
           Journal of Information & System Management    Volume   1    Number   2    June  2011        79

Phyo Thu Thu Khine, Htwe Pa Pa Win, Khin Nwe Ni Tun
University of Computer Studies, Yangon
Myanmar
phyothuthukhine,hppwucsy,knntun@gmail.com

ABSTRACT: End users resort to varied ways of text searching in text; however most of them rely on key word approach and
hence in the Information Retrieval research, it is often provided priority. Data is being stored in relational databases where
keyword based search has difficulties. Thus there is a need to introduce a keyword searching compatibility in relational
database search. We in this paper introduce the way of indexing the records, followed by key word matching and finally the
distilling result key words. Our system is found to score than the existing systems in the retrieval efficiency in the experimentation.

Keywords:  Text Mining, Keyword Indexing, Data Processing, Word Processing

Received: 15 February 2011, Revised 1 March 2011, Accepted 4 March 2011

© 2011 DLINE. All rights reserved

1. Introduction

Users in the information retrieval systems found to use different keys and parameters, but key word search is prominent in terms
of numbers and popularity. As key words express concepts and  the volume of  informaton pieces is very high, the key word
search is gaining momentum. Database query systems search structured data with structured query language. The users need
to know the data schema and query language. But Information retrieval systems have popularized for searching unstructured
data by keywords as a query and results are sorted relevant documents. That is simply and user-friendly. If database users could
query databases in the same way, database query would be simple without knowing database schema and query languages.
However, keyword search techniques on the Web cannot directly be used on data stored in databases. In databases, the
information is viewed as data tables and their relationships, and query results may be a single tuple or joining tuples. Accordingly,
the challenge is how to apply keyword-based search to find sorted relevant results in databases.

In this paper, we propose keyword-based searching and browsing system where the user doesn’t need the knowledge of
database schema or SQL (Structured Query Language).Instead of that, they submit a list of keywords. The system then searches
for the relevant records, and ranks them on their relevancy to the query. The system enables data browsing together with
keyword searching.

Adopting this keyword search on relational databases gives immediate advantages. First, more meaningful results can be
returned by enabling searching for keyword matches across relation boundaries. This is particularly meaningful in relational
databases as normalization is commonly used that decompose input data into several individual tuples and stored separately.

Second, it lowers the access barrier for average users.

Improving Keyword Searches Through Multistage Processing



 80               Journal of Information & System Management     Volume   1    Number  2    June  2011

This paper is organized as follows: Section 2 summarizes current related work. Section 3 shows the proposed model. Section 4
presents the system architecture for our proposed system and explains in details. Section 5 shows experimental results and
section 6 is the conclusion.

2. Related Work

Keyword-based search over relational database gets much attention recently. The early three systems DISCOVER [7, 8],
BANKS [1], and DBXplorer [6], share a similar approach. At query time, given a set of keywords, first find tuples in each relation
that contain at least one of the keywords, usually using database system auxiliary full text indexes. Instead of these, the index
table is created for all relations as a preprocessing stage in the proposed system. In this way, index construction time is longer
as well, but query time is faster.

ITREKS (Indexing Tuple Relationship for Efficient Keyword Search) [12] supports efficient keyword-based search over relational
database by indexing tuple relationship: A basic database tuple relationship, FDJT, is established in advance and then a
FDJTTuple-Index table is created, which records relationships between each tuple and FDJT. At query time, for each of
keywords, system first finds tuples in every relation that contain it, using full text indexes offered by database management
system. Then FDJT-Tuple-Index table is used to find the joinable tuples contain all keywords in the query. Saint (Structure-
Aware INdexing for finding and ranking Tuple units) [17] proposes a structure-aware index based method to integrate multiple
related tuple units to effectively answer keyword queries. The structural relationships between different tuple units are discovered
and stored them into structure-aware indices, and progressively found the top-k answers using such indices. These two
systems create the index and also relationships of  the tuples in advance. Our proposed creates only the tuples index but not find
relationship. The tuple relationship is found in the browsing step.

The above three systems [1, 6, 7, 8] use graph-based approaches to find tuples among those from the previous step that can be
joined together, such that the joined tuple contains all keywords in the query. All three systems use foreign-key relationships as
edges in the graph, and point out that their approach could be extended to more general join conditions. A main shortage of the
three systems is that they spend a plenty of time to find the candidate tuples that can be joined together. But in our system, only
the candidate answers tree is constructed for the ranked and filtered records. The consumption of querying time can be reduced
in the proposed system.

The IR community proposed theories and practice in ranking methods for documents. The previous work has presented and
used the metrics that contribute to more effective ranking method for the search results, e.g., normalized node prestige and edge
weight [1], PageRank node ranking [1], shortest distance between keywords [2], join tree size [6], etc. Of these, only [7, 8]
considered combining some of the above factors with the IR-style ranking functions. In Mragyati [3], the ranking function can
be based on user-specified criteria but the default ranking is based on the number of foreign-key constraints and [4] used this
function but they do not handle queries with more than 2 solution paths. In contrast, we compute scores to the resulted tuples
which contain all keywords. The results are filtered and ranked according to their scores to get the most relevant results.

3. Proposed System Model

3.1 Database Model
Our system models the database as an undirected graph.The schema graph Gs (V, E), is an undirected graph that captures the
primary key to foreign key relationships in the database schema. Gs has a node in V for each relation Ri of the database and an
edge Ri Rj in E for each primary key in Ri to foreign key in Rj relationships. Figure 5 shows the schema graph of DBLP (Digital
Bibliography & Library Project) used in this paper. The sample database instances from DBLP are shown in Figure 1. In the next
session, the detail processing for searching from DBLP relational database tables are described.

3.2 System Architecture
The proposed system architecture for keyword search over relational databases is shown in Figure 2. Given a set of query
keywords, the proposed system returns all the results (the set of joinable tuples between relations connected by primary-key,
foreign-key relationships). It involves five phases: (a) indexing relational database, (b) keyword-based searching (c) scoring the
result, (d) filtering the relevant record and (e) browsing the resulted records in tree view.



           Journal of Information & System Management    Volume   1    Number   2    June  2011        81

Proceeding       Proceeding               EditorId         Publisher     Serie      Year      ISBN
Id                        Title                                                 Id                 sId

1                        Recent advances            1                1                    1           1998      3-540-
                          in Development           64405-
                          and Use of B   9
                          Method

2                        Machine                         42                1                   1           2001       3-540-
                          Learning and Its                                                                                42490-
                          Application                                                                                                3

3                        Mathematical                 44                1                   1           1987       3-540-
                          Models for the                                                                                   18419-
                          Semantics of   8
                          Parallelism

(a) Proceeding

InProceedingId                    InProceedingTitle                    Page              ProceedingId

             1                      Graphical Design of Reactive           197                            1
                                                     Systems

             2                            Optimization Networks                 156                         262

             3                               Layering Distributed
                                              Algorithms with B method        260                          1

             4                               From Object-Oriented to
                                              Aspect-Oriented Databases     134                         971

(b) InProceeding

SeriesId           SeriesTitle

     1              Lecture Notes in Computer

     2             IFIP Transactions

     3             IFIP Conference Proceedings

     4                      LNI

(c) Series

PublisherId      PublisherName

         1                   Springer

         2                   Elsevier

         3                North Holland

        4                       ACM

        5                 IEEE Computer Society

(d) Publisher

PersonId                  Name

        1                   Didier Bert

        2                Emil Sekerinski

        3           Jean-Marc Meynadier

(e) Person

PersonId       InProceedingId

         1                 34854

         1                 34888

         2                 3910

(f) RelationPersonInproceeding

Figure 1. Sample Database Instances



 82               Journal of Information & System Management     Volume   1    Number  2    June  2011

Figure 2.  Architecture of proposed system

3.2.1 Indexing Relational Database
Indexing is used to speedup the retrieval of records. This approach can be useful when the database has large number of Text
(Varchar) fields. Each value in such a field can be considered as a small text document that can be used for keyword-based
search. To gain the speed benefits of indexing at retrieval time, the indexing algorithm is proposed and an index table is built by
using this algorithm in advance. The records in the relational tables is found to be indexed and mapped them with postings
(relation, tuple id) based on inverted indexing technique. A fragment of Index Table is generated by using indexing algorithm
shown in Figure 3.

3.2.2 Keyword-based Searching
After indexing, the system is ready for searching process. Given a user’s query consisting of a set of keywords, the input query
is cleaned and matched with IndexTable.

Query Cleaning: This phase takes a user entered query as an input, and produces a “clean” query output. This is achieved by
filtering the stopwords from the query. These words may appear many times in the tuple, but they are meaningless. If they are
not filtered, the answers with them maybe returned with great priority and this will not satisfy the users.

Keyword Matching: Once the cleaned query is produced, this system can match the keywords. This process finds a set of
tuples TS {ti} (hits) which matches all the keywords in the user query. To do this, keyword matching algorithm is presented. The
IndexTable is used to retrieve which tuples contain keywords and to construct tuple subsets.

For example, when user enters query (“ACM Springer”), the following tuple sets are retrieved for each keyword. The resulted
tuples that match the user’s query are found from only Publisher and Person table. Figure 4 shows a sample result of a query
containing the keywords ACM and Springer executed on the bibliographic database.



           Journal of Information & System Management    Volume   1    Number   2    June  2011        83

Indexing Relational Database Algorithm
Input: A database D, database relations R1, R2…Rn
Output: An IndexTable IT
Begin
1.     Scan database D and read the names of relations R1,R2...Rn.
2.     For each relation Ri (i =1 to n) in D do
3.               List Si Read structure of relation Ri

4.               Prefix Ri (substring (3))
5.               For j = 0 to (size of Si ) -1
6.                        fnj field name of Si[]
7.                      dtj data type of Si[]
8.                        If (dtj == “text”)
9.                        For each row rk (k =1 to (length of Ri )) do
10.                          keyword values of fnj in rk

11.                           mapId Prefix + “R” + rowId of rk
12.                           keyArray[k-1] keyword
13.                           mapArray[k-1] mapId
14.                           tempkey[k-1] keyword
15.                        End If
16.                      If (j >1 && dtj == (“text”))
17.                             keyword keyword + tempkey[k]
18.                     End If
19.                     End for
20.         End for
21. For m = 0 to (length of keyArray) -1
22.          Insert into IndexTable values (keyArray[m],
               mapArray[m])
23. End for
End

                        Keyword                                                                       MapId

Graphical Design of Reactive Systems. 182-197                             inpR1

Well Defined B. 29-45                                                                         inpR2

Didier Bert                                                                                            perR1

B$198: Recent Advances in the Development and Use
of the B Method, Second International B Conference,                 proR1
Montpellier, France, April 22-24, 1998, Proceedings
1998 3-540-64405-9 http://dblp.unitrier.
de/db/conf/b/b1998.html

Springer                                                                                              pubR1

Lecture Notes in Computer Science http://dblp.unitrier.
de/db/journals/lncs.html                                                                  serR1

Figure 3. IndexTable for keywords



 84               Journal of Information & System Management     Volume   1    Number  2    June  2011

Keyword Matching Algorithm
Input: Cleaned keyword CK[ ], IndexTable IT, database D
Output: All database rows matching all keywords
Begin
1.     Separate by space to CK.
2.     mq: keyword matching query
3.     Generate mq.
4.      mq “SELECT keyword, mapId FROM    IndexTable
         WHERE MATCH (keyword) AGAINST (‘ “
5.      If (length of CK == 1) then
6.                     mq mq + CK[0] + “ ‘)”
7.     Else
8.            For i = 0 to (length of CK) -1
9.                 tokenCK[i]
10.               If (i == length of CK -1)
11.                    mq mq + token + “ ‘)”
12.              Else
13.                     mq mq + token + “ ‘) “ + “ OR MATCH
                           (keyword) AGAINST (‘ “
14.              End if
15.         End for
16.      Create related database connection.
17.      Create conditional query using mq.
18.     Assign mq to database connection.
19.      Execute mq on IT.
20.      Retrieve matched keywords.
21.   End

            Keyword                                                            MapId
Springer                                                                        pubR1
Springer and British Computer Society                    pubR26
ACM/Springer                                                             pubR65
Thomas Springer                                                          perR13597
George Springer                                                            perR21066
Springer W. Cox                                                            perR30916
Johannes Springer                                                        perR39588
A. Springer                                                                    perR42805
Clayton Springer                                                           perR50902
Stephen Springer                                                          perR82706
Paul L. Springer                                                            perR98750
Gordon K. Springer                                                      perR106836
D. L. Springer                                                               perR131731
Joseph F. Springer                                                       perR132914

Figure 4. Search result of query “ACM and springer”



           Journal of Information & System Management    Volume   1    Number   2    June  2011        85

3.2.3 Record Scoring
When the query results are produced, calculation of the score for each result is needed. This process is to determine which
records are more relevant to the user query than the others. As more than one result may match any keyword query, each result
is assigned with a score and ranked the list of results according to their scores. The effectiveness of the scoring and ranking
functions is an important aspect of keyword search. The record scoring algorithm is proposed to calculate the score of the
results.

Record Scoring Algorithm
Input :( Matched keywords, mapId) ArrayListMK,
            cleaned keywords query CK
Output: Scored Records SR
Begin
1.      tkw: total keyword count
2.      ckw:cleaned keywords
3.      qkw : length of CK
4.       For i = 0 to (length of MK) - 1
5.               searchRecords SR[i] MK[i]
6.               For j = 0 to (length of CK)-1
7.                      ckw CK[j]
8.                      If (SR[j] has ckw)
9.                              tkw ++
10.                   End if
11.          End for
12.          If (tkw!= 0)
13.                 Score tkw/length of CK
14.                 SR MK[i], Score
15.         End If
16. End for
End

After computing the score, the relevant records are found in Table 1.

3.2.4 Relevance Record Filtering
In many application domains, end-users are more interested in the relevant answers in the potentially huge answer space.
Different emerging applications warrant efficient support for record filtering. In order to get the most relevant records, the record
filtering algorithm is proposed. In our system, the threshold value is considered to filter the resulted records. The results which
scores are less than the threshold value are filtered. The top results in the ranked list are more relevant to the query than those
at the bottom.

3.2.5 Record Browsing
This system also provides a facility to browse the records stored in a relational database. When the system browses the related
information with the resulted tuple set in order to find the relationship of input keywords, the candidate answer sets need to be
constructed through the schema graph. A schema graph consists of all the tables inside a database and the relationship among
these tables, and the distance among tables. The default distance between two related tables is considered to be one. In the
schema graph, the arrows represent a relation between database tables and each node represents the table name.

Figure  6 shows the schema graph for each relation (table) of sample database schema shown in Figure 5. The relationships for
each node are reordered with depth-first order. The root node for each schema tree has to pass at every time for browsing the
table relations.



 86               Journal of Information & System Management     Volume   1    Number  2    June  2011

Relevant Records                  Total keywordin each record              Cleankeyword from user              Score
                                                                        (tkw)                                             query (qkw)
        Springer                                                  1                                                          2                                       0.5
Springer and British
Computer Society                                         1                                                          2                                        0.5
ACM Springer                                               2                                                         2                                          1
Thomas Springer                                           1                                                         2                                        0.5
George Springer                                            1                                                         2                                         0.5
Springer W.Cox                                             1                                                         2                                         0.5
Johannes Springer                                        1                                                         2                                         0.5
A.Springer                                                     1                                                         2                                         0.5
Clayton Springer                                          1                                                         2                                          0.5
Stephen Springer                                          1                                                         2                                         0.5
Paul L. Springer                                            1                                                         2                                         0.5
Gordon K. Springer                                     1                                                          2                                         0.5
D. L. Springer                                               1                                                         2                                         0.5
Joseph F. Springer                                       1                                                         2                                         0.5

Table 1. Scored Records for the query (“ACM Springer”)

Relevant Record Filtering Algorithm
Input : Scored Records SR, Score S
Output: Filtered Records FR, Filtered Sort Records FSR,
               distance d
Begin
1.     MaxRank : maximum score of S
2.     MinRank : minimum score of S
3.     RangeVal : average value of S
4.     RangeVal (MaxRank + MinRank)/2
5.     For i = 0 to (length of SR)-1

6.           If (Si >=RangeVal)
7.                FR SR[i]
8.          End if
9.     End for
10.   For j = 0 to (length of FR) -1
11.           distance Score of FR[j] / length of FR[j]
12.    End for
13.    FSR sort (FR, distance)
End

For example, for the query “ACM Springer”, firstly, the candidate answers are constructed for each record in the filtered and
ranked record sets by using the forward and backward traversal of schema graph. The Publisher and Person tables are only
included in the filtered records (as shown in section 4.2). The primary key PublisherId from Publisher exists as foreign key in
Proceeding Table. The PersonId also situated as foreign key in RelationPersonInProceeding table. This backward traversal for
the query “ACM Springer” is :



           Journal of Information & System Management    Volume   1    Number   2    June  2011        87

Figure 5. Schema Graph for Database

                   Candidate Answer Sets
Publisher Proceeding InProceeding
RelationPersonInProceeding Person
Person RelationPersonInProceeding InProceeding

Proceeding Series
Person RelationPersonInProceeding InProceeding
Proceeding Publisher

SELECT Proceeding.Title, Proceeding.Url
FROM Proceeding, Publisher
WHERE Proceeding.PublisherId = Publisher.PublisherId
AND Publisher.PublisherId= 1; and etc.

There is no forward search in Publisher and Person table hence no foreign keys are included. The outputs of this step, the
answers are browsed with tree view.

4. Experimental Results

To evaluate the performance of the system, 92.1 MB of DBLP dataset is used. The system is implemented with Pentium Dual-
Core 2.0GHz processor and 1GB of RAM. The system decomposed the datasets into 6 relations according to the schema shown
in Figure 5. Table 3 summarizes the 6 DBLP relations

Relation Name                                            Tuples
Publisher                                                         81
Inproceeding                                             208,086
Series                                                              24
Proceeding                                                   2,749
Person                                                         162,907
RelationPersonInProceeding                   491,777
Total                                                           1,357,401

Table 2. DBLP Dataset Characteristics

It shows that if the record size of each relation is increased, the indexing time for this relation is increased. The total indexing time
for all relation takes only 1766 milliseconds (1.8 seconds). It shows that the proposed indexing mechanism can reduce the



 88               Journal of Information & System Management     Volume   1    Number  2    June  2011

              (a)                              (b)                               (c)

       (d)         (e)

Figure 6. Schema Graph for (a) Publisher Table (b) Series Table
(c) Person Table (d) Proceeding Table (e) InProceeding Table

indexing time significantly.

Figure 8 shows the comparison of query processing time between the proposed method and ITREKS (Indexing Tuple Relationship
for Efficient Keyword Search) by using 10 randomly generated different queries with query length 3 to 10. It shows that the
proposed mechanism can reduce the query processing time compared with ITREKS.



           Journal of Information & System Management    Volume   1    Number   2    June  2011        89

Figure 7. Indexing Time for DBLP database

Figure 9 shows that the comparison of query processing time based on the number of keywords between the proposed method,
ITREKS and Saint (Structure-Aware INdexing for finding and ranking Tuple units). These two systems used the indexing
technique but they developed with the difference trend compared to our approach. We use the number of keywords (query
length) from 2 to 5 words. The keywords were selected randomly from the underlying database. We generated 50 queries for
each query length.

Figure 8. Comparison of Indexing Mechanism

Figure  9 shows that the comparison of query processing time based on the number of keywords between the proposed method,
ITREKS and Saint (Structure-Aware INdexing for finding and ranking Tuple units). These two systems used the indexing
technique but they developed with the difference trend compared to our approach. We use the number of keywords (query
length) from 2 to 5 words. The keywords were selected randomly from the underlying database. We generated 50 queries for
each query length.

It shows that the proposed algorithm achieves much higher search efficiency than ITREKS and Saint. Although the query
length (number of keyword) increases, query execution time doesn’t increase sharply between the individual queries. It shows
that our algorithm can answer such queries efficiently. We use the tuple-aware indexing method to identify the answers through
our proposed Index Table, and thus the proposed method can significantly improve the search efficiency.

Figure 10 shows the round trip time for twenty queries listed in Table 3 on the DBLP dataset [15]. The round-trip time of the
proposed system consists of three components: record searching time, record scoring time, and relevant record filtering time.



 90               Journal of Information & System Management     Volume   1    Number  2    June  2011

5. Conclusion

The proposed system allows users with no knowledge of database system or schema to query and browse relational database

Figure 9. Scalability (DBLP)

Different queries have different round trip time. This figure only shows the round trip time of the proposed system.

Query No                               Keyword Query
       Q1               Mobile Radio System Markus Anja Klein
       Q2               Dynamic Cell Planning for Data Transmission Gfeller Weiss
       Q3               Cryptographic Primitives for Information Authentication
       Q4               Real Time Protocols Lann
       Q5               An Algebraic Specification of Process Algebra Sjouke Mauw
       Q6               Broadband Communications Services Zhili Sun
       Q7               Database Horlait principle
       Q8              Nelson networks notes Pires Weber
       Q9               Daniel Thalmann algorithm science
       Q10             Laurent Dairaine Elsevier notes algorithm
       Q11             Multimedia Traffic Control Cleevely North-Holland
       Q12            query optimization Cornelius Frankenfeld Elsevier Lecture
       Q13           Computer Science paul Yoon Springer
       Q14            Multimedia Mail Service Prototype
       Q15            Robust Reconstruction Daniel Thalmann Elsevier
       Q16            Linear Algebraic Greene North science
       Q17            Lecture Notes Anna Stefani Elsevier Traffic Control
       Q18            Multimedia Document Architecture
       Q19           introduction network Hewson Springer lecture
       Q20           Nelson Multimedia Thalmann Services

Table 3. Query Used For The Test [15]



           Journal of Information & System Management    Volume   1    Number   2    June  2011        91

Figure 10. Round-trip time for different queries

with ease. Indexing and keyword matching algorithms are proposed to find queries efficiently. The proposed system can reduce
a waste of time during searching records. The answer to such a query consists of the ranked tuples which potentially include
tuples from multiple relations. To calculate the score of the resulted tuples, the record scoring algorithm is presented. Moreover,
we proposed an algorithm to filter many results so that the system can provide the most relevant query results to the user.

References

[1] Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, A. (2002). Keyword Searching and Browsing in Databases using BANKS,
ICDE, p. 431-440.

[2] Kacholia, V., Pandit, Chakrabarti, A., Sudarhan, S., Desai, R.,Karambelkar, H. (2005). Biderectional Expansion for Keyword
Search on Graph Database, VLDB, VLDB Endowment, p. 505-516.

[3] Sarda, N.L., Jain, A. (2002). Mragyati: A System for Keyword-based Searching in Databases, TR CoRR cs.DB.

[4] Saelee, J., Boonjing, V. (2009). A Metadata Search Approach with Branch and Bound Algorithm to Keyword Search in
Relational Databases, ICCIT, p. 571-576.

[5] Balmin, A., Hristidis, V., Papakonstantinou, Y. (2004).ObjectRank Authority-Based Keyword Search in Databases, VLDB,
VLDB Endowment,  p. 564 -575.

[6] Agrawal, S., Chaudhuri, S., Das, G. (2002). DBXplorer: A System for Keyword-Based Search over Relational Databases, ICDE,
p.5-16.

[7] Hristidis, V., Papakonstantinou, Y. (2002). Discover: Keyword Search in Relational Databases, VLDB, VLDB Endowment, p.
670- 681.

[8] Hristidis, V., Gravano, L., Papakonstantinou, Y. (2003). Efficient IRStyle Keyword Search Over Relational Databases, VLDB,
VLDB Endowment, p. 850-861.

[9] Liu, F., Yu, C.T., Meng, W., Chowdhury,  A. (2006). Effective keyword search in relational databases. In:  SIGMOD, p. 563–574.

[10] Manning, C.D., Raghavan, P., Schütze, H. (2009). An Introduction to Information Retrieval, Cambridge University Press, p.
569.

[11] Su, Q., Widom, J. (2005). Indexing Relational Database Content Offline for Efficient Keyword-Based Search, IDEAS, 25-27
July, p. 297-306.

[12] Zhan, J., Wang, S. (2007). ITREKS: Keyword Search over Relational Database by Indexing Tuple Relationship, 12th
International Conference on Database Systems for Advance Applications (DASFAA).



 92               Journal of Information & System Management     Volume   1    Number  2    June  2011

[13] Xu, Y., Ishikawa, Y., Guan, J. (2009). Effective top-k keyword search in relational databases considering query semantics, In:
Proc. APWeb-WAIM International Workshops, V. 5731/2009 of LNCS, p.172–184.

[14] Qin, L.,Yu, J, X., Chang, L. (2009). Keyword search in databases: The power of rdbms, In: Proc. 2009 ACM SIGMOD Int. Conf,
On Management of Data, p. 681–694.

[15] Yu, J, X., Qin,L., Chang, L. (2010). Keyword Search in Databases: A Survey, IEEE Computer Society Technical Committee on
Data Engineering.

[16] El-Qawasmeh, E., Abu-eid, I., Alashqur-Based, A. (2005). A Framework for Processing Keyword Queries in Relational
Databases, Journal of Theoretical and Applied Information Technology, p. 149-163.

[17] Li, G., Feng, J.,Wang, J. (2009). Structure-Aware Indexing for Keyword Search in Databases, CIKM, p. 1453-1456.

[18] Moffat, A., Zobel, J. (1996). Self-Indexing Inverted Files for Fast Text Retrieval, Journal of Association for Computing
Machinery (ACM) Transactions on Information Systems, 14 (4) 349-379.

[19] Hristidis, V., Papakonstantinou, V., Balmin, A. (2003). Keyword proximity search on XML graph. In ICDE.

[20] Khine, P, T, T., Tun, K, N,N. (2011). A System for Keyword-based Queries over Relational Database, UCSY,  In: Proceeding
of the Ninth International Conference on Computer Application.


