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ABSTRACT: In this paper, we present a new algorithm for target detection using hyperspectral imagery. The proposed
algorithm is inspired by the outstanding performance of nonlinear Kernel method and the robustness of the stochastic
expectation maximization (SEM) algorithm. The traditional technique of using SEM algorithm for target detection in
hyperspectral imagery is associated with dimensionality reduction of the input data using binning or principal components
analysis (PCA) algorithm. Although, the data reduction of the input data is enforced to reduce the computational burden on
SEM algorithm, but it affects the results of target detection, especially the challenging one, due to not using the entire
information of the potential targets. To facilitate detection of the target by using the entire targets information and
simultaneously reducing the computational burden on SEM algorithm, we propose a new scheme for data reduction based on
using Kernels. Kernel-based input data reduction is a nonlinear filtering technique in which the input data are mapped to
the feature space where most of the background data is filtered using an easily selected threshold. Then, Gaussian mixture
model is generated for the reduced input-data and SEM algorithm is employed to estimate the model parameters and to
classify that input data. Finally, we allocated the target’s class and isolated the target pixels. The proposed scheme for fusion
the kernel with SEM algorithm has been tested using real life hyperspectral imagery and the results show superior performance
compared to alternate algorithms.
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1. Introduction

Hyperspectral imaging sensors are powerful tools used for detecting and recognizing objects in challenging environment.

Hyperspectral sensors can facilitate automatic target detection in cluttered background since man made objects often differ
considerably from the natural background in absorbing and reflecting the radiation at various wavelengths i.e., the identification
of the objects (targets) is based on spectral signature of the objects in the scene. Over the past few years, several algorithms for
target detection in hyperspectral imagery were presented in the literature [1]-[12]. Statistical based methods suffer from the
limited data to train the employed classifier which affects the performance of the classifier [1]. Another category of algorithms
were developed based on knowing the covariance matrix of the background which may not be available in many applications [2].
Anomaly detection algorithms are introduced as unsupervised algorithms which suffer from automatic thresholding and hence
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false alarms [3]. Also, linear and nonlinear mixing models are introduced in the literature for subpixel detection, which assume
that a given pixel is a linear or nonlinear combination of a number of unique deterministic spectral signatures [4]. However, these
algorithms are computationally intensive and sensitive to noise and other artifacts. Another class of algorithms based on the
independent component analysis (ICA) and principal component analysis (PCA) appeared in the literature, which suffer from
poor discrimination ability and high false alarm rates [5]. In general, an algorithm is characterized as supervised if the spectral
signature of the target is known a priori, otherwise it is considered unsupervised. In this paper, we focus on the supervised
methods. Recently, various supervised target detection methods have been developed [5]-[7],[21-22]. Although, an effective
solution for object recognition in noisy hyperspectral data remains a challenging problem, this paper introduces a new algorithm
for efficient supervised target detection in hyperspectral imagery.

SEM algorithm is employed for classification in remote sensing applications [8]-[12] and for anomaly detection in hyperspectral
data [13]. The idea of detecting the targets using SEM algorithm is based on determining the class of the target since the pixels
of the same target constitute a class. The implicit assumption in these algorithms and in the proposed algorithm in this paper is
that the number of target pixels is larger than the number of bands in the input data [1]. To use the SEM algorithm for
classification of high dimensional data, the authors used imagery of few bands, multispectral data [8], or dramatically reduced
the dimensionality using PCA or binning [e.g., 16 bands out of 224 bands] [12],[13]. However, the effect of reducing the data
dimensionality, the number of bands, on the results of target detection is not certain, [14]. Consequently, in this paper, we
introduce a new algorithm for target detection in hyperspectral imagery based on global data classification using the SEM
algorithm integrated with a new data reduction technique. In the proposed algorithm, instead of reducing the number of bands,
we introduced a novel idea to reduce the background data. Reducing the background pixels and not the number of bands
facilitates the detection of targets based on the entire input information of the targets and simultaneously reduce the computa-
tional burden on SEM algorithm. The reduction step is accomplished in the feature space where the input data is mapped using
the Gaussian RBF kernel [19,20]. This fusion scheme of the SEM algorithm with kernel approach reduced the computational
burden on the SEM algorithm and reduced the possibility of false alarms that may arise from noisy input data. Then, Mahalanobis
distance and Bayesian decision law [10] are employed to isolate pixels corresponding to the targets of interest.

The rest of the paper is organized as follows: the Gaussian mixture model is described in Section I1. Section I1l summarizes the
SEM algorithm. Section IV presents the proposed algorithm. Simulation results are presented in Section V, and concluding
remarks are included in Section VI.

2. Gaussian Mixture Model

Mixture models are widely used in many areas including anomaly detection, image segmentation, and computer vision applications
[8].[12]. The Gaussian mixture model corresponds to the sum of weighted Gaussian components, where it combines the flexibility
of nonparametric methods while exploiting the quantitative advantages of parametric methods [13]. In the Gaussian mixture

model, it is assumed that the hyperspectral imagery X ={X,, X, ,....X_ }ina d - dimensional feature space (R 9y arises from the
linear combination of density functions resulting in a mixture pdf, expressed as [12]

L
FO) =2 fi (X[, ) @)
|
where L is the number of mixture components, and o, represents the mixing proportions. The mixing proportions must satisfy the
|
constraint ZI o, =1,where0<o, <1,and I=1,2,.., L. InEquation. (1), f (X|u, ,EI )denotes the pdf of class |, where u |

represents the mean vector and ZI represents the covariance matrix of that class. The pdf for multivariate Gaussian distribution

is defined as [10] 1
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represents the Mahalanobis distance. To estimate the parameters of the Gaussian mixture model, we used SEM for characterizing
the spectral classes. The SEM algorithm is based on the expectation maximization (EM) algorithm as discussed in Section I1I.

3.Sem Algorithm

To estimate the parameters of Equation (1), many iterative methods can be used [9],[15]. However, all of these methods except
the SEM suffer from the following constraints [8]:

¢ the number of classes must be known, and
¢ the solution depends strongly on the initialization.

These two constraints impose a serious limitation on the performance of these algorithms [8]. For example, knowing the number
of classes is a serious problem because in real life images it is highly unlikely to be known a priori.

To overcome the aforementioned limitations, the SEM algorithm has been introduced by incorporating a stochastic processing
step in the EM algorithm [9]. The EM algorithm is a popular iterative algorithm used for parameter estimation using the maximum
likelihood approach. The addition of the stochastic processing step in the EM algorithm results in the following improvements

[8]:
¢ significant improvement in convergence rate,

¢ only the upper bound on the number of classes needs to be known, and
¢ unlike the EM algorithm, the solution does not depend on specific initialization.

The main processing steps of the SEM algorithm are summarized in Figure 1.

4. The proposed algorithm

In this section, we present a new algorithm for supervised automatic target detection (ATD) based on fusion of SEM classification
algorithm and Gaussian RBF kernel method. The main motivation is using the robustness of SEM with respect to different image
contents [8] and hence the robustness in the classification and detection of the targets. However, using SEM with high
dimensional imagery is associated with dramatic reducing in the number of bands of the input imagery to few bands [8],[12],[13].
The reduction in the number of bands is enforced to reduce the computational burden on SEM.

In [14], it has been shown that the affect of data reduction, through the number of bands, in target detection algorithms are not
certain and still under investigation. In the contrary, keeping all information in the target pixels helps in detecting all the targets
especially the difficult one which its spectral signature is similar to the background.

To solve the dilemma of reducing the computational burden on SEM and keeping all the information in the target pixels, we
propose a new algorithm for data reduction that reduces the background in the input data and kept all the pixels related to targets
intact.

4.1 Data Reduction
To reduce the background pixels in the input data, we used the assumption in [3, 19] that the input data consists of two Gaussian
distributions, background distribution and target distribution. In other words, the target pixels are drawn from multivariate

Gaussian distribution. The mean vector s, of that distribution is selected to be the reference target signature, and the covariance

matrix X is approximated by using a diagonal matrix whose elements correspond to the variance of each band. Figure 2(a) shows
one band from a hyperspectral data set and Figure. 2(b) shows the truth mask of the targets of interest in the data. Although,
there are 11 targets in the input data but all the targets are the same kind of object [e.qg., tank] and the same brand [e.g., M16].
Figures 2(c) shows the spectral signatures of one target in that data set. We expect that 11 targets, the spatial size of each target
is approximately 10 x 10 pixels, will constitute together a class of 1100 pixels that represents the targets of the interest.

Mahalanobis distance is effectively used in classification [10] in the input data space, however, classification in the feature
space shows outstanding results [19,20]. Therefore, we formulated the proposed data reduction technique in the feature space
as following.
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1. Obtain an upper bound on the number of classes, L.

2. Step | (Initialization)
Assumes that the probablity of class | has uniform distribution, i.e.,

fl"(X [y, ZI ), wherel=1,2,...,Land the superscript denotes
the iteration number.
3. Step S ( Stochastic):
Define a partition Q," , Q,"....... ,QnL for the data and select the
between P." (X), P," (X),....., P " (X) . where P, " (X) is the
posterior probablity of class | given the vector X. In other words,
XeQ,"if P,"(X) =max 1= 2. PI(X)
4. Step M(Maximization)
Estimate the empirical mean u "~ and the covariance matrix ZI”” of
each class I, where 1=1, 2,..., L, using the following equations:

k+1

1§ ©
N+ n
M= X
Clia
n
1 1 a
,n+ =5Z(Xir?l e GRS )
1 i1

where , Cln is the number of pixels in class I.
n

C
* The prior is defined as 0‘|n+1 = NL where N is the total number of pixels

in the image. For a class |, if the prior ais less than the prescribed
threshold , then eliminate that class and go to the step I.
e Compare u I"With u I”” and if the difference falls below the prescribed
threshold, terminate the algorithm.
5. Step E (Estimation)
* Define P," (X), P," (X),....., P, " (X) fro each X on the set of
classes using maximum a posteriori (MAP) distribution based on the
current values of the mean, the covariance matrix, and the prior(i.e.,)

" EM, o wherel =1, 2,..., Las follows.

- a|n+l fln+1(x)
P (X)= # ©)
a0
i=1
where f, "+1 designates the multivate Gaussian distribution corresponding
to u ™" and X", respectively.
6. Return to Step S.

Figure 1. The SEM algorithm
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Define the Mahalanobis distance between any pixel vector x in the data and the target’s distribution by the following equation
AN(X)= (X =)' 27 (X = 1) ©

Then, we mapped A?(X ) to the feature space using the Gaussian RBF kernel as following

V(X) =exp (A%(X)) )

Equation (7) is a nonlinear mapping of the Mahalanobis distance into the feature space. To reduce the background in the input
data, we removed those pixels from the input data whose v (x) values (Equation (7)) are less than an experimentally determined
threshold value. The selected value of the threshold is depending on the amount of reduction required in the data cube. Lett
represents the selected threshold, X represents a pixel vector in the input data, and C represents the set of data of interest which
includes the target pixels,

L

Spectral Profile

—
=
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Figure 2. (a) One band from hyperspectral data set, (b) the ground truth of targets in that data set , (c)
the spectral signatures of one target in that hyperspectral data

then
Xe CifvV(X)>t
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Xe CifV(X) <t ®

This nonlinear transformation shown in Equation (8) successfully filters out most of the background pixels and significantly
reduces the amount of data to be processed in the subsequent SEM algorithm. This data reduction technique is integrated with
the traditional SEM algorithm and the combination is called enhanced SEM, ESEM, algorithm as explained in the following
section.

4.2 Classification Using Enhanced SEM (ESEM)

SEM is presented as viable classification algorithm in the remote sensing and many numerous simulations show correct
behavior of that algorithm [8]. Integrating the reduction step with the SEM algorithm reduced the computational burden on SEM
and facilitated the detection of the pixels related to the target of interest using all the spectral information in the target pixels.
Figure 3(a) shows one band from a hyperspectral imagery before the application of the proposed data reduction technique, while
Figure 3(b) shows the same band after the application of the data reduction technique. From Figure 3(b), we observe dramatic
reduction in the amount of background pixels which reduces significantly the computational burden in the classification.

4.3 Target Isolation
Once the input data is classified into different unique classes using the ESEM algorithm, we identify automatically the class of
interest [class of the targets] by computing the traditional Mahalanobis distance between the reference spectral signature and
all the classes. Then, we choose the class with smallest Mahalanobis distance as the target class. Finally, the Bayesian decision
law [10] is employed to isolate the target pixels in the hyperspectral imagery. Figure 4 depicts the basic building blocks of the
proposed algorithm.

The salient features of the proposed algorithm can be summarized as follows:

¢ alleviate the effect of noise in a preprocessing step using the average filter along each pixel vector,
* reduce the background pixels in the input data using the feature space,

* generate Gaussian mixture model for the reduced data,

* reduce the computational burden on SEM algorithm by integrating it with the data reduction technique, fusion step to build
ESEM.

* employ the ESEM algorithm to estimate the parameters of the mixture model
* identify the target class using the traditional Mahalanobis distance.

* employ MAP algorithm or any suitable method to isolate the pixels of the target class.

(b)

Figure 3. (a) One band from Hyperspectral imagery data cube and (b) the corresponding band after data reduction
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5. Experimental Results

In this section, experimental results are presented in order to demonstrate the efficacy and robustness of the proposed algorithm
compared to alternate techniques. Real life hyperspectral data are employed for performance evaluation of the proposed
technique.

5.1 Data sets

To verify the accuracy and robustness of the proposed algorithm, we conducted many experiments using hyperspectral data
sets with different levels of noise. The hyperspectral data sets used in this work were acquired by Compact Airborne
Spectrographic Imager (CASI) sensor. The data sets contains 36 bands, each band consists of 512x512 pixels and covers the
spectral wavelength range of 433 nm to 965 nm with spectral resolution of 15 nm. The reference spectral signature for each data
set is computed from training samples using the truth mask of that data. It is worth to say that the data is provided in the form
of ready to use by a well known company, please see the acknowledgement.

5.2 Results and Discussions

In the first experiment, we run the algorithm on Dataset1 which contains 11 targets from the same kind and the same brand as
explained in subsection A in Section IV. The result obtained after the application of the proposed algorithm for that data set is
shown in Figure 5. The truth mask is shown in Figure 5(a) and the result of the algorithm in Figure 5(b). From Figure 5(b), we
observe that the proposed algorithm detected all targets in the data cube with zero false alarms. Another way to show the results
is to use the confusion matrix. To generate the ground truth of the false alarms, we divided the image plane into blocks with a
block size of 10x10 pixels. We chose 10x10 pixels based on the size of targets in the ground truth of the targets. Excluding targets’
blocks, the rest are the potential false alarms. Therefore, for this data set, the probability of detection is P, = 1, and the probability

of false alarms is P, = 0 as shown in the following confusion matrix.

Confusion matrix Targets False alarms
Targets 11 0
False alarms 0 2590

To show the advantage of the proposed algorithm over alternate algorithms, we considered Spectral Angle Mapper (SAM)
algorithm [5]. Constrained Energy Minimization (CEM) algorithm [20] is considered for the same purpose but its results show
that it is sensitive for the noise and is not suitable for target detection in the current data sets. It is worth to pay attention to the
thresholds selected in SAM for all the conducted experiments in this paper are selected to detect all the targets in the input data.
Also, we considered that the target is detected if at least only one pixel of that target is detected.

The results of SAM demonstrates that SAM detected all targets in the scene with P, = 1, but with 34 false alarms i.e., P, =0.013
as shown in the following confusion matrix and Figure 5(c).

Confusion matrix Targets False alarms
Targets 11 0
False alarms 0 2590 - 34 = 2556

To investigate the performance of the proposed algorithm against scene details and noise, we used another challenging
hyperspectral data set (Dataset2) which is acquired using the same sensor. The input data contains 10 targets from the same kind
and brand. Again, to generate the ground truth of the false alarms, we divided the image plane into blocks with a block size of 5
x 5 pixels. This data set is challenging since the spectral signatures and many details in the scene mimics the target signature.
Additionally, two noisy versions of that data set were generated by corrupting the input pixel-vectors via 5% and 10% additive
random noise [i.e., the spectral are degraded by random noise, but the spatial information maintained]. This process of noise
addition produced two versions from the data set corresponding to the noise levels. One band from Dataset?2 is shown in Figure.
6(a) and the corresponding truth mask for the targets (10 targets), is shown in Figure 6(b). The results of using the proposed
algorithm for the two data sets are shown in Figure 6(c) and 6(d), respectively. The confusion matrix for 5% noisy data is shown

below which yields P, =1and P_, = 0.00076, respectively.
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The confusion matrix for 10% noisy data is depicted below which yields P =1, and P_, =0.0041, respectively

Confusion matrix Targets False alarms
Targets 10 8
False alarms 0 10476 - 43=10433

216
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The results obtained by the proposed technique are much better than the corresponding results generated by using the SAM
algorithm for the same data sets.. The SAM algorithm detects all targets but with numerous false alarms. The confusion matrix

for 5% noisy data is shown below which shows that P, =1, and P, =0.1414, respectively.

Confusion matrix Targets False alarms
Targets 10 1481
False alarms 0 10476 — 1481=8995

The confusion matrix for 10% noisy data is presented below and yields P =1, and P_, = 0.3926, respectively

Confusion matrix Targets False alarms

Targets 10 4113

False alarms 0 10476 - 4113=6363
(b)

Figure 5. Detection results for Datasetl. (a) Truth mask of the targets in the data cube, (b) results obtained using the proposed
algorithm, and (c) results obtained using the SAM algorithm.

Comparing the above mentioned results, it is obvious that the performance of the proposed algorithm is robust with respect to
noise and minute details in the input scene.

Finally, to ensure the robustness of the algorithm, we used an entirely different dataset (Dataset3). Again the data contains
targets from the same kind and brand. Two versions of the noisy data sets (5% and 10%) were generated by following the
procedure described earlier. Dramatic reduction in the background is obviously noticed and the confusion matrix of results of

the proposed algorithm for 5% noisy data is shown in the following table which yields P, = 1, and P_, =0, respectively.

The confusion matrix for 10% noisy

Confusion matrix Targets False alarms
Targets 10 0
False alarms 0 10476 — 0 = 10476

data is shown below and shows P =1, and P_, = 0.000095, respectively

Confusion matrix Targets False alarms
Targets 10 1
False alarms 0 10476 -1 = 10475
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The corresponding results obtained using the SAM algorithm are tabulated below. The confusion matrix for the results from 5%
noisy data is depicted below which shows that P, = 1, and P_, = 0.0266, respectively.

Confusion matrix Targets False alarms
Targets 10 279
False alarms 0 10476 -279=10197

The confusion matrix for the results from 10% noisy data is shown below and yields P = 1, and P_, =0.1199, respectively.

Confusion matrix Targets False alarms
Targets 10 1256
False alarms 0 10476 -1256 = 9220

(b)

(c) (d)

Figure 6. (). One band from the data cube, (b) the truth mask of the targets in the scene, (c) the result of
the algorithm for 5% noisy data set, (d) the result of the algorithm for 10% noisy data set
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From the above listed results, it is obvious that the proposed algorithm yields superior performance compared to alternate
algorithms.

6. Conclusion

In this paper, we presented a new algorithm for target detection in hyperspectral imagery based on the fusion of SEM algorithm
and kernel method. The proposed scheme exploits the robustness of SEM algorithm against image contents in classification and
the outstanding performance of kernel method. To facilitate detection of the target in a huge data set by using the entire
information of the target without data compression to reduce the computational burden on SEM, a novel data reduction
technique is introduced. The data reduction technique is based on reducing the background pixels in feature space using kernel.
The proposed algorithm shows superior performance compared to alternate algorithms, such as the SAM and CEM. algorithms,
for challenging scenarios. The proposed algorithm might be used for detection in applications such as military targets, materials
in mining industries, and objects for rescue operations.
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