation)),
PERFORMED_BY_ROLE (ID=<id_version_role> (,
<id_version_role>));

2) Derive Operation
The derive operation is enabled only for the frozen versions this operation creates a new derived version. This new derived
version has working status. Moreover, the derivation of a versionable class can be propagated to others versionables
classes according the derivation hierarchy presented in figure 4.

Figure 4. Derivation propagation

The derivation of an operation version, an informational resource version, a Role version or an organizational unit triggers
the derivation of its corresponding atomic activity version. In the same way, derivation of atomic activity version triggers the
derivation of its corresponding process version. Table 1 gives an extract of the semantics of two operations (Derive and
Update) according to the classes in which they are defined. Only two versionable classes are considered.

70 Journal of E-Technology Volume 2 Number 2 May 2011

Syntax:
DERIVE <versionnable_class>
FROM

 (<id_version>|<creator_name>|<creation_date>);

4.2 Versions Manipulation Operations
In addition to the previous presented operations, we also propose specific operations to manipulate version such as freeze,
update and delete version operation.

1) Freeze operation
Freeze operation allows modifying the state of version from working to freeze if this version have a stable state and don’t

Process Atomic activity

1. Change structure 1 Change conditions

1.1 add/delete a composite activity 1.1 add/delete pre-conditions
in structure of process (has-pre-conditions relationship

1.2 add/delete atomic activity in 1.2 add/delete post-conditions
structure of process (has-post-conditions relationship)

2. change pattern. 2. change operations
(executes relationship)

2.1 choose a pattern for its 3. Change information
composite activity (uses relationship)

3.1. add/delete input information
(consumes relationship)

3.2. add/delete output information
(produces relationship)

4. Change role
(references relationship)

Table 1.Taxonomy of Derive and Update Operations

endure any transformation. The six classes “Version of…” classes are considered.

Syntax:

FREEZE <versionable_class>
[WHERE
(<id_version>|<creator_version>|<creation_date>)];

2) Update operation
Update operation allows modifying a working version without keeping track the previous version. For a versioning class, the
update operation we propose have nearly a same syntax than the create operation but it don’t create a new object into
“version_of…” class. It only modifies value of an existing version. Table 1 presented before summarizes all scenarios to
modify version of process or an atomic activity. Because space limitation we give only the syntax of the update operation for
atomic activity version.

Syntax:
UPDATE ATOMIC ACTIVITY WHERE
(ID=<id_version_atomic_activity>),
SET [HAS_PRECONDITION (ID=<id_condition>),]
[HAS_POSTCONDITION(ID=<id_condition>{

Journal of E-Technology Volume 2 Number 2 May 2011 71

,<id_condition>}),
[CONSUMES_INFORMATION (ID=<id_information_vers>
{,<id_information_vers>}),]
[PPRODUCE_INFORMATION (ID=<id_information_vers>
{,<id_information_vers>}),]
EXECUTE_OPERATION
(NAME=<name_operation>{,<name_operation> }),
PERFORMED_BY_ROLE (ID=<id_role_version>) {,
id_role_version});

3) Delete operation
Delete operations allows deleting with a non destructive manner working or frozen versions; that mean its state become
deleted with out deleting it from the database.

Syntax:
DELETE <verssionnable_class>
WhHERE (<id_version> | <Creator_name> |
<create_date>)

4.3 Versions Querying operation
In addition to definition operation and manipulation operation we propose the interrogation operations, such as Select and
Display.

1) Select operation
This operation allows the selection of versions verifying condition. Moreover, the selection of a version may trigger the
selection of others versions, which are linked with the selected one (called related version). Figure 5 below illustrates this
selection propagation hierarchy.

Figure 5. Selection propagation

Indeed, the selection of a process version triggers the selection of all of its activities (atomic or composite) versions. In the
same way, the selection of an activity triggers the selection of its invoked role version, its operations and it’s consumed and
or produced informational resource version.

Syntax:
SELECT <versionnable_class>,
[WHERE <id_version>];

2) Display operation
Sometimes the results of the selection operation is too complex than the designer needs. The display operation refines this
result. Indeed, users can choose only the classes that he need according the hierarchy of the selection propagation presented
in figure 5.

72 Journal of E-Technology Volume 2 Number 2 May 2011

Syntax:
DISPLAY (<related_class> | all) WHERE
(<name_class> and <id_ver_class>);

5. Implementation

This work has been implemented as a part of the VerFlexFlow Design Project, whose objective is to provide a frame work to
design and specify Business Process Versions according to the VBP meta-model. VerFlexFlow Design has been implemented
with Eclipse platform. It provides two manners for defining, querying and manipulating Business Process Versions:

• VerFlexFlowforms gives some forms to assist the designers to manage BP versions,

• VerFlexFlowlanguage implements the proposed language.

• VerFlexFlowGraphic gives a graphical specification using BPMN (Business Process Modeling Notation) for Business process

versions designed according the VBP meta-model [18] [19].

Because of space limitation, we only give here the interface corresponding to the VerFlexFlowlanguage. Figure 6 shows the
VerFlexFlow Language interface.

More precisely, this interface is organized around two parts: the first one allows the designer to write its operations for BPs
versions management like create, derive, update and so on. The second part allows the visualization of the result of the query.
For instance, this figure illustrates how we create an atomic activity according to the syntax described previously.

Figure 6. A VerFlexFlowlanguage screenshot

6. Conclusion

This paper has briefly presented a versioned BP metamodel to deal with business process flexibility. In order to manipulate
versions of BPs modelled using the VBP metamodel, we have defined a Business Process Versions Querying and Manipulating
Language. This language defines taxonomy of operations for BPs versions: it permits to create, derive, update, delete or
select BP versions. This paper has presented our VerFlexFlow Design tool which validates our contribution and notably, the
VerFlexFlow Language interface.

As future Work, we intend to propose several implementation kits responsible for the derivation of BP versions (instances of
the meta-model) onto specific BP languages such as XPDL standard.

7. Acknowledgment

The authors acknowledge all the participants involved in the VerFlexFlow Project development. More precisely, they
acknowledge Emna JAMOUSSI, Jihen CHAABANE and Imen BEN SAID.

Journal of E-Technology Volume 2 Number 2 May 2011 73

References

[1] Reijers, H. (2006). Workflow Flexibilty: the Forlon Promise, In: Int. Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Manchester, United Kingdom, 271–272.

[2] Schoneneberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W. (2008). Process Flexibility: A Survey of Contempo-
rary Approaches, In: Int. Workshop on CIAO/EOMAS at Int. Conference on Advanced Information Systems, Monpellier,
France, 16–30.

[3] Nurcan, S. (2008). A Survey on the Flexibility Requirements related to Business Process and Modeling Artifacts. Hawaïï
International Conference on System Sciences, Waikoloa, Big Island, Hawaï, USA, 378.

[4] Sciore, E. (1994). Versioning and Configuration Management in Object- Oriented Databases, Int. Journal on Very Large
Databases, 77–106.

[5] Chen, I., Markowitz, I., Li, P., Fasnan, K (1996). Version Management for Scientific Databases, In: Int. Conference On
Extended Database Technology, Avignon, France, 289–303.

[6] Kimball, J., Larson,A (1994). Epochs: Configuration Schema, and Version Cursors in the KBSA Framework CCM Model, In:
Int. Workshop on Software Configuration Management, Trondheim, Norway, 33–42.

[7] Roddick, J., Craske, N., Richards, T (1993). A Taxonomy for Schema Versioning based on the Relational and Entity Relation-
ship Models, In: Int. Conference. on the Entity Relationship Approach, Arlington, Texas, USA, 137–148.

[8] Andonoff, E. Le Parc, A., Hubert, G., Zurfluh, G. (1996). Context Aware Business Process Evaluation and Redesign, In: Int
Conference on the Entity Relationship Approach, Cottbus, Germany, 472–487.

[9] Casati, F., Ceri, S., Pernici, B., Pozzi,. G (1996). Workflow Evolution, In: Int. Conference on the Entity Relationship
Approach, Cottbus, Germany, 438–455.

[10] Kammer, P. , Bolcer, G., Taylor, R., Bergman, M (2000). Techniques for supporting Dynamic and Adaptive Workflow. Int.
Journal on Computer Supported Cooperative Work, 269–292.

[11] Rinderle, S., Reichert, M., Dadam, P (2004). Disjoint and Overlapping Process Changes: Challenges, Solutions and Appli-
cations, In: Int.Conference on Cooperative Information Systems, Agia Napa, Cyprus,101–120.

[12] Chaâbane, M. A., Andonoff, E., Bouaziz, R., Bouzguenda, L. (2009). Versions to Address Business Process Flexibility
Issue. In East-European Conference on Advances in Databases and Information Systems (ADBIS 2009), Riga, 07-SEP-09-10-
SEP-09, Janis Grundspenkis, Tadeusz Morzy, Gottfried Vossen (Eds.), Springer, p. 2-14.

[13] Reichert,M., Dadam, P (1998). ADEPTflex: Supporting Dynamic Changes of Workflow without Loosing Control. Int.
Journal on Intelligent Information Systems, 93–129.

[14] Kradofler,M., Geppert, A (1999). Dynamic Workflow Schema Evolution based on Workflow Type Versioning and Workflow
Migration., Int. Conference on Cooperative Information Systems, Edinburgh, Scotland, 104–114.

[15] Zhao, X., Liu, C (2007). Version Management in the Business Change Contex, In: Int. Conf. Business Process Manage-
ment, Brisbane, Australia, 198–213.

[16] van der Aalst, W. M.P., Weske., M., Wirtz, G (2003). Advanced Topics in Workflow Management: Issues, Requirements
and solutions, Journal of Integrated Design and Process Science, 7 (3) 49-77.

[17] Chaâbane, M. A., Andonoff, E. , Bouzgenda, L., Bouaziz, R. (2009). Towards a Version-Based Approach to Deal with
Business Process Evolution (Book chapter), In: E-Business and Telecommunications, Communications in Computer and
Information Science (CCIS) series, J.Filipe and M.S. Obaidat (Eds): ICETE 2008, Springer verlag. p. 74-88.

[18] Chaâbane, M. A., Andonoff, E. Bouaziz, R., Bouzguenda, L.(2010). Modélisation Multidimentionnelle des versions de
Processus. In: Ingénierie des Systèmes d’Information, 15 (5) 89-114.

[19] Ben Saïd, I., Chaâbane, M.A., Andonoff, E. (2010). A Model Driven Engineering Approach for Modelling versions of
Business Process using BPMN, In : Business Information System, p. 254-267.

