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ABSTRACT: In this paper, we have proposed some parallel filtration techniques of point clouds. These techniques are
logically based on existing ones present in the open-source Point Cloud Library (PCL). We have used the MapReduce
framework provided by Big Data platforms such as Apache Hadoop to address the problem of scalability as well as the
completion of processing intensive tasks with relatively cheaper hardware.
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1. Introduction

In big data, scale up processing on Point Cloud Files (PCF) has many drawbacks. Files can go up to Gigabytes (GB) in sizethat
can take hoursto scan on asingle machine and sufficient memory isrequired to run algorithms on these files on asingle machine.
A single machine with respectable specifications but is dedicated only for asingle job. So, the system is reserved during the
processing and cannot be used for other purposes and the job at hand still takes a lot of time.

Despitethiserabeing termed asthe eraof technological advancements, the difference between therate of growth of computational
power of today’s computers and rate of growth of file sizeisalarming. After almost every 3 years, the CPU’s computing power
increases by afactor of two [1]. Thefile size compared to thisis growing at an amazingly fast pace. It was nearly 20 years ago,
that the only common fileformat wasthetext fileranging in sizes of KBs (1000 bytes) and now filesizeshavegone up to giga (10°
bytes), tera (102 bytes) and peta (10% bytes).

Filesizeisincreasing rapidly but the algorithms are not optimizing well to thefile sizesin terms of processing and memory usage
efficiency. The approach of using faster CPUs but with traditional algorithmsis has shown improvement at avery small scale.
Moreover, newer format always require more complicated decoding algorithms and lead to even longer processing times. Thus
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the only feasible way that remainsin order to attain large speed up with the current computational power isto split the job at
hand onto several machines and executeitin parallel.

2. Background

ThePoint Cloud Library (PCL) and Hadoop platform has been used for our research. The Point Cloud Library (PCL) isalarge
scale cross-platform open source C++ programming library which implementsalarge number of point cloud universal algorithms
and efficient data structures. The PCL has avariety of 3D point cloud data processing algorithm set. The Point Cloud datais
taken by the PCL library inthe PCD (Point Cloud Data) format. PCD file formats might have different revision numbers, prior to
therelease of Point Cloud Library (PCL) version 1.0.

On the other hand Hadoop is a framework (consisting of software libraries) which simplifies the processing of data sets
distributed across clusters of servers. Two of the main components of Hadoop are HDFS and MapReduce. HDFS is the file
system that is used by Hadoop to store all the data on where as MapReduce is the framework that orchestrates al of Hadoop’s
activities. It handles the assignment of work to different nodesin the cluster.

3. Methodology

We have studied three PCL algorithmswhich are Pass-Through Filter, Conditional Outlier Removal Filter and Voxel Grid Filter.
We have shortlisted these algorithms for the implementation on the MapReduce paradigm. The sequential versions of the
algorithms implemented by PCL have been discussed in detail in each sub-chapter after which our proposed approach for the
respective algorithm has been put forward to run on the MapReduce paradigm. Section A providesinsight into the working of
the Pass-Through Filter on PCL along with the parallel solution designed by us to execute on the MapReduce framework.
Similarly Section B and C discussthe Conditional Outlier Removal and Voxel Grid Filtersrespectively.

3.1Pass-Through Filter

The Pass-Through Filter algorithm implemented in PCL is designed for the filtering of points inside or outside a given range
(limits) specified by the user along a certain dimension (field) that isx-axis, y-axis or z-axis as specified by the user. Thisfilter
iterates over the entire point cloud once and filters out all non-infinite points lying outside the range specified by the user.

The implementation of the Pass-Through Filter on the MapReduce paradigm has been divided into three modules namely the
mapper, combiner and reducer procedures. Thefirst phase namely the Pass-Through Mapper will iterate over designated chunk
of the point cloud and check whether each point isinside or outside the range acrossthefield both specified by the user. During
this process, the mapper will emit tab-delimited key-value pairswhere the key portion will be acombination of the x-coordinate,
y-coordinate and z-coordinate values of the point sorted by the Partitioner function [24].The corresponding val ue portion will
consist of a status flag which will hold a positive value “true” if the point lies within the specified range or a negative value
“false” if the point lies outside the specified range. The key has been chosen as a combination of the three coordinate values as
key should be uniquefor every record [19] and it isunderstood that each point will occur only once on that same position inthe
point cloud dataset. Once the whole dataset has been iterated, the combiner phase of the algorithm will come into action.

Algorithm 1(b)(i) Pseudo code for Pass-Through Mapper

procedur e Pass-Through Mapper
1.Set Filter Field Name

2.Set Filter Field Limits

3.Set status = false

4.for each point | in point cloud chunk:
5.if I lieswithinrange:

6.status = true

7.else

8.Status =false

9.emit(key, value) -

end procedure
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The second phase namely the Pass-Through Combiner will iterate over all the key-value pairs emitted by the Pass-Through
Mapper and check the status flag of all the points during the process. If the status flag for a particular point is positive “true”,
the combiner will emit that particular key-value pair in the same format to the reducer phase otherwise the point will simply be
ignored. The combiner’s output format should match itsinput format for it to properly work in the MapReduce paradigm [19].
The combiner’s main purpose is to perform local filtration of points so as to minimize the records going to the reducer phase
which will be running on a single machine thereby increasing performance by avoiding bottlenecks in transmission over the
network.

Algorithm 1(b)(ii) Pseudo code for Pass-Through Combiner
procedur e Pass-Through Combiner

1. for each (key, value):

2. if statusistrue:

3. emit(key2, value?)

end procedure

The third and final phase namely the Pass-Through Reducer phase will iterate over al the key-value pairs emitted by the
combiner and will convert theinput into the same format which was read by the mapper from the point cloud file by ignoring the
status flag and writing down all the coordinate values i.e. x-coordinate, y-coordinate and z-coordinate values separated by
spaces which will be consequently written to the resulting point cloud file.

Algorithm 1(b)(iii) Pseudo codefor Pass-Through Reducer
procedure Pass-Through Reducer

1. for each (key, value):

2. emit(x-value, y-value, z-value)-

end procedure

3.2 Conditional Outlier Removal Filter

The Conditional Outlier Removal Filter implemented in PCL worksin exactly the sameway asthe Pass-Through Filter except the
fact that multiple conditions can be stated by the user for the purpose of filtration. In simplewords, the algorithm can crop points
outside ranges specified across multiple dimensions at the same time or apply multiple Pass-Through Filters. Furthermore this
algorithm unlike the Pass-Through Filter is not only intended for filtration based upon spatial values but can also filter points
based upon their color ‘RGB’ and curvature values[2].

Theimplementation of the Conditional Outlier Removal Filter on the MapReduce paradigm has been divided into three modules
namely the mapper, combiner and reducer procedures. The first phase namely the Conditional Outlier Remova Mapper will
iterate over designated chunk of the point cloud and check whether each point isinside or outside the range across the field
both specified by the user. The operation mentioned above will be repeated for all the conditions specified by the user. During
this process, the mapper will emit tab-delimited key-value pairswhere the key portion will be acombination of the x-coordinate,
y-coordinate and z-coordinate val ues of the point sorted by the Partitioner function [24]. The corresponding value portion will
consist of a status flag which will hold a positive value “true” if the point lies within the specified range or a negative value
“false” if the point lies outside the specified range. The key has been chosen as a combination of the three coordinate values as
key should be uniquefor every record [19] and it is understood that each point will occur only once on that same position inthe
point cloud dataset. The PCL version of thisalgorithm also supportsfiltration based upon the color ‘RGB’ and curvature values
[2] but our MapReduce version of the algorithm will only support filtration for spatial valuesasit will deal with point cloudsin
the XY Z format (.xyz) which will be discussed in Chapter 5. Once the whole dataset has been iterated, the combiner phase of the
algorithmwill comeinto action.

The second phase namely the Conditional Outlier Removal Combiner will iterate over all the key-value pairs emitted by the
Conditional Outlier Removal Mapper and check the status flag of all the points during the process. If the status flag for a

Journal of Information Organization Volume 6 Number 3 September 2016 67




Algorithm 2(b)(i) Pseudo codefor Conditional Outlier Removal Mapper
procedur e Conditional Outlier Removal Mapper
1. for total number of conditions (n):

2. SetFilter Field Name

3. Set Filter Field Limits

4. Set status = false

5. for each point | in point cloud chunk:

6. for total number of conditions(n):

7.if | lieswithin range of n:

8. statusistrue

9.else

10. statusisfalse

11. emit(key, value) -

end procedure

particular point is positive “true”, the combiner will emit that particular key-value pair in the same format to the reducer phase
otherwisethe point will simply beignored. The combiner’soutput format should matchitsinput format for it to properly work in
the MapReduce paradigm [19].

Algorithm 2(b)(ii) Pseudo codefor Conditional Outlier Removal Combiner

procedur e Conditional Outlier Removal Combiner

1. for each (key, value):

2.if statusistrue:

3. emit(key2, value?)

end procedure

Thethird and final phase namely the Conditional Outlier Removal Reducer phasewill iterate over all the key-value pairs emitted
by the combiner and will convert the input into the same format which was read by the mapper from the point cloud file by
ignoring the status flag and writing down all the coordinate values i.e. x-coordinate, y-coordinate and z-coordinate values
separated by spaces which will be consequently written to the resulting point cloud file.

Algorithm 1(b)(iii) Pseudo codefor Conditional Outlier Removal Reducer
procedur e Conditional Outlier Removal Reducer

1. for each (key, value):

2. emit(x-value, y-vaue, z-vaue)

end procedure

3.3Voxe Grid Filter

TheVoxe Grid Filter implemented in PCL isa so known by the name of the Down Sampling Filter. Therearetwo categoriesfor this
filterin PCL namely the Voxel Grid and Approximate Voxel Grid filtersbut our main concern will only bewith the simple Voxed Grid
Filter. Thisfilter takes in the input point cloud in the form of voxels where voxels are small 3D cubes whose dimensions are
specified by the user. Thefilter will then compute the spatial centroid for all the individual voxels representing the point cloud
and will replace all the pointsresiding in that particular voxel by that one centroid henceforth down sampling or filtering the
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entire pointcloud[2], [19].

Theimplementation of the Voxel Grid Filter on the MapReduce paradigm has been divided into three modul es namely the mapper,
combiner and reducer procedures. Thefirst phase namely the Voxel Grid Mapper will iterate over designated chunk of the point
cloud and will classify each and every point to avoxel by assigning them avoxel identification number relative to the point (O,
0, 0). Inthiscasetheorigin will be acting asthe global point of reference and the numbering of each voxel ID will be based purely
on this point. For negative values, the voxel IDswill also be negative. During this process, the mapper will emit tab-delimited
key-value pairs where the key portion will be acombination of the x-value, y-value and z-value IDs of the voxel to which the
corresponding point belongswhich will bein turn sorted by the Partitioner function [24]. The corresponding val ue portion will
consist of the coordinates of the point itself i.e. its x-coordinate, y-coordinate and z-coordinate values and the occurrence of
that point which will befixed for al pointsat 1. Once the whole dataset has been iterated, the combiner phase of the algorithm
will comeinto action.

Algorithm 3(b)(i) Pseudo codefor Voxel Grid Mapper
procedureVoxe Grid Mapper

1. Set Voxel Dimensions

2. for each point | in point cloud chunk:

3. computex dimension ID relativeto origin

4. computey dimension ID relativeto origin

5. computez dimension ID relativeto origin

6. emit(key, value)

end procedure

The second phase namely the Voxel Grid Combiner will iterate over all the key-value pairs emitted by the Voxel Grid Mapper and
will sum up the x-coordinate, y-coordinate and z-coordinate values separately for all the points belonging to the same voxel
during the process. In addition to this, the total number of points in each voxel will also be computed by adding up the
occurrencevalues of all the pointsin that particular voxel whichwill alwaysbe equal to 1. The combiner will then consegquently
emit one key-value pair for each voxel. The combiner’s output format should match itsinput format for it to properly work inthe
MapReduce paradigm[19].

Algorithm 3(b)(ii) Pseudo codefor Voxel Grid Combiner
procedureVoxe Grid Combiner

1. for each (key, value):

2. if voxel 1D isunchanged:

3. Add x-valueto net of x coordinates
4. Add y-value to net of y coordinates
5. Add z-value to net of z coordinates
6. Increment counter for pointsin voxel
7.else

8. Reset net of x coordinatesto zero

9. Reset net of y coordinates to zero
10.Reset net of z coordinatesto zero
11. Reset counter to one

12. emit(key2, value?)

end procedure
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Thethird and final phase namely the Voxel Grid Reducer phasewill iterate over all the key-value pairs emitted by the combiner
and will computethe centroid for each voxel by dividing the total x-coordinate, y-coordinate and z-coordinate values with the
total number of pointsinthe particular voxel both of which have been calculated and emitted in key-value pair by the combiner.
It will then convert the input into the same format which was read by the mapper from the point cloud file by ignoring the key
portion containing the voxel 1D and writing down all the coordinate valuesi.e. x-coordinate, y-coordinate and z-coordinate
values separated by spaces which will be consequently written to the resulting point cloud file.

Algorithm 3(b)(iii) Pseudo codefor Voxel Grid Reducer
procedureVoxe Grid Reducer

1. for each (key, value):

2. if voxel 1D isunchanged:

3. compute x coordinate of centroid

4. computey coordinate of centroid

5. compute z coordinate of centroid

6. else:

7. emit(x-centroid, y-centroid, z-centroid)

end procedure

4. Experimental Result

This section coversthe whol e eval uation portion of our Research. Section A describesall the testing constraints such asthefile
format, size and filtration conditions that must be kept constant within thetesting systemsto ensure verifiable and valid results.
In addition to thisit also gives adescription of the nature of the input datasets chosen for experimentation. Section B describes
the environmental setup of theworking environment. Thefirst sub-section describesthe PCL environment on asingle machine.
The last sub-section defines the setup of Apache Hadoop on a cluster of four machines. Section C gives the statistical results
of the experiments conducted. It illustrates each algorithm’s result separately in sub-sections and provides the results of both
systems one after the other in sub-chapters for the purpose of comparative analysis.

4.1 Testing Constraintsand | nput Dataset
During the conduction of the experiments, it was ensured that the following attributes must remain the same for both the testing
environments that is PCL and the Hadoop multi-node cluster:

¢ The size and nature of the dataset.
o Thefiltration thresholds for each algorithm.
o Thefileformat must remain the samefor each individual system.

The datasets were taken from online repositories of universities as well as organizations doing projects on point clouds [25],
[26]. Point Clouds can be represented in variousfile formats. Thetwo formats compatible with our systemsarethe XY Z format
and the PCD (Point Cloud Data) format. The PCD format isintended for the PCL asit accepts point cloudsin thisformat only.
PCD fileformats might have different revision numbers, prior to therelease of Point Cloud Library (PCL) version 1.0. Theseare
numbered with PCD_Vx (e.g., PCD_V5,PCD_V6, PCD_V?7, etc) and represent version numbers 0.x for the PCD file. Theofficial
entry point for the PCD fileformat in PCL however should beversion 0.7 (PCD_V7). The PCD file header contains headers such
as\ersion, Fields, Sze, Type, Count, Width, Height, Viewpoint, Pointsand Data respectively. The datais stored in two formats
that areeither in ASCI| or in binary format. The XY Z format isamore simplerepresentation of apoint cloud. Itisasimpletext file
comprising of three columns for each of the x, y and z dimensions. Each row in thisfile signifiesarecord or point entry in that
point cloud and the X, y and z coordinates are provided in floating-point numbers. Figure 5.1 illustrates the layout of atypical
XYZfile

Many problems were faced during the collection of the datasets. First of all the XY Z format point clouds were not readily
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availablein large numbers from asingle repository. Secondly large point clouds had been uploaded in chunks with each chunk
containing additional headers. Each point cloud would have up to 40 chunks on average. In order to view the point cloud in 3D,
we had to feed it into an online viewer by the name of LiDAR viewer [28]. Thisviewer only accepted files with the following

conditions:

o No special characters or comments.

o Columns should be space-delimited.

—21.894755
—22.5043299
—22.037755
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Figure 1. Thisfigure provides a snapshot of asample XY Z file containing point cloud data

Point Cloud Dataset I nfor mation Table

Sr.# File Name Data Points FileSize File Format
1 Pcmhousel 123,748 4.0MB XYZ

2 (0.22 million) 0.886 MB PCD

3 Pcmhouse4 480,852 154 MB XYz

4 (0.49 million) 3.4MB PCD

5 Oakland 1,514,625 30.9MB XYZ

6 (1.51 million) 9.4MB PCD

7 Building 4,572,428 211.6 MB XYz

8 (4.57 million) 27.5MB PCD

Table 1. Thetable givesalist of all the datasets along with their details that have been selected for testing

Dueto all the above mentioned reasons, wewere ableto locate four XY Z datasetsfit for our experimentation. The datasetswere
chosen in such away that each dataset chosen would consist of thrice as many points as the previously chosen dataset so as
to get visually clear graphical readingslater oninthe experiment. Thisin turn would make comparisons based on scal ability alot
simpler. Inorder to validate the testing constraints for out experiment, we had to feed the same datasets to the PCL aswell but
the problem was that PCL only accepts PCD format. To resolve thisissue we used PCL’s basic XY Z to PCD conversion tool
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availableon GitHub [27] to convert our XY Z datasetsto PCD format. The huge difference between the sizes of the XY Z and PCD
formats for the same dataset is due to the PCD format taking point datain compressed binary. XY Z format on the other hand
takes the point datain ASCII format. The shortlisted datasets along with their details have been provided below:

Onceall the datasets had been shortlisted, the next task was to set the filtration thresholds for the individual datasets aswell as
the algorithms. A total of three tests were conducted for each algorithm on each dataset making it atotal of 12 tests for each
algorithm and a net total of 36 tests for each of the systemsthat is PCL and Hadoop. A grand total of 72 tests were conducted
for the overall project. The criteriafor the conducted tests have been provided in the figure below:

Experimental Testing Criteria

Test & File Name Filter Conditions
FPass-Through Filter

Filter Field = Z — Dimension

1-3 Pemhovzzl Filter Limits: (-30.0 <= Z <= 50.0)
Filter Ficld = £ — Dimenszion
-8 [d )&
#-8 Pemhousad Filter Limits: (-30.0 <= Z <= 50.0)
- Filtar Fizld = X — Dimesnszion
-0 L
- Qakland Filtar Limits: {-150.0 <= X<=-50.0)
10-12 Building Filtar Field = X — Drimansion

Filter Limits: (-3152350.0 <=X<=315300.0)
Conditional QOutlier Removal Filter

Condition 1
Filter Field = X - Dimeansion
Filtzr Limitz: (0.0 <= X <= 50 .0}

Condition 2
1-3 Pemhouvsa1 Filter Field = ¥ — Dimeansion
Filter Limitz: (0.0 <= Y <= 50 .0)

Condition 3
Filtar Field = Z — Dimeansion
Filter Limits: {-50.0 <= F <= 20.0)
Condition 1
Filter Field = X — Dimeansion
Filter Limits: (0.0 <= X<=50.0)

Condition 2
4-6 Pecmhous=4 Filter Field = ¥ — Dimeansion
Filtzr Limitz: (0.0 <= Y <= 50 .0}

Condition 3
Filter Field = Z — Dimeansion
Filter Limite: {-50.0 <= E <= 20.0)
Condition 1
Filter Field = X — Dimension
Filtar Limits: (-130.0 <= X<=-50.0)

Condition 2
T-2 Cakland Filtar Fizld =Y - Dimanzion
Filter Limits: {-250.0 == Y= -150.0)

Condition 3
Filter Fizsld = £ - Dimenszion
Filter Limits: {-10.0 <= F <= 0.0}
Condition 1
Filter Field = X — Dimension
Filter Limits: (3152500 ==X ==315300.0)

Condition 2
10-12 Building Filtar Fizld =Y — Dimenszion
Filtar Limits: (4834350.0 <= ¥ <= 4834430.0)
Condition 3
Filter Figld = £ — Dimeanzion
Filter Limits: (E5.0 == Z <=05.0)
Voxel Grid Filter

- " - Voxel Size: X =5.0, 5.0
1-3 Pemhouvsa1 (Cubs of 5
Woxel Size: X =50, 5.0
-5 c v i :
4-8 Prmhoussd (Cub= of 5 x 5
- Woxel Size: X =50, 50
-0 - :
: Qakland {Cubz of 5x §x 5)
10-12 Building Woxel Size: KX =30, Y : i.l-:l E=350

{Cube of 5x 5

Table 2. Thetable givesalist of all the tests conducted along with the testing conditions. Testing conditions for both PCL
and Apache Hadoop are the same.
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4.2 Hardware& SoftwareEnvironment

1) Point Cloud Library (PCL)

The PCL environment was setup on a single machine that is the Dell Inspiron N5050 laptop as mentioned in Table 1.1. The
system had the Linux Ubuntu 14.04 (64-bit) operating system running on it. After the download and installation of the PCL
binariesand sourcelibrariesfrom [2], individual projectswereimplemented for the algorithms as described in Chapter 4. CMake
v3.2.1wasinstalled in order to compilethe PCL projectsinto executable. After compilation, the projectswere run using the built-
in GNU C++compiler in Ubuntu. After documenting the results of the three testsfor each algorithm, the average processing time
of the three tests was computed for each dataset. A graph was then plotted of the average processing time of the algorithm
against the number of data points in the dataset using an online Point Plotter Tool [29].

2) Hadoop Multi-Node Cluster

The Apache Hadoop multi-node cluster environment was setup using 4 Dell Desktop PCs as described in Table 1.1. The
computers were connected to each other viaLAN (Local AreaNetwork) through the TP-Link switch as described in Table 1.1.
One of the PCswas the designated the role of master whilethe rest of the three were acting asthe slaves. Theinput datasetsand
the necessary source code files (Python scripts) were uploaded to the HDFS via the master node. These scripts were in turn
converted to Mapper, Combiner and Reducer scripts by the Hadoop Streamer commands [24]. Once the tests were conducted,
the output point cloudswereimported from the HDFS back to thelocal disk through the Hadoop commands. After documenting
the results of the three tests for each algorithm, the average processing time of the three tests was computed for each dataset.
A graph wasthen plotted of the average processing time of the algorithm against the number of data pointsin the dataset using
an online Point Plotter Tool [29].

4.3 Satistical Analysisof Conducted Experiments

1) Pass-Through Filter

A total of 12 testswere conducted for PCL and another 12 for Hadoop. In order to find the scal ability factor the rel ation between
the average execution time of the tests three and the number of data points in the point cloud dataset was recorded. The
following sub-sections provide the average execution times corresponding to each point cloud dataset along with their graphical
representations. Moreover, a graph was plotted on Microsoft Excel 2007 of the gaining average processing times for each test
relative to the time of the test conducted on the smallest dataset for both PCL and Hadoop against the number of data pointsin
the dataset. This graph has been provided in thelast sub-section and isintended to depict the comparison of scalability of PCL
and Hadoop. Theformulafor finding the gain in executiontimeisasfollows:

a) Point Cloud Library Results (Single Machine)

Pass-Through Filter (PCL) Data
Test # FileName Data Points Aver age Execution Time (milliseconds)

1-3 Pcmhousel 123,748 103.06
(0.12 million)

4-6 Pcmhouse4 480,852 365.76
(0.49 million)

7-9 Oakland 1,514,625 1006.56
(2.51 million)

10-12 Building 4,572,428 4057.36
(4.57 million)

Table 3. The table provides the average execution times of the Pass-Through filtration algorithm on each of the point cloud
datasets on PCL
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Gain = [ (Xcurrent - Xprevious) / Xprevious] + 1 D
Where Xcurrent = Current Execution Time

X previous = Previous Execution Time
If (X Previous = X Current) then Gain= 1

pAA

Figure 2. Thefigureillustratesthe rel ationship between the average execution timein milliseconds (y-axis) and the number of

b) Hadoop MapReduce Results (Multi-Node Cluster)

data pointsdivided by 10° (x-axis) for the Pass-Through Filter on PCL

Pass-Through Filter (Hadoop) Data

Test # FileName Data Points Aver age Execution Time (seconds)
1-3 Pcmhousel 123,748 14
(0.12 million)
4-6 Pcmhouse4 480,852 15.3333
(0.49 million)
7-9 Oakland 1,514,625 18
(1.51 million)
10-12 Building 4,572,428 22
(4.57 million)

Table 4. The table provides the average execution times of the Pass-Through filtration algorithm on each of the point cloud

datasets on Hadoop
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Figure 3. Thefigureillustrates the rel ationship between the average execution time in seconds (y-axis) and the number of
data points divided by 10° (x-axis) for the Pass-Through Filter on Hadoop

¢) Scalability Comparison of PCL & Hadoop Normalized Execution Times
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Figure4. Thefigureillustrates the rel ationship between the gain in execution times (y-axis) relative to the execution time
taken on the smallest dataset and the number of data points divided by 10° (x-axis) for the Pass-Through Filter on Hadoop
and PCL
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Pass-Through Filter (Scalability) Data
Test # FileName Data Points Gain (PCL) Gain (Hadoop)
1-3 Pcmhousel 123,748 1 1
(0.22 million)
4-6 Pcmhouse4 480,852 3.549000582 1.095235714
(0.49 million)
7-9 Oakland 1,514,625 9.766737823 1.285714286
(2.51 million)
10-12 Building 4,572,428 39.36891131 1.571428571
(4.57 million)

Table 5. Thetable providesthe gain in average execution times relative to the execution time taken on the smallest dataset of
the Pass-Through filtration algorithm on each of the point cloud datasets on Hadoop and PCL.

2) Conditional Outlier Removal Filter

A total of 12 testswere conducted for PCL and another 12 for Hadoop. In order to find the scal ability factor the rel ation between
the average execution time of the tests three and the number of data points in the point cloud dataset was recorded. The
following sub-sections provide the average execution times corresponding to each point cloud dataset along with their graphical
representations. Moreover, a graph was plotted on Microsoft Excel 2007 of the gain in average processing times for each test
relative to the time of the test conducted on the smallest dataset for both PCL and Hadoop against the number of data pointsin
the dataset. This graph has been provided in the last sub-section and isintended to depict the comparison of scalability of PCL
and Hadoop. Theformulafor finding the gain in executiontimeisasfollows:

a) Point Cloud Library Results (Single Machine)

Gain = [(Xcurrent - Xprevious) / Xprevious] + 1 D
where Xcurrent = Current Execution Time
X previous = Previous Execution Time
If (X previous = X current) then Gain= 1

Conditional Outlier Removal Filter (PCL) Data
Test # FileName Data Points Aver age Execution Time (milliseconds)
1-3 Pcmhousel 123,748 102.20
(0.122 million)
4-6 Pcmhouse4 480,852 363.45
(0.49 million)
7-9 Oakland 1,514,625 492.84
(1.51 million)
10-12 Building 4,572,428 2215.76
(4.57 million)

Table 6. Thetable providesthe average execution times of the Conditional Outlier Removal filtration algorithm on each of the
point cloud datasets on PCL
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Figure5. Thefigureillustratesthe rel ationship between the average execution timein milliseconds (y-axis) and the number of
datapointsdivided by 10°(x-axis) for the Conditional Outlier Removal Filter on PCL

b) Hadoop MapReduce Results (Multi-Node Cluster)

Conditional Outlier Removal Filter (Hadoop) Data
Test # FileName Data Points Aver age Execution Time (seconds)
1-3 Pcmhousel 123,748 14
(0.22 million)
4-6 Pcmhouse4 480,852 15
(0.49 million)
7-9 Oakland 1,514,625 16.3333
(1.51 million)
10-12 Building 4,572,428 25.3333
(4.57 million)

Table 7. Thetable providesthe average execution times of the Conditional Outlier Removal filtration algorithm on each of the
point cloud datasets on Hadoop
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Figure 6. Thefigureillustrates the rel ationship between the average execution time in seconds (y-axis) and the number of
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data points divided by 10° (x-axis) for the Conditional Outlier Removal Filter on Hadoop

¢) Scalability Comparison of PCL & Hadoop Normalized Execution Times

Conditional Outlier Removal Filter (Scalability) Data
Test # FileName Data Points Gain (PCL) Gain (Hadoop)
1-3 Pcmhousel 123,748 1 1
(0.12 million)
4-6 Pcmhoused 480,852 3.556262231 1.071428571
(0.49 million)
7-9 Oakland 1,514,625 4.822309198 1.166664286
(1.51 million)
10-12 Building 4,572,428 21.68062622 1.809521429
(4.57 million)

Table 8. Thetable provides the gain in average execution times relative to the execution time taken on the smallest dataset of
the Conditional Outlier Removal filtration algorithm on each of the point cloud datasets on Hadoop and PCL
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Figure 7. Thefigureillustrates the rel ationship between the gain in execution times (y-axis) relative to the execution time
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taken on the smallest dataset and the number of data pointsdivided by 108 (x-axis) for the Conditional Outlier Removal Filter

3) Voxel Grid Filter
A total of 12 testswere conducted for PCL and another 12 for Hadoop. In order to find the scal ability factor the relation between
the average execution time of the tests three and the number of data points in the point cloud dataset was recorded. The
following sub-sections provide the average execution times corresponding to each point cloud dataset al ong with their graphical
representations. Moreover, agraph was plotted on Microsoft Excel 2007 of the gain in average processing times for each test
relative to the time of the test conducted on the smallest dataset for both PCL and Hadoop against the number of data pointsin
the dataset. This graph has been provided in the last sub-section and isintended to depict the comparison of scalability of PCL
and Hadoop. The formulafor finding the gain in executiontimeisasfollows:

on Hadoop and PCL

a) Point Cloud Library Results (Single Machine)

Voxe Grid Filter (PCL) Data
Test # FileName Data Points Aver age Execution Time (milliseconds)
1-3 Pcmhousel 123,748 49.47
(0.12 million)
4-6 Pcmhouse4 480,852 164.45
(0.49 million)
7-9 Oakland 1,514,625 513.58
(1.51 million)
10-12 Building 4,572,428 1491.08
(4.57 million)

Table 9. Thetable provides the average execution times of the Voxel Grid filtration algorithm on each of the point cloud

datasets on PCL
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Gain = [(Xcurrent — Xprevious) / Xprevious]
where Xcurrent = Current Execution Time
X previous = Previous Execution Time
If (X previous= X current) then Gain= 1
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Figure 8. Thefigureillustratesthe rel ationship between the average execution timein milliseconds (y-axis) and the number of
datapointsdivided by 10°(x-axis) for the Voxel Grid Filter on PCL

b) Hadoop MapReduce Results (Multi-Node Cluster)

Voxel Grid Filter (Hadoop) Data
Test # FileName Data Points Aver age Execution Time (seconds)
1-3 Pcmhousel 123,748 14
(0.12 million)
4-6 Pcmhouse4 480,852 15.3333
(0.49 million)
7-9 Oakland 1,514,625 18
(1.51 million)
10-12 Building 4,572,428 28.3333
(4.57 million)

Table 10. Thetable provides the average execution times of the Voxel Grid filtration algorithm on each of the point cloud

datasets on Hadoop
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Figure 9. Thefigureillustrates the rel ationship between the average execution time in seconds (y-axis) and the number of
datapointsdivided by 10°(x-axis) for the Voxel Grid Filter on Hadoop

¢) Scalability Comparison of PCL & Hadoop Normalized Execution Times

Voxel Grid Filter (Scalability) Data
Test # FileName Data Points Gain (PCL) Gain (Hadoop)
1-3 Pcmhousel 123,748 1 1
(0.22 million)
4-6 Pcmhouse4 480,852 3.324236911 1.095235714
(0.49 million)
7-9 Oakland 1,514,625 1.285714286 10.38164544
(2.51 million)
10-12 Building 4,572,428 30.14109561 2.023807143
(4.57 million)

Table 11. The table provides the gain in average execution times rel ative to the execution time taken on the smallest dataset
of the Voxel Grid filtration algorithm on each of the point cloud datasets on Hadoop and PCL
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Figure 10. Thefigureillustrates the rel ationship between the gain in execution times (y-axis) rel ative to the execution time
taken on the smallest dataset and the number of data points divided by 108 (x-axis) for the Voxel Grid Filter on Hadoop and
RCL

5. Conclusion

We have presented aparallel solution to thefiltration algorithmsimplemented in PCL . As suggested by our experimental results,
the proposed algorithms scale very well as the size of the dataset increases. This phenomenon is not prominent in the results
conducted on the PCL. In our experiments, we have measured scalability asthe rise of the processing time against the increase
in size of the dataset (gradient of the graph) of a single test relative to the previous test. In case of PCL, the processing time
increases by afactor of 3 for every test conducted. Hadoop on the other hand has an increase in the processing time by afactor
of lessthan 1.5 for every test. Such agreat difference clearly showsthe superiority interms of scalability inthe Apache Hadoop
platform. The main reason behind thisimproved scal ability factor is due to the effectiveness and efficiency of the MapReduce
framework in parallelizing the programming logic into multiple processes and hence distributing the workload across the
machines connected in the multi-node cluster supervised by the Apache Hadoop platform. The proposed approach is flexible
enough to come across machine failures and network connection problems by re-distributing the load according to the status
of the machinesin the clusters. Hadoop will generate more fruitful results when tested on alarge farm of machinesand with the
input dataset in the range of 10 to 50 Gigabytesin size. Dueto limited resources, this phenomenon was beyond the scope of our
project. Although in the single-process performance comparison, PCL wins from Hadoop by a great margin for the following
reasons:

o C/C++ supports fast and efficient data structure creation and manipulation as compared to Python.
e TheBoost library in PCL further enhancesthe performance of data storage and memory utilization for PCL.

» The Hadoop Streamer processisan additional significant overhead to the overall execution time asthe code writtenin Python
has to be converted to a MapReduce compatible language that is Java.

o Hadoop replication of files across various machinesin the cluster adds a4 times multiplier (based on custom cluster setting)
toits already large storage footprint. Thisin turn creates I/O bottlenecks which

o Account for amajor portion of the execution time[30].
o The PCD fileformat for PCL takesin the datain compressed binary format while our approach on the M apReduce framework
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takesthefilein ASCII format. Thisleadsto moretime being spent infile reading and writing.
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