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ABSTRACT: An approach to rectify the distortions caused by the Travelling Wave Tube (TWT) or solid-state High Power
Amplifiers (HPA) used in digital satellite communication systems and at the same time to correct the effects of intersymbol
interference is presented. Linear adaptive signal processing techniques fail to eliminate these nonlinear distortions
introduced by nonlinear components in the satellite channel. Here we present a nonlinear adaptive signal processing
technique based on Volterra series. First part of this paper [15] includes mathematical description of proposed scheme.
This part includes computer simulation and results obtained.

Key Words: QPSK, QAM, TWT, HPA

Received: 1 October 2009, Revised 14 November 2009, Accepted 19 November 2009
© DLINE. All rights reserved
1. Introduction

Adaptive signal processing techniques have been used in many diverse fields [1, 6] and found to be quite effective. Many
of these techniques were developed for linear systems and are linear in nature. In part I of this paper [15], we provided
mathematical details about a nonlinear technique to counter the adverse effects (nonlinear amplitude and phase distortion)
caused by high power amplifiers (HPA) in addition to inter symbol interference present in the satellite communication
channels.. The HPA are usually based on either traveling wave tube (TWT) or solid-state GaAs FET and have nonlinear
input/output characteristics [8].

Our technique takes advantage of the fact that Volterra series can be used to model the various types of nonlinearities.
\olterra series is also suitable to model the linear-memoryless nonlinear and linear (LNL) types of nonlinearities present in the
digital communication systems [2, 3, 4, 5, 9, 10, 12, 13]. Digital satellite communication channel in our study is also LNL type
and we propose a technique based on Volterra series model to counter the adverse affects of HPA in addition to mitigating the
affects of ISI. We design a nonlinear adaptive equalizer based on this technique to recover the originally transmitted data.
Adaptive equalizer design usually belongs to two groups; data-aided and blind zero forcing. We follow the data-aided
scheme to train our nonlinear equalizer. Once trained, we assume that nonlinearity in HPA (due to aging of amplifier) and
example for mobile phones) since it wastes valuable resource (bandwidth). However, in satellite communication, channel
characteristics changes significantly, a known training sequence is used to adapt the nonlinear equalizer.
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We, also, assume that signal to noise ratio (S/N) is very high in the uplink segment of the channel, therefore we can safely
ignore affects of noise in uplink segment simulations.

2. Volterra Series Based Adaptive Signal Processing

Noise and Inter Symbol Interference (ISI) are two main factors that adversely affect the performance of the digital communication
systems. In order to combat these effects, various channel equalization techniques have been developed. These techniques
are able to counter the ISI present in the channel and enabling the communication channel to increase its throughput and
reduce the probability of error. A major building block in these adaptive equalizers is the adaptive linear combiner or
transversal filter. While the linear equalizations have been found to be quite effective for equalizations of channels with small
to moderate amplitude distortions, they fail when the amplitude modulation is severe. This usually happens in multi-path
propagations. In those cases, decision feedback equalizers (DFE) have been found more effective [11]. Also, linear equalization
techniques that work in the case of I1SI produced by linear channel fail to work if a nonlinear element is introduced in the
channel. To overcome this problem we propose a nonlinear adaptive filter based on the Volterra series. Linear adaptive filter
is a subset of this filter. We use LMS algorithm with our non-linear adaptive filter because of its simplicity. (Details of this
algorithm can be found in [7, 14]). This algorithm can be explained in three steps:

M-1
1. Filter output: H#]= Z w, x(n — k) 2.1)
Em)
here the weights are multiplied with the tap-inputs and the sum represents an estimate of desired output.

2. Estimation error: e[rm] = o] — v[m] 2.2)

3. Tap-weights adaptation: ~ W{rn+1]=w{n]+ ue n]x{n] 23)
It should be noted that the second term in equation (2.3) represents the correction that is applied to current estimate of the
tap-weights, as the error goes down, which means that when our estimate of desired output is approaching the desired

output, the correction components decrease and the weights start to converge to the final value.
3 order Volterra with finite memory M is reproduced here.

M NN MMM 24)
= Z:J Wil ® Z:J Z;)w;"rn-ixn-,:' T Z:]Z;Z;] w;frrn-i"‘fn-,:'xn-.i‘ .

M is number of taps we use in our transversal filter. X _* are the inputs entered in the system one at a time. X X and X__
X X are quadratic and cubic terms generated from the inputs X, and W,, are the transversal filter weights that are

upaated in each iteration. We use the symmetry property to keep the number of terms to a minimum in the transversal filter.
3. Operation of Non-Linear Equalizer

We used our nonlinear filter with QAM modulation scheme. QAM is known to have variable amplitude signal and pose a real
challenge to recover it after passing through nonlinearity. The operation of the modified QAM equalizer [11] is described

Number of Taps 11213 4 5 6
Linear Terms 112(3 4 5 6
Quadratic Terms 11215 9 14 20
Cubic Terms 11410 20 | B | 56

Table 1. Number of Terms of Transversal Filter
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below. The outputs from the demodulator are fed to the QAM equalizer shown in Fig. 14 [11]. This equalizer is actually
consists of four separate equalizer but with two sets of weights only. Each equalizer makes a prediction, and then these
predictions are combined to form the final in-phase and in-quadrature channel prediction or estimate of the desired output.
Both in-phase and in-quadrature channels produce errors, these errors are then used to update both sets of weights and the
process starts all over again. Once the training sequence is over and the filter weights have been converged, we start the
actual data through the system. The only difference this time around is that we make decisions based on the predicted in-
phase and in-quadrature channel and use these as reference to generate the set of errors that in turn updates the weights.
This is a continuous process that is time-consuming, but it keeps track of small changes in the system over the period of time.
The mathematical description of the above QAM equalizers is as follows:

pred,, I_Zw (k)X (n—k), and pred, 2 Zw L=k

n

i o (31)
pred ] Zw (k). and pred, 2 Zw@ 21K

k=l Eoii]

The equation to predict the in-phase and quadrature channel is

=pred, 1- pred 2=and qu :predm2+predqu1 (32

pred
Let us define the two errors produced by these estimates.

pred

e, =in pred-actualin and e, +au pred—actual w (3.3

These errors are then used to update the two sets of weights and the expression for that is shown below:

w, [n+1} =w, [n]-2(ue, [n]x, [n]+4 equ[n] xqu)
un[n+1} =W, [n]-2( equ[n]xin[n]+ e, [n] xqu) (3.4)

Once the equalizer is trained using the above procedure, the only operation different from the above is calculating the error.
When the channel is trained, we take the predicted outputs of the in-phase and in-quadrature channel and, based on where

they fall in the decision region, make decisions. The decided symbols are used to find out the errors to update the weights.
The value of i used in our simulations is 0.003. The values of & usually fall between 0 < & < Total input power [13],
[13], where the term total input power refers to the sum of the mean square values of the tap inputs. The convergence
characteristics of nonlinear equalizer are similar to that of a linear equalizer [7].

To calculate the number of symbol errors, we take the pair from in-phase and in-quadrature channel and compare it with the
transmitted in-phase and in-quadrature symbols. Both predicted symbols have to match with the transmitted ones to declare
that a correct estimate was made; otherwise it is a symbol error.

4. Simulations and Analysis

We performed computer simulations to validate the proposed nonlinear adaptive filter starting with the QPSK modulated
signal. After that we continue with more challenging 16QAM scheme. We use Matlab to generate the random data for our
simulation. We generated two sets of equiprobable sequences for the in-phase and in-quadrature channel. We used two sets
of twelve million data points for our simulation for the in-phase and in-quadrature channels for QPSK modulation and 40
million data points for 16-QAM modulation. We used 2,000 data points to train the equalizer. Monte Carlo type of simulation
used to find out the number of symbol errors. Since we assume a gray coding, the symbol error rate is equal to bit error rate.
It was observed that the equalizer was trained with fewer than 1,000 data points in both cases.

4.1 QPSK Simulations and Results

We start with a scatter diagram of QPSK (Fig. 2L). This diagram will serve as a reference when we show the effects of a linear
filter and nonlinearity on a QPSK signal. In Fig. 2R, we show the scatter plot for QPSK for the case where the signal has
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passed through the linear filter, we are assuming the ISI with limited memory, and in this particular case it goes to only two
previous pulses. In Fig. 3L, we have the scatter plot for the signal, after it has passed through the nonlinearity. We apply
nonlinear equalization to the signal that has passed through the linear filter and through the nonlinearity, without adding any
noise to it. The result of this equalization is shown in Fig. 3R. We can see that the signal points are brought back to the

original

locations or very close to original locations.

Training

Figure 1. QAM Equalizer

We experimented with three different level of ISI (blue with least and Red with most) in our simulations and it is shown in Fig.
4 for before and after the nonlinearity case. From our simulation we found that there was practically no difference between the
performance of the linear adaptive equalizer and the nonlinear equalizer and this result was expected because the effects of
the nonlinearity are not very severe in the case of constant amplitude scheme such as QPSK. The increase in ISl interference
levels however did make a difference as will be evident from our results in Table 3. Next we will show two scatter plots of
QPSK with noise before and after the equalization. This can be seen in Fig. 5. In Fig 6, prediction error is shown and it goes
down very quickly while non-linear equalizer (NLE) is being trained using the training sequence.
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Figure 2. QPSK Scatter Plot: Reference and linear filter output for t0/T=0.150.15
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In the next table, we will present the symbol error rate in the presence of noise, we will only present the result for nonlinear
equalizer since there is virtually no difference in performance between linear and nonlinear equalizer. The number of symbol

errors are 6 per 12x106, when ratio of t0/T=0.15.
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Figure 3. QPSK Scatter Plot: Signal at the Output of Nonlinearity and after equalization
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Figure 5. QPSK Scatter Plot: Signal with Noise after Nonlinearity and Equalized Signal with Noise

34

Journal of Intelligent Computing Volume 1 Number 1

March 2010




[m] =200 400 [={mlm} S00 1000
Mo, of teration

Figure 6. Error Convergence

We will estimate the standard deviation for this symbol error rate. The probability of symbol error is equal to 0.5x10-6. The

standard deviation can be found using:
—_ T 4.1
oc=.fp(— pIN (41)

where £ is the symbol error probability and N is the total number of symbol used in simulation. Since isvery small, (1-) is

equal to 1. The equation 4.1 becomes & =.fo and itisequal to 2.44 per 12x106 or 0.2x10-6. Our margin of error is one
standard deviation.

S/N 14dB t0=0.15T t0=0.2T t0=0.25T
Symbol

Error Rate (0.5+0.2)10° (0.75+0.25)10° [ (0.91+0.27)10°
Errors per

12x106 6 9 11

Table 2. Symbol Error Rate for QPSK

4.2. QAM Simulations and Results

Fig. 7 (L&R) shows the scatter diagram for 16-QAM before and after the linear filter, where as Fig 8 (L&R) shows the signal
at the output of the nonlinearity and signal after the nonlinear equalization. We assume that ISl interference has limited
memory, and in this particular case it goes to only two previous pulses. We can see from this scatter plot the effects of ISI and
nonlinear device on the signal. We can see that signal points are brought back to their original location or very close to
original locations except for the signals at the corners of the constellation. To see the effects of different level of ISI, we
experimented with three different level of ISI (blue with least and Red with most) in our simulations and it is shown in Fig. 9
(L&R) for before and after the nonlinearity case. From our simulation we found that linear equalizer fails to work in the case
when both ISl and nonlinearity are present in the system. The nonlinear equalizer works as can be seen in the Fig 9 (L&R) and
as can be seen from the results in Table 5. The increase in ISl interference did make a difference, and the number of symbol
errors goes up with increase in ISI levels even though if the nonlinearity stays the same. This can be seen in Table 5. Fig 11
shows the signal with noise before and after nonlinear equalization. These correspond to S/N ratio of 25 dB. In Fig. 10R, we
show the error convergence behavior of our nonlinear equalizer.

In Fig 10L red represent the scatter plot of the output of nonlinear device. Since it looks like that constellation is just rotated
left, we tried to rotate it back hoping that this rotation will bring the signal points back to their respective decision regions.
Green represented the rotated constellation and it can be seen that the rotation alone is not able to take care of nonlinear ISI
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that was caused by the linear filter and exacerbated by the nonlinear device in our channel model. Theoretically, it is possible
to change the decision regions in such a way that we can detect the signal points in the rotation-corrected signal constella-
tion. But it cannot be done easily since position of these signal points depend on 1Sl as well as nonlinearity, and any change
in IS1 and/or nonlinearity will require change in decision regions. Finding these decision regions adaptively will increase the
receiver complexity. Finally, the blue represent the equalized signal constellation and shows graphically marked improvement
over the rotation alone scheme.
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Figure 7. QAM Scatter Plot: Reference and Linear Filter Output
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Figure 11. QAM Scatter Plot: Signal with S/N= 25 dB and Equalized Signal with S/N=25 dB
Now, we discuss the symbol error rate in the presence of noise, we will present the results for nonlinear equalizer with nonlinear
element present in the channel. We will use the linear equalizer when the nonlinear element is not present in the channel. In next

two tables, we will summarize the results. The number of symbol errors are 16 per 4x107, when ratio of t0/T= 0.15. The
probability of symbol error is equal to 4x10-6. Number of symbols used in simulation is equal to 40x106. The standard deviation

can be found using:
o = Jp(l-p)N

where £ is the symbol error probability and N is the total number of symbol used in simulation. Since /2 is very small, (1- 7)

is equal to 1. The equation 4.1 becomes
O = JoN

and itis equal to 4 per 4x107 or 1x10-7. Our margin of error is one standard deviation.

(4.2)

4.3

SIN22dB t0=0.15T t0=0.2T 0=0.25T
Symbol Error Rate| (4= 1)107 | (4.79 = 1.19)107[(8 + 1.41)10°"
Errors per 4x107 14 18 23

Table 4. Symbol Error Rate for QAM with just the ISI, no nonlinear element present in the system
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The number of errors and probability of error for different values of S/N is presented in Table 6 and Table 7 for linear filter

SIN 25dB t0=0.15T t0=0.2T t0=0.25T
Symbol Error Rate | (4= 1)107 | (4.79 = 1.19)107| (8 = 1.41)107
Errors per 4x107 16 23 32

Table 5. Symbol Error Rate for QAM with ISl and nonlinear element present in the system

output (17-22 db) and nonlinearly equalized signal (19-25 db), respectively. These results are for T /T=0.15.

Table 6 Table 7
SIN
dB No. of Errors Probability of Error S/NdB [ No. of Errors | Probability of Error
17 1296 (2.6x107° £7.2x10°) 19 1645 (3.29x10°° + 8.1x10°%)
175 | 692 (1.38x10° £ 5.25x10°) | 20 664 (1.32x10°® = 5.15x10°®)
19 53 (1.06x10™ = 1.45x10%) | 21 216 (4.32x10™ = 2.93x107)
20 14 (2.08x10° = 7.48x10°) | 2 59 (1.18x10™ = 1.54x107)
21 27 per 3.5x106 |(7.71x10° = 1.48x10) 23 19 (3.8x10° = 8.71x10°)
2 14 per 4x107 (3.5 = 0.93x107) 24 25 per 3.5x106 | (7.14 = 1.43x10°®)

2 16 per 4x107 (4 = 1x107)

Table 6 & 7. Symbol Error and Error Probability for Linear Filter Output after Equalization (17-22 dB) and Symbol Error
and Error Probability for Equalized Signal (19-25dB)

We used 0.5x10° symbols for calculations in Table 6 and Table 7 except for the very last entries on both Tables where we use
4x107 symbols.

5. Conclusions

The analysis of the linear part of the communication channel shows that it is sufficient to take into account only two previous
consecutive signal pulses when considering the effects of ISI in the channel. Therefore, we can limit ourselves with the
memory depth M=2 in the equalization scheme. Similarly, the analysis of the effects of nonlinearity shows that it is sufficient
to employ third-order Volterra filter in NLE. We used this nonlinear adaptive filter in our computer simulations. We experi-
mented with two different kinds of modulations, QPSK (constant amplitude) and QAM (variable amplitude). We have shown
that QAM, with its inherent variable amplitude, can be used in the presence of nonlinearity if we use a nonlinear equalizer.
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