A Modeling and Verification Approach based on Graph Transfor mation

WafaChama, Raida Elmansouri, Allaoua Chaoui Q"
MISC Laboratory

Department of Computer Science

Faculty of Engineering

University Mentouri Constantine

Algeria

wafachama@gmail.com, rai dael mansouri @yahoo.fr, a_chaoui2001@yahoo.com

ABSTRACT: UML is a standard modeling language with an open notation and several concepts to be widely used in
software modeling. However, UML suffers from a lack of formal semantics. So their models still need to be formally checked
against incoherencies or inconsistencies. To reach this goal we propose in this paper, a framework and a tool based on graph
transformation allowing an automatic translation of some UML diagrams to equivalent Maude formal specifications. To
realize this automatic mapping we use UML Class diagram formalism to define three meta-models. The first one for Class
Diagram, the second for State Machine Diagram and the third for the Communication Diagram. Then, we propose a graph
grammar to generate Maude specifications of the UML diagrams based on theses meta-models. The meta-modeling tool
AToM3is used to produce our visual modeling tool according to the proposed UML meta-models. An example is presented to
illustrate our approach.

K eywords: UML, Rewriting System, Maude Specification, Meta-model, Graph Grammar, AToM? Tool, Automatic Code Generation
Received: 28 October 2013, Revised 2 December 2013, Accepted 9 December 2013

© 2014 DLINE. All Rights Reserved

1. Introduction

UML (Unified Modeling Language) isagraphical modeling language used to specify, visualize, and construct applicationsand
software systems. UML contains a big number of diagrams; some are used to model the structure of a system while others are

used to model the behavior of this one.

However, the UML models developed can contain incoherencies or inconsistencies which are difficult to detect manually
because UML suffersfrom alack of formal semantics. Formal methods represent an interesting solution to face this problem.

In this paper we develop aformal framework allowing the automatic trandlation of three diagrams which are Class Diagram
(models the static structure), State Machine Diagram (specifies the dynamic behavior of each object) and Communication
Diagram (represents a collection of interacting objects) into its equivalent Maude code using AToM3as agraph transformation
tool.

Journal of Information & Systems Management Volume 4 Number 1 March 2014 17

Therest of the paper is organized asfollows. In section 2, we give an overview of related work while section 3 presents briefly
rewriting system and Maude language. In section 4 we give a brief introduction of the AToM3tool. Section 5 details the
proposed translation by defining the three meta-models of UML diagrams used (Class Diagram, State Chart Diagram and
Communication Diagram) and giving the rules of the graph grammar proposed; while Section 6 describes a case study in order
to illustrate our tranglation approach. Finally, we give a conclusion and some perspectivesin section 7.

2. Related Work

In[10], the authors presented some rules for mapping UML diagramsto their equivalent Maude specifications. Thetranslation
is made manually. In [9], the author presented another approach for transforming UML diagrams to their equivalent Maude
specifications. Thetranglation isaso made manually. In this paper we propose an automatic approach and atool environment
that formally transforms UML diagrams into their equivalent Maude specifications using the meta-modeling tool AToM 3 and
graph grammars. Our approach isinspired from thework presented in [9] and graph grammars.

3. Rewritin Logicand Maude

Rewriting logic [7] has been introduced by José Meseguer allowing concurrent software specification and verification. It is
implemented by several languages such as Maude [8].

Maude is a specification and programming language. It is simple, expressive and has a high-performance implementation.
Maude defines three types of modules: Functional modules, System modules and Object-Oriented modul es.

Functional modules allow us to define data types and their properties by the definition of signatures and equations; but the
dynamic behavior of asystem isdefined by the use of rewrite laws which we introduce in System modules, these laws take the
form(2).

R [t [t]ifC)

Whichindicatesthat, according torule R, termt rewritestot’ if acertain condition Cisverified. The condition Cisoptional, so
rules can be unconditional. Finally, Object-Oriented modul es add more appropriate syntax to describe the object paradigm such
as objects, messages and configurations. Maude offers” full Maude” to support that; furthermore, it hasits own model-checker
that is used in checking system'’s properties.

4.ATOM®Tool

AToM?3 [2] is avisual tool used for multi-formalism modeling and Meta-Modeling. The two main tasks of AToM? are meta-
modeling and Model transformation.

Thefirst task refersto modeling formalisms concepts using Entity Relationship formalism or UML Class Diagram formalism. The
second one uses Graph Grammar. It is composed of production rules[3]; each having graphsin their left hand side (LHS) and
right hand side (RHS). For more detailsthereader isreferred to [5].

5. TheProposed Approach
The steps of our proposed approach are as follows:

5.1 Meta-Modeling of Used UM L Diagrams

In order to translate UML diagrams to equivalent Maude specifications, we propose three meta-models; the first one for the
Class Diagram, the second one for State Machine Diagram and the third one for the Communication Diagram. Theses meta-
models are represented by UML Class Diagram formalism and the constraints are expressed using Python code.

5.1.1UML ClassDiagram Meta-M odéd

A Class Diagram [1] isatype of static structure diagram. It represents the main building block in object-oriented modeling; it
contains classes, their attributes, and their relationships. association, aggregation, composition, generalization and several
types of dependencies. Our meta-model for UML Class Diagram (see Figure 1) iscomposed of the following classes:

18 Journal of Information & Systems Management Volume 4 Number 1 March 2014

a) ClassDiagram

This classhasa“name” and represents a Class Diagram.

b) Class simple

This class describes the classes and has three attributes, namely “class attribut”, “class name”, and “class _op”.

C) Association_simple
This class represents a simpl e rel ationship between two classes, and has three attributes: “ass name”, “caleft”, and “ caright”
to indicate the multiplicity of instances (the number of objects that participate in the association).

d) Association_attribut
An association can possessits own properties, which can beintroduced by thisclass. It inheritsfrom Association_simpleal its
attributes, multiplicities, associations plus an attribute “ass_attribut”.

€) Association_multiple
Higher order associations can be drawn with more than two ends, This classinheritsfrom Association_simple all its properties
with its own attribute “ carbas’.

f) Composition

This class describes a composition, has two attributes “com _name”’ and “card ”.

w0

[ATaE 3 o (0 Gty

CD_ClassDiagramV3

-From Class_simple:
OtoN

Composition

-To composition: 0 to N

Multiplicities:

m 1

SRS

= Faoc | == Can | == L8 | T
___________:ssqmatmn 2 ClassDiagramStart -
Multiplicities: ClassDiagram

Attributes:

Attributes:
-card::String
-com_name:: String
Multiplicities:

-From Association_2: 0tgN
-To Association_3: 0 to

Y

-To Class_simple: 0to N
-From ClassDiagram: 0tg N

-name:: String
Multiplicities:
-To ClassDiagramStart: 0 to

N

AN

Class_simple

agregation

Attributes:

Multiplicities:
-To Class_simple: 0 to %
-From composition : Ot

Attributes:
-class_attribut::List
-class_name::String
-class_op::List
-caright::String
Multiplicities:

-To Association_0: 0 to N
-To Association _2: 0 to N
-From Association_3: 0 to N
-To Association_4: 0 to N
-From ClassDiagramStart: O t
-From Association_5: 0 to N

-From Association_1: 0 to N|'

Association
Multiplicities:
-To heritage: 0to N
-From Class_simple: 0toN

Multiplicities:

Association O

-To association_simple :

OtoN

-From Class_simple: 0to N

Attributes:

| -ass_attribut::List

.association_simple
Attributes:

-ass_name::String
-calett::String
-caright::String
Multiplicities:

-From Association_4: 0to,
-To Association_5: 0 to

Sssociation

Multiplicities:

association_multiple

association_attribut

heritage

Multiplicities:
-From Association_4: 0to
-To Association 5: 0 to N

Multiplicities:

-To Class_simple: 0to N
-From association_simple :

Attributes:
-carbas:: String

-ToClass_simple: 0toN
-From heritage: 0to N,

Figure 1. Class Diagram meta-model

Journal of Information & Systems Management Volume 4 Number 1 March 2014

19

0) Agregation
This class represents an aggregation. It inherits from Composition all its attributes, multiplicities and associations.

h) Heritage
This class represents a generalization relationship (is aso known as the inheritance or “isa” relationship).
We have al so associationsincluded in the meta-model to express hierarchy (see Figure 1); they are drawn asinvisible links.

& AToMG 13 wing: diageless NETA

diagclass META
i i i New association | New association_ | New association_ New New) New
fg Ed_ltJHelp New SC_simple smple ~ attribut multiple composition I heritage i“e‘NC""’SSD'agT agrgation
i

Fi gureé.A tool fo} Class Di aQram gmémed usi ng.AToM 8
And from this meta-model we generate atool to manipulate the Class Diagram as shown in the tool bar of Figure 2.
5.1.2UML Satechart Diagram Meta-M odel
A State Chart diagram [1] is used to model the behavior of a system; contains states and other types of transitions (events and

actions); states may also contain sub diagrams called Composite states which can be sequential or concurrent. State Chart
transitions are denoted by standard finite state machine arcs that define a change from one state to a successor one.

Our meta-model for UML State Chart diagrams (see Figure 3) iscomposed [4] of thefollowing classes:

a) SateChart

This class has an attribute “Name” and represents a State Machine in the diagram.

b) SC_Initail

This class marksthe initial state of a statechart diagram or theinitial state of a composite state.

¢) SC_Final

This class marksthe final state of astatechart diagram.

d SC_Sate

Thisclassdescribessimple states and it hasthree attributes, namely “Name” (textual string for identification, can be anonymous),
“EntryAction” and “ExitAction” (actions executed on entering and exiting the state respectively).

€) SC_CompositeSate

It represents the composite states and inherits from SC_State all its attributes, multiplicities and associations.

Associations are also included in the meta-model to allow the connections between the differences classes (see Figure 3).
And from this meta-model we generate atool to manipulate the StateChart diagram as shown in the tool bar of Figure 4.

5.1.3UML Communication Diagram M eta-M odel
A UML Communication diagram isatype of interaction diagrams which describes the dynamic behavior of asystem, it models
the interactions between objects by sending messages. Our meta-model contains two classes:

a CommunicationDiagram
Thisclasshasa“com_name”’ and represents Communication Diagram.

20 Journal of Information & Systems Management Volume 4 Number 1 March 2014

CIassDiag_ramvs

m
L dERREE
= A=
L1
SC_Initial CLtal 3
Multiplicities:
Multiplicities: -To SC_State: 0to N
-To SC_InitalConnection: 0 to N -From SC_State: Oto N /\ SC_Transition]
-From has_Initial: 0 to N e |
-From StateChartStart: 0to N m e Attri butes:_
Multiplicities: Sc-Sae 'eve“f;i”-“g
. -guard::Strin
aieChartSart -ToSC_State: Oto N Attributes: —gction::Strigg
|Multiplicities: -From SC_State: 0 to -Name::String Multiplicities:
-To SC_initial: 0to N F -EntryAction::String ToSC State: Oto N
-From StateChart : -EntryAction::String -From SC State: 0to N
OtoN Multiplicities: -

-To SC_Transition: 0 to N
-From SC_Transition: 0to N
-From SC_InitialConnection: Ofto N
-From SC_FinalConnection: 0 to N
-To SC_Finalconnection: 0 to N
-From has_Inside: 0 to N

|

SC_Composite State

SC_Fianl

Multiplicities: |
-From SC_FinalConnection: 0ta N
-From has _Final: 0to N

has_Inside
Constraints:

| > addInnerState

| Multiplicities:

Constraints:
> |nitalizeObject

Constraints:

StateChart > addinnerState >movel nnerPlaceDRAG -To SC_State: 0to N
- Multiplicities: >movel nnerPlacesM OVIE | -From SC_CompositeState: 0to
Attributes: -ToSC State: Oto N Multiplicities: f
-Name::String -From SC_CompositeState: Oto | |-To has Inside: 0toN | =
Multiplicities: - -To has_Inside: 0to N

-To StateChartStart: 0 to |

has_Initial -To has Fianl: 0to N

Constraints:

> addInnerintial
Multiplicities:

-To SC_Initial: 0to N

-From SC_CompositeState: 0to

Figure 3. StateChart diagram meta-model

UML_StateChart META

Edit' HeIpI New sc_|nitia| New SC_State | New SC_CompositeState| New SC_Final | New StateChart

Figure4. A tool for StateChart Diagram generated using AToM®

Journal of Information & Systems Management Volume 4 Number 1 March 2014

21

b) Collaboration
This class represents an object interacted, and has one attribute “name_coll”; and one association named “relationcoll” for

representing messages as shown in Figure 5.
And from this meta-model we generate atool to manipul ate the Communication diagram as shown in the tool bar of Figure 6.

5.2 Generation of Maude Specifications
We have proposed agraph grammar containing eighteen ruleswhich will be applied in ascending order (each rule hasapriority),
none of these rules will change the UML models because we are concerned by code generation (Maude Specifications).

EREEEEELL

T
1
=

SartComm

Multiplicities: Collaboration

-To collaboration: 0 to N . |Attributes:

-From communicationDiagram : 0to N #| -com_name::String
Multiplicities:
-From StartComm: Oto N
-From relationcoll: 0 to N Attributes:
-To relationcoll: 0 to N -message::List

E——Multiplicities:

-To collabotration: 0 to N
-From collaboration: 0 to N

CommunicationDiagram

Attributes:
-com_name::String
Multiplicities:

-To StartComm: 0to N

Figure 5. Communication diagram meta-model

[F& ATolME W03 using: CommbDiagram_META, 1

CommbDiagram_META
Editl Help | New CommunicationDiagram | New collaboration|

Figure 6. A tool for Communication Diagram generated using AToM3

22 Journal of Information & Systems Management Volume 4 Number 1 March 2014

[272 03 wing: Sgees META - Commiagram META » UML SesteChart_VETA

diagclass META
s’
~—

E_di’HeI
il

New

New Class_|New association_| New iation_| New ciation New New New Class New " P
Simp\-e _l simple —I attribut —I n?sfogtlglg J comgositionl heritage Diagram I@gregation Edit) Helf o mmunication Diaar

JE=n o

New
ollaboration
+l

il

ClassDiagram: PBphllo

Philoophe Fork
left >
L. right >
eat ()
' get ()
think () release ()
Communication Diagram: PBInlt

“John” : Philoophe left righ

right ‘Fork1” : Fork

“ Fork4” : Fork

“Anna’ : Philoophe

‘Fork2” : Forki

‘Fork3” : Fork

| eft

“Sara” : Philoophe

right

“ Peter” : Philoophe

' get_left
thinking “’-H\" Waltingr 19
Entry Entry
Xit Exit
£ }
8 !
Teleasng taken
Entry |Entry
¢ Exit AExit
-
releasafhrar
Statechart: Fork
(] g.?;f'
P
avanable Ty
Entry Entry
Exit Exit
.
Yrerse

Figure 7. Exampl e of dining philosopher’sproblem created in our framework

*Rules1, 2 Nfile, ExtrInf (Priorityresp 1, 2)
Theserules are applied to locate a class not previously processed (Visited = = 0), and create afile for each one.

Note that each UML Classwith its own StateChart is represented with an object-oriented module in Maude[9].

*Rule3V&ateChart (Priority 3)

It is applied to generate the appropriate Maude syntax (add the concepts for states “simple or composite” in files which is
related to classes) depending on the condition (nom_class = = nom_stchart).

Note that [9] to represent states, we declared an algebraic structure asin (2).

sorts SIMSTATE COMSTATE STATE.
subsort SIMSTATE < COMSTATE.
subsort COMSTATE < STATE.
opnone: -> COMSTATE [ctor] .

op_||_: COMSTATE COMSTATE ->
COMSTATE [ctor assoc comm id: none].

* Rules4, 5, 6 DefClass, AssoSimple, EndClass(Priority resp 4,5, 6)
These rules are applied to generate Maude code, and marks the association as visited (Asso.Visit = 1).

Note[9] that to define a class, we can use the following syntax (3):

Classclass_name| Satus: STATE, attr, : sort_attr,... attr_:sort_attr , asso_name: Oid

*Rules7, 8, 9 Etatl nit, EtatFin, EtatSimple(Priorityresp 7, 8, 9)

@

©)

Journal of Information & Systems Management Volume 4 Number 1 March 2014

23

| elaszePhilosophe - Bloc-notes
Fichier Edition Format Affichage T

load full-maude

{omod sMPhilosophe is

protecting MAT .

protecting STRING .

protecting BoOL .

#=® definition des sortes STATE SIMSTATE et COMSTATE.

sorts Simstate Comstate State

subsort simstate < Comstate .

subsort Comstate < State .

ap none ; -> Comstate [ctor] .

op _|l_ : Comstate comstate -» comstate [cror assoc id: none] .

=== pour donner des nom aux objetrs.

subsort _string < oid .

“=% peclaration de 1a classe Philosophe.

class Philosophe | status : State , blocked : Bool , left : oid , right : oid .
“== declaration des differents etat dans Te diagramme d'etats-transitions
ap initialstate : -> simstace .

op thinking : -> Simstate .

op waitingright : -» Simstate
op eating : -» simstate .
op releasing : -> Simstate .

msg get : 0id 0id -> Msg .
“=% un appel blogquant necessite un message ack_msg qui informe le appelant que son message est deja consomme .
msg ACkKger @ oid oid -> mMsg .
msg release : oid 0id -> Msg .
mi-? ackrelease : oid oid -> Mg .
“=*declaration des variables .
var CF : configuration .
var Ph : string
var le @ string .
var ri : string .
r1 [fnitial] : < ph : Philosophe | status : inftialstate > CF => < Ph : Philosophe | status : thinking = cF .
r get1efc1 : < Ph ! Philosophe | status : thinking , blocked : false , leftr : le > CF
=> < Ph : Philosophe | status : waitingright , blocked : true , left : le = get(Ph ., le) CF
r1 [getlefrl] : ackger(le ., Ph) < Ph : Fhiiusnphel status : waftingright , blocked : true , Tefr : Te > CF
=> =« Ph : Philosophe | status : wait ngright , blocked : false , left : le > cF .
r1 [getright] : < Ph : Philosophe | status : waitingright . blocked : false , right : ri > CF
== <« Ph : Philosophe | status : eating , blocked : true , right : i > gex(Ph , ri) CF .
r1 [getrightl] : Acuﬁer(ri . Ph) = Ph ! Philosophe ? status ! eating , blocked : true , right : r1 = CF
=> < Ph : Philosophe | status : eating , blocked : false , right : ri = CF .
r1 [releaseright] : < Ph : Philosophe | status : eating , blocked : false ., right : ri > CF
= « Ph : Philosophe | status : releasing , blocked : true , right : ri1 > releasel{Ph , ri) cF .
r1 [releaserightl] : ackrelease(ri , Ph) = Ph : Philosophe status @ releasing , blocked : true , right : ri = CF
=> =« Ph ; Philosophe | status : releaﬁin? . blocked : false , r1?ht :ri>CF .
r1 [releaselefrt] : < Ph : Philosophe | status : releasing , blocked : false , left : le > CF
=> < Ph : Philosophe | status : thinking , blocked : true , Teft : Te > release(Ph , le) cF .
r1 [releaselefrtl] : ackrelease(le , Ph) < Ph : Philosophe | status ; thinking , blocked : true , left : le > CF
_— => « Ph : Philosophe | starus : thinking , blocked : false , lefr : le = CF .
endom

L L

Figure 8. Generated Maude specification of Class Philosopher with its own StateChart

These rules are applied to select respectively an initial state, a final state and a simple state (not previously processed) to
generate the corresponding Maude code.

* Rule10 DecEven (Priority 10)
Is applied to locate an event not previously processed, and generate the appropriate Maude code.

*Rule11 DecVar (Priority 11)
Isapplied to declare all the variables used in rewrite rules.

*Rules12,131nit_rule, Tran_rule(Priority resp 12, 13)

These rules are applied to mark the transition as visited, and generate the corresponding Maude specification.

Note that each transition in the StateChart specified by an appropriate rewrite rule (rewriting rules are perfectly adequate to
describe the changes between states) [9].

*Rulel4FinModule(Priority 14)
Isapplied to mark the end of the object-oriented module in thefiles.

* Rule15DiagComm (Priority 15)
Isapplied to locate aCommunication diagram not previously processed (V diag = = 0) and createanew fileincludeall the object-
oriented modul es.

* Rules 16, 17 initialsitP, initialsitF (Priority resp 16, 17)
Theserules are applied to select acollaboration (not previously processed Com = = 0) and generate its equivalent Maude code.

*Rule18 FModI nit (Priority 18)

24 Journal of Information & Systems Management Volume 4 Number 1 March 2014

. classeFork - Bloc-notes
Fichier Edition Format Affichage 1

Toad full-maude
(omod SMFork 13
protecting NaT

protecting STRING .

protecting BOOL .

wia defin?thn des sortes STATE SIMSTATE et COMSTATE.

SOrts Simstate Comstate State .

subsort Simstate < Comstate .

subsort Comstate < State

op none : -»> Comstate [ctor] .

op .|| ¢ Comstate Comstate -> Comstate [ctor assoc id: none] .

#*# pour donnmer des mom aux objets.

subsort String < Oid .

“¢# paclaration de la classe Fork.

class Fork | status : State , blocked : Bool , left : oid , right : oid .

#«# declaration des differents etats dans le diagramme d'etats-transitions

op initialstate : -> Simstate .

op available : -» Simstate .

op taken : -> Simstate .

msg get : 0id 0id -> Msg .

#¢% un appel bloguant necessite un message ack_msg qui informe le appelant que son message est deja consosme .
msg ACKget : 0id 0id -» Msg .

msq release_: 0id 0id -> Msg . g "

==& yn apee1 bloquant necessite un message ack_msg qui informe le appelant que son message est deja consomme .
msg ACKrelease : 0id 0id -> Msg .

*sideclaration des variables .

var CF ¢ Configuration .

var Fo ; String

var ¢ : string

“esrggles de reecriture qui representent les transitons dans le diagramme de etats transition .

rl [initial] : < Fo : Fork | status : initialstate » CF =» < Fo ! Fork | status : available » CF .

r1 [getl] : get{c , Fo) < Fo : Fork | status : avajlable » €F => < Fo : Fork | status : taken » ACKget(Fo , c% CF .
ri releasel? : release(c , Fo) < Fo : Fork | status : taken » CF =» < Fo @ Fork | status : available » ACkre

&

i m

ease(Fo , €) CF .

Figure 9. Generated Maude specification of Class Fork with itsown StateChart

| classePBint - Bloc-notes
Fichier Edition Format Affichage 7

Toad full-maude

omad PBinit is

ncluding s«philosophe .
including sMrork

subsort Configuration < State .
“#% declaration de 1 etat initial
op init5tate : -» Configuratiom .
eq initsState =

“sara" : philosophe | status : imitialstate , blocked : false , rig
"Forkl” : Fork | statws : initialstate , blocked : false , right : "anna” , left : "John" =
“Fork2” : Fork | statws : initialstate , blocked : false , right : "Peter” , left : "annma" =
"Fork3” : Fork | status : initialstate , blocked : false , right : "sara” , lefr : "Peter” =
"Forka” : Fork | statws : initialstare , blocked : false , right : "30hn™ , left : "saral® ».

AolA A A A A A

endom)

"Iohn” : Philosophe | status : initialstate , blocked : false , right : "Fork4™ , left : "Forkl” >
“anna” : Philosophe | status : initialstate , blocked : false , right : “Forkl” , left : “Fork?” >
"peter” : Philosophe | status : initialstate , blocked : false , rlﬁ:t 1 "rork2" , left : "Fork3" »

: "Fork3” , left : "rForkd”™ >

Figure 10. Generated Maude specification of dining philosophers problem
Isapplied to mark the end of the object-oriented module that is related to the Communication diagram.

Our graph grammar has also afinal action which erases all the global variables.

6. Case Sudy

Toillustrate our approach, we applied it on the example of dining philosophers problem used in[6]. We propose four philosophers

doing one of the two things: eating or thinking, Figure 7 presents UML models that represent this problem.

Journal of Information & Systems Management Volume 4 Number 1 March 2014

25

Totrandlate thisgraphical representation into its equivalent Maude codein our framework, we have just click on the“ Generate
FMaude” button that allows executing our graph grammar defined in the previous section. The result of the automatic
generated filesisshown in Figure 8, Figure 9, and Figure 10.

7. Conclusion and FutureWork

In this paper, we have proposed an approach and avisual modeling tool. This approach takes the applications modeled in UML
language and translates them into a rewriting system expressed in Maude language. To achieve this transformation, we have
used UML Classdiagram formalism as meta-formalism and proposed three meta-model sfor the UML input models; we have a so
proposed agraph grammar to generate M aude codein agraphical way. The meta-modeling tool AToM?2 isused. In afuturework,
we plan to include the verification phase using the Maude LTL Model Checker and to give afeed back of the results.

References

[1] Laurent, A. (2009). UML 2 del’ apprentissage ala pratique (cours et exercices).
[2] AToM® Home page, version 3.00, http://atom3.cs.mcgill.ca

[3] Kerkouche, E., Chaoui, A. (2009). A formal framework and atool for the specification and analysis of G-Netsmodelsbased on
graph transformation, International Conference on Distributed Computing and Networking ICDCN-09, LNCS, 5408, p. 206-211,
Springer-Verlag Berlin Heidelberg India

[4] Kerkouche, E., Chaoui, A., Bourennane, E., Labbani, O. (2010). A UML and colored petri nets integrated modeling and
analysis approach using graph transformation, Journal of Object Technology, published by ETH Zurich, Chair of Software
Engineering, © JOT.

[5] Rozengerg, G. (1999). Handbook of Graph Grammar and computing Graph Transformation, World Scientific.

[6] Lilius, J., Porres Paltor, 1. (1999). UML: A tool for verifying UML models, In: Proceedings of the 14" | EEE International
Conference on Automated Software Engineering (ASE’ 99), p. 255-258, |EEE Computer Society.

[7] Meseguer, J. (1992). A Logical Theory of Concurrent Objectsand its Realization in the Maude L anguage, G. Agha, P. Wegner,
andA. Yonezawa, Editors, Research Directionsin Object-Based Concurrency. MIT Press, p. 314-390.

[8] Clavel, M., Duran, F., Eker, S., P, Lincoln, N. MartiOliet, Meseguer, J., Talcott, C. Maude Manua (version 2.4). SRI International,
http://maude.cs.uiuc.edu/maude2-manual/maude-manual . pdf

[9] Tibermacine, O. (2009). UML et Model Checking, Master thesis supervised by Professor A. Chaoui, University El Hadj
Lakhdar Batna, Algeria. (in Frensh).

[10] Gagnon, P, Mokhati, F.,, Badri, M. (2008). Applying model checking to concurrent UML models, Journal of Object Technology,
7 (1) 59-84, January.

26 Journal of Information & Systems Management Volume 4 Number 1 March 2014

