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ABSTRACT: In industrial fields, decision making systems are very helpful. At critical situations such as failure occurrence,
human being could not make the right decision at reasonable delays. This paper dealt with the conception and the development
of an on line fuzzy system that simulates an hydraulic process and detects its abnormal behavior. Fuzzy logic is used to
analyze residues of significant variables and to calculate certainty coefficient about generated alarms.
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1. Introduction

Decision support systems are developed widely in many application fields such as medical and industrial diagnosis, commercial
domain, maintenance etc. This paper is centered especially on decision making in industrial fields. Fault detection is crucial operation
in process surveillance. It is responsible qualifying the process state: normal or not. Decision makers used principally residual
calculation and analysis to determine either a variable is following its reference. In fact, traditionally residual values must be around
zero to be certain that our system is in normal situation.

However, in industrial diagnosis uncertainty could be the result of numerous sources: Any industrial plan is not essentially having an
exhaustive mathematical model. Besides, with nonlinearities, even an existing model could not exactly describe the real system. Thus,
mathematical methods depending on models may be founded on uncertain bases. Moreover, detecting real system state leans on
observables variables and the effectiveness of its sensors, this is not always guaranteed.

Fuzzy logic is then used to qualify the residual values with  linguistic terms and to enhance then uncertainty effects in one hand. In
another one, conclusions about residues are then weighted with certainty factors.

Fuzzy Expert System for Residual Analysis
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The most common methodologies lean on weighting fault detection decisions with flexible certainty coefficients and choosing
the most important one. First alternatives treated the problem with traditional tools as probabilitytheory and error interval
analysis. These tools being unable to grasp all uncertainty facets [2], fuzzy sets were and still largely used to solve this issue [10] [11].
The first link between fuzzy logic and decision-making was introduced in [1]. It was based on the fact, that according to a criterion,
good solutions are fuzzy sets. Besides, the best solution set is obtained from their intersection [3]. The most popular fuzzy sets
approach, in decision-making, is the maximum ranking solutions. This method is natural when interpreting the fuzzy sets as flexible
constraints. While uncertainty affects several domains and has many facets (randomness, fuzziness etc.), fields and applications
concerned with this issue are, especially in the last decade, growing proving the efficiency of fuzzy logic use. Numerous works
integrate fuzzy sets in monitoring and fault detection approaches [7] [6] [8]. In fact, fuzzy logic was integrated in different monitoring
architectures: in neuro-fuzzy systems [12], fuzzy expert systems [12], fuzzy Petri nets, fuzzy residual generation methods etc. In one
hand, fuzzy logic was used, essentially, in order to surmount uncertainty effects caused by the linguistic knowledge formulation of
intelligent tools [5]. In another hand, fuzzy systems were integrated in defining variables and residues thresholds, to overcome model
and sensors uncertainties [4].

To present this work three sections are to be considered. The first section dealt with research issue which is uncertainty and fault
diagnosis. Next, the proposed approach architecture based on fault detection and alarm generation is detailed exhaustively. Finally,
hydraulic system that could be encountered in many industrial fields constitutes the study case and the application of the methodology.

2. Research Issue

Based on the previous researches point of view, uncertainty could be found in different forms and at several levels creating uncertain
environment for fault detection module. The aim of this work is to present an approved methodology to integrate fuzzy logic in fault
detection systems to enhance their efficiency against uncertainties.

In an earlier work [12] and inspired by the research of Evsukoff  [4] that was based on the analysis of residues and their
variations through fuzzy system, we’ve tried to reduce the number of rules and to extend the uncertainty consideration. In this work,
a support system is used to generate failures from residual values.

3. Fuzzy Residual Approach

We consider an approach which is based on residual analysis. Residuals were used in several works and had proven their efficiency,
especially, when it concerns fault detection. In fact, when complete or partial quantitative model of the system exist, residuals becomes
fast and efficient indicators about system variables behaviors. Hence, researches integrates this tool in monitoring decision making
problems and usually affects certainty factors to alarm decisions based on residuals.

As figure 1 shows, our interest is not oriented to residual (r) generation but to its analysis. The FES architecture has two inputs r:
residual and dr : residual derivative. And one output that traduces abnormal behavior severity ranged in [0-1] associated to process
variable.

Figure 1. Fault detection architecture

The main idea is based on calculating at every step time, to each measured variable, residue rj and its variation in time drj ( j ∈
{1, 2, 3, ……m} and m : number of measured variables).  These variables are indicators about process state; Process behavior is
optimum when no variables generate alarms.
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3.1 Fuzzification
Let Urj and Udrj be respectively the universe of discourse of physical variables rj and drj. Figure 2 illustrates the ranges in which
move rj and drj. We should mention that a1 and a4 are criterion thresholds whereas a’1 and a’2 values are a’1 = 2.a1 and +  a’2 =
2.a4 [4]. Linguistic variables r and dr are variables ranging respectively in sets of symbolic labels A(r) and B(dr) illustrated in
equation 1. The terms describe qualitative value of magnitude of both residue and its variations.

Figure 2. Membership functions of r and dr

A(r) = {NN, N, Z, P, PP}; B(dr) = {N, Z, P}

As figure 2 shows, five fuzzy sets are associated respectively with the elements of A(r). Three fuzzy sets are associated respectively
with the elements of B(dr).

For each fuzzy set, the membership function is trapezoidal. The fuzzification process calculates the membership degrees. They vary in
the interval [0-1] and they determine to what extend physical variables r and dr belong to fuzzy sets Ak and Bl.

We consider in our approach that fuzzy system output could be presented, only, by one linguistic label: AL. AL which is also
associated with singleton, indicates that there is an abnormal attitude.

2. Inference Engine

Linguistic model relating variables r and dr to variable cf is written as rule base, relating the terms of A(r) and B(dr) to those of cf (AL)
in weighted rules, read as equation 2.

r/dr           N                   Z P

NN      AL       ω (1, 0.2)        AL     ω (1, 0.2)        AL      ω (0.8, 0.2)
N         AL       ω (1, 0.2)         AL    ω (0.6, 0.2)    AL      ω (0.4, 0.2)
Z         AL       ω (0.2, 0.2)     AL     ω (0, 0.2)       AL      ω (0.2, 0.2)
P          AL      ω (0.2, 0.2)     AL     ω (0.6, 0.2)    AL      ω (1, 0.2)
PP       AL      ω (0.8, 0.2)     AL     ω (1, 0.2)        AL      ω (1, 0.2)

Table 1. New Inference Table

N (Negatif) Z (zero) P (positif)

2a1     2a4                        dr

µµµµµ(dr)

NN
(Negatif high) N (Negatif) Z (zero) P (positif)

PP
(Positif high)

µµµµµ(dr)

a1            a2        a3            a4               dr

(1)

If r is Ak and dr is Bl then cf is AL (ϖ) (2)
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Table 1 summarizes the pattern that matches the two inputs r and dr to the output cf. It is composed of 15 weighted rules.
Evsukoff [4] determinated the constant value of rules weight ϖ  that are indicated in the table ϖ  ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. These
values reflect the degree of rule importance that is defined by experts

The inference table indicates that, for each combination of r and dr, one weighted rules is validated.

Besides, in order to raise uncertainty compensation, this work-study rules weight values ϖ. In fact, these values are constant traducing
expert experience in fault detection. However, this experience is subjective and not always credible. Our approach proposes to weight
rules using triangular functions centered on values presented by [4]. Rules credibility degree, presented by Figure 3, illustrates six
triangular functions that are centered in ϖ  value w (ϖ, e) = triang (ϖ, ϖ  − e, ϖ +  e) with e fixed in e = 0.2. Table 2. is, then, the new
adopted inference table of fuzzy system.

Figure 3. Triangular functions weighting rules

The inference, in this fuzzy system, is based on min-max method to calculate the membership function of the output. In fact, conjunction
function, for AND method, is minimum, implication function is also minimum and aggregation function is max method. In this system
output calculation, a crisp value is required. Thus, the defuzzification operation is requisite. In this approach, the gravity centre is the
method adopted to get the crisp value traducing the severity of generated alarm, from the output membership function.

 To have robust response and to guarantee consistency of the abnormality, final decision takes into account all the  last sampling times.
An alarm is generated when the minimum value of CF exceeded ε in M consecutive step times. Where (ε) is safety factor chosen
according to required robustness. The system is declared in failure with a certitude coefficient  that is CF.

The value that characterizes the alarm state of the variable CF is used to weight the alarm generation. In fact, the weight
attributed to the system state (normal or abnormal) CF is interpreted as indicator about the credibility of the fault detection
decision. Hence, the fuzzy system is used to minimize uncertainty caused by nonlinearities and non-exhaustively of quantitative
model in one hand. The sensor imperfection information and subjective choice of criterion thresholds are moderated in another
hand. In our approach we’ve adopted the inference system presented by Evsukoff [4] to evaluate and analyze residues variation
in time. The weighted final decision about the system state is carried out through new deffuzification approach based on the M
last sampling time to guarantee the persistence and robustness of failures.

4. Study case

The system under consideration is a pilot plant of the research unit: System analysis and command located in ENIT (National
Engineer Institute of Tunisia). This system is composed of three interconnected cylindrical tanks, two pumps, six valves, pipes,
water reservoir in the bottom, measurement of liquid levels and other elements. The pumps pump water from the bottom reservoir
to the top of the left and right tanks. A schematic diagram of the considered system is shown by figure 4.

While tanks 1, 2 and 3 are identical with cross section S and maximum fluid level lmax, Drain tank is characterized with cross
section Sd  and maximum fluid level ldmax. Tanks 1 and 3 are coupled with tank 2 by two AON (all-or-none) valves with cross sect-
ion Sn and outflow coefficients. Two proportional valves EV1 and EV2 directly connected to a pump, with highest possible flow
rate denoted qmax supply tanks 1 and 2. Three sensors are installed to measure the three levels l1, l2 et l3. The experimental plant
that is equipped with sensors and actuators, communicates via data acquisition system with a personal computer.

w (0, 0.2) w(0.2, 0.2) w(0.4, 0.2) w(0.6, 0.2) w(0.8, 0.2) w(1, 0.2)

0                       0.2                    0.4                     0 .6                    0.8                     1
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Figure 4.  Three tank system representation

q1(t) − q12(t) − qb1(t) = S.
dl1(t)

dt

q3(t) − q32(t) − qb3(t) = S.
dl3(t)

dt

q12(t) − q32(t) − q2(t) = S.
dl2(t)

dt

⎧
⎨
⎩

With: command flows q1 and q3  are respectively the income flows of tanks 1 and 3, qbi are bleeding flow from tank i (i ∈ to {1, 2, 3})
to drain tank. Finally, q12 and q32 represent, respectively, the fluid flow rate from tank 1 to tank 2 and from tank 3 to tank 2. These
unmeasured flow rates can be determined using the Torricelli law as:

q12(t) = Sn. µ12. l1(t) − l2(t)) 2.g|l1(t) − l2(t)|

q32(t) = Sn. µ32. l3(t) − l2(t)) 2.g|l3(t) − l2(t)|

q2(t) = Sn. µ20. 2.g.l2(t)

⎧
⎨
⎩

EV1

EV3

EV32EV12

EV
b3

EV
b1
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q12
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Using the mass balance equations the system can be described by the following equations system:

(3)

(4)
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The purpose is to control the system around an operating point (u0,  y0) which is fixed to :

u0 = (0.35, 0.375)T × 10−4 m3 s−1 and  y0 = (0.40, 0.295, 0.20)T  m

The system is linearized around this operating point using Taylor expansion. The linearized system is described by a linear space state:

Now if we consider that = [l1  l2  l3]
T  is the output vector, e = [qb1  qb3]

Tand u = [q1  q3]
T is the command vector, the system can be written

in linear state space:

dx (t)
dt

= A.x (t) + B.u (t) + k.e (t)

y (t) + C.x (t)

⎧
⎨
⎩

Where Gf 1=
and Gf 2 =

Kf1

L10 −  L20
2

 , Gf 3=
Kf3

L30 −  L20
2

Kf2

 L20
2

, we could have:

A =

−Gf 1

S

Gf 1

S
0

Gf 1

S

− (Gf 3+Gf 2 + Gf 1)

S

Gf 3

S

0
Gf 3

S

− Gf 3

S

⎛
⎝

⎞
⎠

Figure 5.  Nominal control inputs q1(t) and q3(t)
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A =

−0.0111          0.0111                0

    0.0111       −0.0307          0.01166

          0             0.01166      −0.01166

⎞
⎠

⎛
⎝

K = ⎞
⎠

C =
1       0      0
0       1      0
0       0      1

⎞
⎠

⎛
⎝

⎛
⎝

64.94             0

    0             64.94
⎞
⎠B =

⎛
⎝

−64.94             0

    0             −64.94

   0                   0

4.1Fault Free Simulation
Figure 5 and figure 6 are respectively nominal control inputs and outputs variations of estimated state model simulated for 3000s.

This process modeling is, then, estimated to be:

            Variable              Symbol              Value

Tank cross section area                   S           0.015    4m2

Inter tank cross section area                 Sn             5×10-5m2

Outflow coefficient                  µ20                            0.6

Maximum flow rate             µ20 =µ23                        0.5

Maximum level         q1max = q3max                        1.5 m3. s−1

      l1max= l2max= l3max                     0.62m

Table 2. System characteristics

Figure 6. Nominal control outputs l1(t), l2(t) and l3(t)

Linear Simulation Results

0                   500                1000                1500                2000                 2500            3000
Time(sec)

0.8
0.6
0.4
0.2
   0

0.4
0.3
0.2
0.1
   0

A
m

pl
itu

de
 1

2 
(m

)

13
 (m

)
12

 (m
)

11
 (m

)

0.4
0.3
0.2
0.1
   0

,

, (7)



   30                          Journal of Information Organization    Volume  3   Number   1   March    2013

Figure 7. r and dr memberships functions

Figure 8. Example of D calculation

r = 0.475 dr = 0 CF = 0.749
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Taking into account thresholds of the three simulated outputs, limits of residue (r) and its variations (dr) memberships are illustrated
by figure 7. These values lead to a certitude coefficient that is represented by figure 7 and figure 8.

Knowing that the value of the fuzzy system output is a singleton, the output will be calculated through the projection on triangular
functions that are weighting the rules. The 3D representation of CF variation indicates that: with r values around zero, CF is almost
minimal but it reaches its maximum when r and dr are important.

Figure 9. 3D representation of D values

Figure 10. Outputs under pump 1 multiplicative fault (α1 = 0.1)
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Figure 11. ri and CF(ri) under pump 1 multiplicative fault (α1 = 0.1)
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Taking into account thresholds of the three simulated outputs, limits of residue (r) and its variations  (dr) memberships are illustrated
by figure 7. These values lead to a certitude coefficient that is represented by figure 7 and figure 8.

Knowing that the value of the fuzzy system output is a singleton, the output will be calculated through the projection on triangular
functions that are weighting the rules. The 3D representation of CF variation indicates that: with r values around zero, CF is almost
minimal but it reaches its maximum when r and dr are important.

In this work, we consider that many additive or multiplicative faults can affect the system due to material aging or to abnormal
situations. These faults can be caused by actuators or sensors.

4.2 Actuator Fault
We consider, in this paper, actuator faults that are represented in paper [9]. An actuator (i) fault can be represented by additive
and/or multiplicative faults as follows:

where ui and ui   represent the normal and fault control inputs of the actuator i. u0 is a constant offset and 0 < αi < 1 is a gain degradation
of actuator i.

First, the gain degradation of pump1 is considered and at instant 1000 s it becomes equal to 0.1. The dynamic behavior of the system
is illustrated by figure 10.

The fault detection system response is represented by coefficient CF evolution. We can see that coefficient CF (l1) is the most
important and that it was activated 271 s after fault occurrence.

The CF dynamic behaviour is completely depending on residual and its variation.

4.3 Sensor Fault
We consider, in similar way, sensor j faults that are represented as follows:

Figure 12. outputs under sensor 2 multiplicative fault (β2 = 0.2)

0                      500                      1000                   1500                     2000                     2500                3000
Time(sec)

0.3
0.2

0.1

   0

0.3
0.2

0.1

   0

0.3
0.2

0.1

  0

A
m

pl
itu

de
 1

2 
(m

)

13
 (m

)
12

 (m
)

11
 (m

)

Linear Simulation Results

f

yij = BJ . yj + yj0
f



   34                          Journal of Information Organization    Volume  3   Number   1   March    2013

where yj0 and  yj represent the normal and fault control actions of the jth sensor, respectively.  yj0 is a constant offset and  0 < βi < 1
denotes a gain degradation.

In a similar way, we simulate a multiplicative fault occurring on sensor 2. Figure 12 and figure 13 are the illustrations of system behavior
and CF calculation.

This paper gives a new method to analyze residuals based on fuzzy logic. In fact, the integration of fuzzy logic in fault detection
provides more effectiveness and reliability to alarm generation.

Figure 13. ri and CF(ri) under sensor 2  fault (β2 = 0.2)
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4.4 Alarm Generation
A simple user interface is developed using Matlab GUI and simulink.

In this case, hydraulic process presents three measured continuous variables (level heights) that could help to locate the
possible failure.

When cf corresponding to a variable exceeds its limit, the variable is declared in failure. For example in the case illustrated by
figure 14, the three tanks were touched by the actuator fault but we could remark that the certainty factor cf is the most important
in tank 1 which could give an idea about the root cause of the failure. Obviously, a diagnosis operation is needed to identify
pump1 as root cause.

5. Conclusion

This paper gives a new method to analyze residuals based on fuzzy logic. In fact, the integration of fuzzy logic in fault detection
provides more effectiveness and reliability to alarm generation. Based on the inference presented by Evsukoff, our methodology gets
its originality from the use of triangular functions to weight rules instead of fixed values.

The application on a three tank system proves a fast and efficient response to simulated faults rather sensor or actuator ones. And the
FES calculates a coefficient which is sensitive to failure origins.
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