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ABSTRACT: In this paper, we have proposed some parallel filtration techniques of point clouds. These techniques are
logically based on existing ones present in the open-source Point Cloud Library (PCL). We have used the MapReduce
framework provided by Big Data platforms such as Apache Hadoop to address the problem of scalability as well as the
completion of processing intensive tasks with relatively cheaper hardware.
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1. Introduction

In big data, scale up processing on Point Cloud Files (PCF) has many drawbacks. Files can go up to Gigabytes (GB) in size that
can take hours to scan on a single machine and sufficient memory is required to run algorithms on these files on a single machine.
A single machine with respectable specifications but is dedicated only for a single job. So, the system is reserved during the
processing and cannot be used for other purposes and the job at hand still takes a lot of time.

Despite this era being termed as the era of technological advancements, the difference between the rate of growth of computational
power of today’s computers and rate of growth of file size is alarming. After almost every 3 years, the CPU’s computing power
increases by a factor of two [1]. The file size compared to this is growing at an amazingly fast pace. It was nearly 20 years ago,
that the only common file format was the text file ranging in sizes of KBs (1000 bytes) and now file sizes have gone up to giga (109

bytes), tera (1012 bytes) and peta (1015 bytes).

File size is increasing rapidly but the algorithms are not optimizing well to the file sizes in terms of processing and memory usage
efficiency. The approach of using faster CPUs but with traditional algorithms is has shown improvement at a very small scale.
Moreover, newer format always require more complicated decoding algorithms and lead to even longer processing times. Thus
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the only feasible way that remains in order to attain large speed up with the current computational power is to split the job at
hand onto several machines and execute it in parallel.

2. Background

The Point Cloud Library (PCL) and Hadoop platform has been used for our research. The Point Cloud Library (PCL) is a large
scale cross-platform open source C++ programming library which implements a large number of point cloud universal algorithms
and efficient data structures. The PCL has a variety of 3D point cloud data processing algorithm set. The Point Cloud data is
taken by the PCL library in the PCD (Point Cloud Data) format. PCD file formats might have different revision numbers, prior to
the release of Point Cloud Library (PCL) version 1.0.

On the other hand Hadoop is a framework (consisting of software libraries) which simplifies the processing of data sets
distributed across clusters of servers. Two of the main components of Hadoop are HDFS and MapReduce. HDFS is the file
system that is used by Hadoop to store all the data on where as MapReduce is the framework that orchestrates all of Hadoop’s
activities. It handles the assignment of work to different nodes in the cluster.

3. Methodology
We have studied three PCL algorithms which are Pass-Through Filter, Conditional Outlier Removal Filter and Voxel Grid Filter.
We have shortlisted these algorithms for the implementation on the MapReduce paradigm. The sequential versions of the
algorithms implemented by PCL have been discussed in detail in each sub-chapter after which our proposed approach for the
respective algorithm has been put forward to run on the MapReduce paradigm. Section A provides insight into the working of
the Pass-Through Filter on PCL along with the parallel solution designed by us to execute on the MapReduce framework.
Similarly Section B and C discuss the Conditional Outlier Removal and Voxel Grid Filters respectively.

3.1 Pass-Through Filter
The Pass-Through Filter algorithm implemented in PCL is designed for the filtering of points inside or outside a given range
(limits) specified by the user along a certain dimension (field) that is x-axis, y-axis or z-axis as specified by the user. This filter
iterates over the entire point cloud once and filters out all non-infinite points lying outside the range specified by the user.

The implementation of the Pass-Through Filter on the MapReduce paradigm has been divided into three modules namely the
mapper, combiner and reducer procedures. The first phase namely the Pass-Through Mapper will iterate over designated chunk
of the point cloud and check whether each point is inside or outside the range across the field both specified by the user. During
this process, the mapper will emit tab-delimited key-value pairs where the key portion will be a combination of the x-coordinate,
y-coordinate and z-coordinate values of the point sorted by the Partitioner function [24].The corresponding value portion will
consist of a status flag which will hold a positive value “true” if the point lies within the specified range or a negative value
“false” if the point lies outside the specified range. The key has been chosen as a combination of the three coordinate values as
key should be unique for every record [19] and it is understood that each point will occur only once on that same position in the
point cloud dataset.  Once the whole dataset has been iterated, the combiner phase of the algorithm will come into action.

Algorithm 1(b)(i) Pseudo code for Pass-Through Mapper

procedure Pass-Through Mapper
1.Set Filter Field Name
2.Set Filter Field Limits
3.Set status = false
4.for each point I in point cloud chunk:
5. if I lies within range:
6.status = true
7.else
8.Status = false
9.emit(key, value) ·
end procedure
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The second phase namely the Pass-Through Combiner will iterate over all the key-value pairs emitted by the Pass-Through
Mapper and check the status flag of all the points during the process. If the status flag for a particular point is positive “true”,
the combiner will emit that particular key-value pair in the same format to the reducer phase otherwise the point will simply be
ignored. The combiner’s output format should match its input format for it to properly work in the MapReduce paradigm [19].
The combiner’s main purpose is to perform local filtration of points so as to minimize the records going to the reducer phase
which will be running on a single machine thereby increasing performance by avoiding bottlenecks in transmission over the
network.

Algorithm 1(b)(ii) Pseudo code for Pass-Through Combiner

procedure Pass-Through Combiner

1. for each (key, value):

2. if status is true:

3. emit(key2, value2)

end procedure

The third and final phase namely the Pass-Through Reducer phase will iterate over all the key-value pairs emitted by the
combiner and will convert the input into the same format which was read by the mapper from the point cloud file by ignoring the
status flag and writing down all the coordinate values i.e. x-coordinate, y-coordinate and z-coordinate values separated by
spaces which will be consequently written to the resulting point cloud file.

Algorithm 1(b)(iii) Pseudo code for Pass-Through Reducer

procedure Pass-Through Reducer

1. for each (key, value):

2. emit(x-value, y-value, z-value)·

end procedure

3.2 Conditional Outlier Removal Filter
The Conditional Outlier Removal Filter implemented in PCL works in exactly the same way as the Pass-Through Filter except the
fact that multiple conditions can be stated by the user for the purpose of filtration. In simple words, the algorithm can crop points
outside ranges specified across multiple dimensions at the same time or apply multiple Pass-Through Filters. Furthermore this
algorithm unlike the Pass-Through Filter is not only intended for filtration based upon spatial values but can also filter points
based upon their color ‘RGB’ and curvature values [2].

The implementation of the Conditional Outlier Removal Filter on the MapReduce paradigm has been divided into three modules
namely the mapper, combiner and reducer procedures. The first phase namely the Conditional Outlier Removal Mapper will
iterate over designated chunk of the point cloud and check whether each point is inside or outside the range across the field
both specified by the user. The operation mentioned above will be repeated for all the conditions specified by the user. During
this process, the mapper will emit tab-delimited key-value pairs where the key portion will be a combination of the x-coordinate,
y-coordinate and z-coordinate values of the point sorted by the Partitioner function [24]. The corresponding value portion will
consist of a status flag which will hold a positive value “true” if the point lies within the specified range or a negative value
“false” if the point lies outside the specified range. The key has been chosen as a combination of the three coordinate values as
key should be unique for every record [19] and it is understood that each point will occur only once on that same position in the
point cloud dataset.  The PCL version of this algorithm also supports filtration based upon the color ‘RGB’ and curvature values
[2] but our MapReduce version of the algorithm will only support filtration for spatial values as it will deal with point clouds in
the XYZ format (.xyz) which will be discussed in Chapter 5. Once the whole dataset has been iterated, the combiner phase of the
algorithm will come into action.

The second phase namely the Conditional Outlier Removal Combiner will iterate over all the key-value pairs emitted by the
Conditional Outlier Removal Mapper and check the status flag of all the points during the process. If the status flag for a
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Algorithm 2(b)(i) Pseudo code for Conditional Outlier Removal Mapper

procedure Conditional Outlier Removal Mapper

1. for total number of conditions (n):

2. Set Filter Field Name

3. Set Filter Field Limits

4. Set status = false
5. for each point I in point cloud chunk:

6. for total number of conditions (n):

7. if I lies within range of n:

8. status is true
9. else
10. status is false
11. emit(key, value) ·

end procedure

particular point is positive “true”, the combiner will emit that particular key-value pair in the same format to the reducer phase
otherwise the point will simply be ignored. The combiner’s output format should match its input format for it to properly work in
the MapReduce paradigm [19].

Algorithm 2(b)(ii) Pseudo code for Conditional Outlier Removal Combiner

procedure Conditional Outlier Removal Combiner

1. for each (key, value):

2. if status is true:
3. emit(key2, value2)

end procedure

The third and final phase namely the Conditional Outlier Removal Reducer phase will iterate over all the key-value pairs emitted
by the combiner and will convert the input into the same format which was read by the mapper from the point cloud file by
ignoring the status flag and writing down all the coordinate values i.e. x-coordinate, y-coordinate and z-coordinate values
separated by spaces which will be consequently written to the resulting point cloud file.

Algorithm 1(b)(iii) Pseudo code for Conditional Outlier Removal Reducer

procedure Conditional Outlier Removal Reducer

1. for each (key, value):

2. emit(x-value, y-value, z-value)

end procedure

3.3 Voxel Grid Filter
The Voxel Grid Filter implemented in PCL is also known by the name of the Down Sampling Filter. There are two categories for this
filter in PCL namely the Voxel Grid and Approximate Voxel Grid filters but our main concern will only be with the simple Voxel Grid
Filter. This filter takes in the input point cloud in the form of voxels where voxels are small 3D cubes whose dimensions are
specified by the user. The filter will then compute the spatial centroid for all the individual voxels representing the point cloud
and will replace all the points residing in that particular voxel by that one centroid henceforth down sampling or filtering the
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entire pointcloud [2], [19].

The implementation of the Voxel Grid Filter on the MapReduce paradigm has been divided into three modules namely the mapper,
combiner and reducer procedures. The first phase namely the Voxel Grid Mapper will iterate over designated chunk of the point
cloud and will classify each and every point to a voxel by assigning them a voxel identification number relative to the point (0,
0, 0). In this case the origin will be acting as the global point of reference and the numbering of each voxel ID will be based purely
on this point. For negative values, the voxel IDs will also be negative.  During this process, the mapper will emit tab-delimited
key-value pairs where the key portion will be a combination of the x-value, y-value and z-value IDs of the voxel to which the
corresponding point belongs which will be in turn sorted by the Partitioner function [24]. The corresponding value portion will
consist of the coordinates of the point itself i.e. its x-coordinate, y-coordinate and z-coordinate values and the occurrence of
that point which will be fixed for all points at 1. Once the whole dataset has been iterated, the combiner phase of the algorithm
will come into action.

Algorithm 3(b)(i) Pseudo code for Voxel Grid Mapper

procedure Voxel Grid Mapper

1. Set Voxel Dimensions

2. for each point I in point cloud chunk:

3. compute x dimension ID relative to origin

4. compute y dimension ID relative to origin

5. compute z dimension ID relative to origin

6. emit(key, value)

end procedure

The second phase namely the Voxel Grid Combiner will iterate over all the key-value pairs emitted by the Voxel Grid Mapper and
will sum up the x-coordinate, y-coordinate and z-coordinate values separately for all the points belonging to the same voxel
during the process. In addition to this, the total number of points in each voxel will also be computed by adding up the
occurrence values of all the points in that particular voxel which will always be equal to 1. The combiner will then consequently
emit one key-value pair for each voxel. The combiner’s output format should match its input format for it to properly work in the
MapReduce paradigm [19].

Algorithm 3(b)(ii) Pseudo code for Voxel Grid Combiner
procedure Voxel Grid Combiner
1. for each (key, value):
2. if voxel ID is unchanged:
3. Add x-value to net of x coordinates
4. Add y-value to net of y coordinates
5. Add z-value to net of z coordinates
6. Increment counter for points in voxel
7. else:
8. Reset net of x coordinates to zero
9. Reset net of y coordinates to zero
10.Reset net of z coordinates to zero
11. Reset counter to one
12. emit(key2, value2)
end procedure
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The third and final phase namely the Voxel Grid Reducer phase will iterate over all the key-value pairs emitted by the combiner
and will compute the centroid for each voxel by dividing the total x-coordinate, y-coordinate and z-coordinate values with the
total number of points in the particular voxel both of which have been calculated and emitted in key-value pair by the combiner.
It will then convert the input into the same format which was read by the mapper from the point cloud file by ignoring the key
portion containing the voxel ID and writing down all the coordinate values i.e. x-coordinate, y-coordinate and z-coordinate
values separated by spaces which will be consequently written to the resulting point cloud file.

Algorithm 3(b)(iii) Pseudo code for Voxel Grid Reducer

procedure Voxel Grid Reducer

1. for each (key, value):

2. if voxel ID is unchanged:

3. compute x coordinate of centroid

4. compute y coordinate of centroid

5. compute z coordinate of centroid

6. else:
7. emit(x-centroid, y-centroid, z-centroid)

end procedure

4. Experimental Result

This section covers the whole evaluation portion of our Research. Section A describes all the testing constraints such as the file
format, size and filtration conditions that must be kept constant within the testing systems to ensure verifiable and valid results.
In addition to this it also gives a description of the nature of the input datasets chosen for experimentation. Section B describes
the environmental setup of the working environment. The first sub-section describes the PCL environment on a single machine.
The last sub-section defines the setup of Apache Hadoop on a cluster of four machines. Section C gives the statistical results
of the experiments conducted. It illustrates each algorithm’s result separately in sub-sections and provides the results of both
systems one after the other in sub-chapters for the purpose of comparative analysis.

4.1 Testing Constraints and Input Dataset
During the conduction of the experiments, it was ensured that the following attributes must remain the same for both the testing
environments that is PCL and the Hadoop multi-node cluster:

• The size and nature of the dataset.

• The filtration thresholds for each algorithm.

• The file format must remain the same for each individual system.

The datasets were taken from online repositories of universities as well as organizations doing projects on point clouds [25],
[26]. Point Clouds can be represented in various file formats. The two formats compatible with our systems are the XYZ format
and the PCD (Point Cloud Data) format. The PCD format is intended for the PCL as it accepts point clouds in this format only.
PCD file formats might have different revision numbers, prior to the release of Point Cloud Library (PCL) version 1.0. These are
numbered with PCD_Vx (e.g., PCD_V5, PCD_V6, PCD_V7, etc) and represent version numbers 0.x for the PCD file. The official
entry point for the PCD file format in PCL however should be version 0.7 (PCD_V7). The PCD file header contains headers such
as Version, Fields, Size, Type, Count, Width, Height, Viewpoint, Points and Data respectively. The data is stored in two formats
that are either in ASCII or in binary format. The XYZ format is a more simple representation of a point cloud. It is a simple text file
comprising of three columns for each of the x, y and z dimensions. Each row in this file signifies a record or point entry in that
point cloud and the x, y and z coordinates are provided in floating-point numbers. Figure 5.1 illustrates the layout of a typical
XYZ file.

Many problems were faced during the collection of the datasets. First of all the XYZ format point clouds were not readily
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available in large numbers from a single repository. Secondly large point clouds had been uploaded in chunks with each chunk
containing additional headers. Each point cloud would have up to 40 chunks on average. In order to view the point cloud in 3D,
we had to feed it into an online viewer by the name of LiDAR viewer [28]. This viewer only accepted files with the following
conditions:

• No special characters or comments.

• Columns should be space-delimited.

Figure 1. This figure provides a snapshot of a sample XYZ file containing point cloud data

Point Cloud Dataset Information Table
                   Sr. #                       File Name                          Data Points                                File Size                 File Format
                    1                            Pcmhouse1                            123,748                                       4.0 MB                        XYZ

                    2                                                                           (0.12 million)                           0.886 MB                         PCD

                    3                            Pcmhouse4                             480,852                                     15.4 MB                        XYZ

                    4          (0.49 million)                          3.4 MB                         PCD

                    5                             Oakland                   1,514,625                                 30.9 MB                          XYZ

                    6                                                                          (1.51 million)          9.4 MB                          PCD

                    7                             Building                    4,572,428                                211.6 MB                         XYZ

                    8                                                                           (4.57 million)         27.5 MB                 PCD

Table 1. The table gives a list of all the datasets along with their details that have been selected for testing

Due to all the above mentioned reasons, we were able to locate four XYZ datasets fit for our experimentation. The datasets were
chosen in such a way that each dataset chosen would consist of thrice as many points as the previously chosen dataset so as
to get visually clear graphical readings later on in the experiment. This in turn would make comparisons based on scalability a lot
simpler.  In order to validate the testing constraints for out experiment, we had to feed the same datasets to the PCL as well but
the problem was that PCL only accepts PCD format. To resolve this issue we used PCL’s basic XYZ to PCD conversion tool
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available on GitHub [27] to convert our XYZ datasets to PCD format. The huge difference between the sizes of the XYZ and PCD
formats for the same dataset is due to the PCD format taking point data in compressed binary. XYZ format on the other hand
takes the point data in ASCII format. The shortlisted datasets along with their details have been provided below:

Once all the datasets had been shortlisted, the next task was to set the filtration thresholds for the individual datasets as well as
the algorithms. A total of three tests were conducted for each algorithm on each dataset making it a total of 12 tests for each
algorithm and a net total of 36 tests for each of the systems that is PCL and Hadoop. A grand total of 72 tests were conducted
for the overall project. The criteria for the conducted tests have been provided in the figure below:

Table 2. The table gives a list of all the tests conducted along with the testing conditions. Testing conditions for both PCL
and Apache Hadoop are the same.
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4.2 Hardware & Software Environment

1) Point Cloud Library (PCL)
The PCL environment was setup on a single machine that is the Dell Inspiron N5050 laptop as mentioned in Table 1.1. The
system had the Linux Ubuntu 14.04 (64-bit) operating system running on it. After the download and installation of the PCL
binaries and source libraries from [2], individual projects were implemented for the algorithms as described in Chapter 4. CMake
v3.2.1 was installed in order to compile the PCL projects into executable. After compilation, the projects were run using the built-
in GNU C++compiler in Ubuntu. After documenting the results of the three tests for each algorithm, the average processing time
of the three tests was computed for each dataset. A graph was then plotted of the average processing time of the algorithm
against the number of data points in the dataset using an online Point Plotter Tool [29].

2) Hadoop Multi-Node Cluster
The Apache Hadoop multi-node cluster environment was setup using 4 Dell Desktop PCs as described in Table 1.1. The
computers were connected to each other via LAN (Local Area Network) through the TP-Link switch as described in Table 1.1.
One of the PCs was the designated the role of master while the rest of the three were acting as the slaves. The input datasets and
the necessary source code files (Python scripts) were uploaded to the HDFS via the master node. These scripts were in turn
converted to Mapper, Combiner and Reducer scripts by the Hadoop Streamer commands [24]. Once the tests were conducted,
the output point clouds were imported from the HDFS back to the local disk through the Hadoop commands. After documenting
the results of the three tests for each algorithm, the average processing time of the three tests was computed for each dataset.
A graph was then plotted of the average processing time of the algorithm against the number of data points in the dataset using
an online Point Plotter Tool [29].

4.3 Statistical Analysis of Conducted Experiments

1) Pass-Through Filter
A total of 12 tests were conducted for PCL and another 12 for Hadoop. In order to find the scalability factor the relation between
the average execution time of the tests three and the number of data points in the point cloud dataset was recorded. The
following sub-sections provide the average execution times corresponding to each point cloud dataset along with their graphical
representations. Moreover, a graph was plotted on Microsoft Excel 2007 of the gaining average processing times for each test
relative to the time of the test conducted on the smallest dataset for both PCL and Hadoop against the number of data points in
the dataset. This graph has been provided in the last sub-section and is intended to depict the comparison of scalability of PCL
and Hadoop. The formula for finding the gain in execution time is as follows:

a) Point Cloud Library Results (Single Machine)

Pass-Through Filter (PCL) Data
              Test #                        File Name                                Data Points              Average Execution Time (milliseconds)
                 1-3                  Pcmhouse1                                  123,748                                              103.06

                                                                                                  (0.12 million)

                 4-6 Pcmhouse4         480,852                                              365.76

                                                                                                  (0.49 million)

                 7-9                    Oakland                                     1,514,625                                           1006.56

                                                                                                  (1.51 million)

                10-12                    Building                                      4,572,428                                          4057.36

                                                                                                  (4.57 million)

Table 3. The table provides the average execution times of the Pass-Through filtration algorithm on each of the point cloud
datasets on PCL
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Gain = [ (Xcurrent - Xprevious) / Xprevious] + 1
Where Xcurrent = Current Execution Time

X previous = Previous Execution Time
If (X Previous = X Current) then Gain = 1

(1)

b) Hadoop MapReduce Results (Multi-Node Cluster)

                  Test #                            File Name                              Data Points               Average Execution Time (seconds)
                    1-3                        Pcmhouse1                                123,748                                               14

                                                                                                         (0.12 million)

                    4-6              Pcmhouse4                        480,852                                          15.3333

                                                                                                         (0.49 million)

                    7-9                          Oakland                          1,514,625                                             18

                                                                                                         (1.51 million)

                   10-12                          Building          4,572,428                                            22

                                                                                                         (4.57 million)

Table 4. The table provides the average execution times of the Pass-Through filtration algorithm on each of the point cloud
datasets on Hadoop

Figure 2. The figure illustrates the relationship between the average execution time in milliseconds (y-axis) and the number of
data points divided by 106 (x-axis) for the Pass-Through Filter on PCL

Pass-Through Filter (Hadoop) Data
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Figure 3. The figure illustrates the relationship between the average execution time in seconds (y-axis) and the number of
data points divided by 106 (x-axis) for the Pass-Through Filter on Hadoop

c) Scalability Comparison of PCL & Hadoop Normalized Execution Times

Figure 4. The figure illustrates the relationship between the gain in execution times (y-axis) relative to the execution time
taken on the smallest dataset and the number of data points divided by 106 (x-axis) for the Pass-Through Filter on Hadoop

and PCL
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Pass-Through Filter (Scalability) Data
                      Test #                   File Name                               Data Points                    Gain (PCL)               Gain (Hadoop)
                      1-3                     Pcmhouse1                                123,748                                1                                   1

                                                                                                  (0.12 million)

                       4-6                       Pcmhouse4                                 480,852                         3.549000582              1.095235714

                                                                                                  (0.49 million)

                       7-9                         Oakland                                   1,514,625                        9.766737823              1.285714286

                                                                                                  (1.51 million)

                      10-12                      Building                                  4,572,428                        39.36891131               1.571428571

                                                                                                  (4.57 million)

Table 5. The table provides the gain in average execution times relative to the execution time taken on the smallest dataset of
the Pass-Through filtration algorithm on each of the point cloud datasets on Hadoop and PCL.

2) Conditional Outlier Removal Filter
 A total of 12 tests were conducted for PCL and another 12 for Hadoop. In order to find the scalability factor the relation between
the average execution time of the tests three and the number of data points in the point cloud dataset was recorded. The
following sub-sections provide the average execution times corresponding to each point cloud dataset along with their graphical
representations. Moreover, a graph was plotted on Microsoft Excel 2007 of the gain in average processing times for each test
relative to the time of the test conducted on the smallest dataset for both PCL and Hadoop against the number of data points in
the dataset. This graph has been provided in the last sub-section and is intended to depict the comparison of scalability of PCL
and Hadoop. The formula for finding the gain in execution time is as follows:

a) Point Cloud Library Results (Single Machine)

Gain = [(Xcurrent - Xprevious) / Xprevious] + 1
where Xcurrent = Current Execution Time

X previous = Previous Execution Time
If (X previous = X current) then Gain = 1

Conditional Outlier Removal Filter (PCL) Data

                     Test #                       File Name                            Data Points               Average Execution Time (milliseconds)
                      1-3                        Pcmhouse1                              123,748                                            102.20

                                                                                                     (0.12 million)

                      4-6            Pcmhouse4                      480,852                                           363.45

                                                                                                     (0.49 million)

                      7-9                         Oakland                                   1,514,625                                         492.84

                                                                                                     (1.51 million)

                    10-12                         Building                                    4,572,428                                        2215.76

                                                                                                     (4.57 million)

Table 6. The table provides the average execution times of the Conditional Outlier Removal filtration algorithm on each of the
point cloud datasets on PCL

(1)
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Figure 5. The figure illustrates the relationship between the average execution time in milliseconds (y-axis) and the number of
data points divided by 106 (x-axis) for the Conditional Outlier Removal Filter on PCL

b) Hadoop MapReduce Results (Multi-Node Cluster)

Conditional Outlier Removal Filter (Hadoop) Data

                  Test #                               File Name                             Data Points              Average Execution Time (seconds)

                    1-3                           Pcmhouse1                              123,748                                          14

                                                                                                          (0.12 million)

                    4-6                 Pcmhouse4                          480,852                                         15

                                                                                                          (0.49 million)

                    7-9                             Oakland                       1,514,625                                   16.3333

                                                                                                           (1.51 million)

                  10-12                             Building     4,572,428                                    25.3333

                                                                                                           (4.57 million)

Table 7. The table provides the average execution times of the Conditional Outlier Removal filtration algorithm on each of the
point cloud datasets on Hadoop
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Figure 6. The figure illustrates the relationship between the average execution time in seconds (y-axis) and the number of
data points divided by 106 (x-axis) for the Conditional Outlier Removal Filter on Hadoop

c) Scalability Comparison of PCL & Hadoop Normalized Execution Times

Conditional Outlier Removal Filter (Scalability) Data

                Test #                      File Name                           Data Points                      Gain (PCL)                Gain (Hadoop)

                 1-3                        Pcmhouse1                           123,748                                   1                                   1

                                                                                           (0.12 million)

                 4-6                          Pcmhouse4              480,852                            3.556262231     1.071428571

                                                                                           (0.49 million)

                 7-9    Oakland             1,514,625                          4.822309198                   1.166664286

                                                                                            (1.51 million)

               10-12                         Building                4,572,428                           21.68062622                   1.809521429

                                                                                            (4.57 million)

Table 8. The table provides the gain in average execution times relative to the execution time taken on the smallest dataset of
the Conditional Outlier Removal filtration algorithm on each of the point cloud datasets on Hadoop and PCL
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3) Voxel Grid Filter
 A total of 12 tests were conducted for PCL and another 12 for Hadoop. In order to find the scalability factor the relation between
the average execution time of the tests three and the number of data points in the point cloud dataset was recorded. The
following sub-sections provide the average execution times corresponding to each point cloud dataset along with their graphical
representations. Moreover, a graph was plotted on Microsoft Excel 2007 of the gain in average processing times for each test
relative to the time of the test conducted on the smallest dataset for both PCL and Hadoop against the number of data points in
the dataset. This graph has been provided in the last sub-section and is intended to depict the comparison of scalability of PCL
and Hadoop. The formula for finding the gain in execution time is as follows:

a) Point Cloud Library Results (Single Machine)

Figure 7. The figure illustrates the relationship between the gain in execution times (y-axis) relative to the execution time
taken on the smallest dataset and the number of data points divided by 106 (x-axis) for the Conditional Outlier Removal Filter

on Hadoop and PCL

Voxel Grid Filter (PCL) Data
                  Test #                        File Name                     Data Points                  Average Execution Time (milliseconds)
                    1-3                    Pcmhouse1                        123,748                                                     49.47

                                                                                           (0.12 million)

                    4-6             Pcmhouse4               480,852                                                    164.45

                                                                                           (0.49 million)

                    7-9                      Oakland                     1,514,625                                                    513.58

                                                                                           (1.51 million)

                  10-12                      Building                     4,572,428                                                   1491.08

                                                                                           (4.57 million)

Table 9. The table provides the average execution times of the Voxel Grid filtration algorithm on each of the point cloud
datasets on PCL
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                                                           Gain = [(Xcurrent – Xprevious) / Xprevious] + 1                                (1)
                                                where Xcurrent =  Current Execution Time
                                                   X previous = Previous Execution Time
                                                 If (X previous = X current) then Gain = 1

Figure 8. The figure illustrates the relationship between the average execution time in milliseconds (y-axis) and the number of
data points divided by 106 (x-axis) for the Voxel Grid Filter on PCL

b) Hadoop MapReduce Results (Multi-Node Cluster)

Voxel Grid Filter (Hadoop) Data

                          Test #                          File Name                  Data Points                        Average Execution Time (seconds)

                           1-3                               Pcmhouse1                  123,748                                                       14
                                                                                                   (0.12 million)

                           4-6                          Pcmhouse4         480,852                                                    15.3333
                                                                                                   (0.49 million)

                           7-9                                Oakland          1,514,625                                                    18
                                                                                                   (1.51 million)

                         10-12                                Building                      4,572,428                                                28.3333
                                                                                                    (4.57 million)

Table 10. The table provides the average execution times of the Voxel Grid filtration algorithm on each of the point cloud
datasets on Hadoop
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Figure 9. The figure illustrates the relationship between the average execution time in seconds (y-axis) and the number of
data points divided by 106 (x-axis) for the Voxel Grid Filter on Hadoop

c) Scalability Comparison of PCL & Hadoop Normalized Execution Times

Voxel Grid Filter (Scalability) Data

                   Test #                            File Name                     Data Points                    Gain (PCL)                Gain (Hadoop)

                     1-3   Pcmhouse1                       123,748                                1                                   1

                                                                                               (0.12 million)

                     4-6   Pcmhouse4                         480,852                        3.324236911                  1.095235714

                                                                                               (0.49 million)

                     7-9     Oakland                           1,514,625                       1.285714286                 10.38164544

                                                                                               (1.51 million)

                   10-12     Building                          4,572,428                       30.14109561                  2.023807143
                                                                                               (4.57 million)

Table 11. The table provides the gain in average execution times relative to the execution time taken on the smallest dataset
of the Voxel Grid filtration algorithm on each of the point cloud datasets on Hadoop and PCL
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Figure 10. The figure illustrates the relationship between the gain in execution times (y-axis) relative to the execution time
taken on the smallest dataset and the number of data points divided by 106 (x-axis) for the Voxel Grid Filter on Hadoop and

PCL

5. Conclusion

We have presented a parallel solution to the filtration algorithms implemented in PCL. As suggested by our experimental results,
the proposed algorithms scale very well as the size of the dataset increases. This phenomenon is not prominent in the results
conducted on the PCL. In our experiments, we have measured scalability as the rise of the processing time against the increase
in size of the dataset (gradient of the graph) of a single test relative to the previous test. In case of PCL, the processing time
increases by a factor of 3 for every test conducted. Hadoop on the other hand has an increase in the processing time by a factor
of less than 1.5 for every test. Such a great difference clearly shows the superiority in terms of scalability in the Apache Hadoop
platform. The main reason behind this improved scalability factor is due to the effectiveness and efficiency of the MapReduce
framework in parallelizing the programming logic into multiple processes and hence distributing the workload across the
machines connected in the multi-node cluster supervised by the Apache Hadoop platform. The proposed approach is flexible
enough to come across machine failures and network connection problems by re-distributing the load according to the status
of the machines in the clusters. Hadoop will generate more fruitful results when tested on a large farm of machines and with the
input dataset in the range of 10 to 50 Gigabytes in size. Due to limited resources, this phenomenon was beyond the scope of our
project. Although in the single-process performance comparison, PCL wins from Hadoop by a great margin for the following
reasons:

• C/C++ supports fast and efficient data structure creation and manipulation as compared to Python.

• The Boost library in PCL further enhances the performance of data storage and memory utilization for PCL.

• The Hadoop Streamer process is an additional significant overhead to the overall execution time as the code written in Python
has to be converted to a MapReduce compatible language that is Java.

• Hadoop replication of files across various machines in the cluster adds a 4 times multiplier (based on custom cluster setting)
to its already large storage footprint. This in turn creates I/O bottlenecks which

• Account for a major portion of the execution time [30].

• The PCD file format for PCL takes in the data in compressed binary format while our approach on the MapReduce framework
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takes the file in ASCII format. This leads to more time being spent in file reading and writing.
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