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ABSTRACT: We recently proposed an innovative agile crossbar switch architecture called Contention-Tolerant Crossbar
Switch, denoted as CTC (N), where N is the number of input/output ports. CTC (N) can tolerate output contentions instead
of resolving them by complex hardware, which makes CTC (N) simpler and more scalable than conventional crossbar switches.
In this paper, we analyze the main factors that influence the performance of CTC (N) and present an improved contention
tolerant switch architecture - Diagonalized Contention-Tolerant Crossbar Switch, denoted as DiaCTC (N). DiaCTC (N)
maintains all good features of CTC (N), including fully distributed cell scheduling and low complexity. Simulation results
show that, without additional cost, the performance of DiaCTC (N) is significantly better than CTC (N).
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1. Introduction

Crossbar is widely used in high-speed Internet switches and routers for its simplicity and non-blockingness. To simplify
scheduling operations, variable size packets are segmented at input ports into fixed-size cells and reassembled at output ports.

According to where packets (cells) are buffered, there are four basic types of crossbar switches, namely output queued (OQ),
input queued (IQ), combined input and output queued (CIOQ), and crossbar with crosspoint buffered switches. In an OQ
switch, cells arriving at input ports are forwarded to their destination output ports immediately and buffered in output queues.
Without delay in input ports and switch fabric, OQ switches are powerful in terms of providing quality of services (QoS). Thus,
theoretical studies on QoS guarantee are based on output queued switches [1]. Since an OQ switch requires memory speedup
N, where N is the number of input/output ports of the switch, such QoS results are impractical.

The memory of IQ switches operates at the same speed as the external link rate and cells are queued in input ports. To avoid
head-of-line (HOL) blocking problem, input buffers are arranged as virtual output queues (VOQs). Since it is hard to ensure QoS
on IQ switches, CIOQ switches have been proposed as a trade-off design of OQ and IQ switches. In a CIOQ switch, the memory
speed is S times faster than the link rate, where S is in the range of 1 < S <N, and cells are buffered in both input ports and output
ports. It was shown that a variety of quality of services are possible using CIOQ switches with a small constant S.

The performance of an IQ or CIOQ switch depends on scheduling algorithm, which selects contention-free cells and
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configures I/Q connections for switching cells in each time slot. For IQ switches, many scheduling algorithms based on
maximum matching have been investigated (e.g. [2] [3]). These scheduling algorithms provide optimal performance. Because the
time complexity for finding maximum (size or weight) matchings is too high for practical use, heuristic algorithms for finding
maximal matchings were considered instead (e.g. [4]-[8]). For a switch with N input ports and N output ports, such schedulers
require 2N N-to-1 arbiters working in multiple Request-Grant-Accept (RGA) or Request-Grant (RG) iterations (which involve
global information exchange) to obtain a maximal matching between inputs and outputs. Though implemented in hardware,
these schedulers are considered too slow with too high cost for high-speed networks. The scheduling problem of CIOQ
switches has also been considered. It was shown in [9] that, using an impractically complex scheduler, which implements the
Stable Marriage Matching (SMM) algorithm [10], a CIOQ crossbar switch with a speedup of two in the switch fabric and memory
can emulate an output queued (OQ) switch. This result is only theoretically important, because the SMM problem has time
complexity O (N 2).

To reduce scheduling complexity, crossbar switch with crosspoint buffers was proposed, which is also called buffered crossbar
switch. Coordinating with input queues, crosspoint buffers decouple scheduling operations into two phases in each time slot.
In the first phase, each input port selects a cell to place into a crosspoint buffer in its corresponding row, and in the second
phase, each output port selects a crosspoint in its corresponding column to take a cell from. Input (resp. output) ports operate
independently and in parallel in the first (resp. second) phase, eliminating a single centralized scheduler. Compared to unbuffered
crossbars, the scheduling algorithms of buffered crossbars are much simpler. Considerable amount of work, e.g. [11]-[18], has
been done on buffered crossbar with and without internal speedup. However, N 2 crosspoint buffers take a large chip area, which
severely restricts the scalability of buffered crossbar switches.

In summary, conventional crossbar switches, including crossbar with crosspoint buffers, require complex hardware to resolve
output contentions. We recently proposed a new switch architecture called contention-tolerant crossbar switch, denoted by
CTC (N), where N is the number of input/output ports [19]. CTC (N) tolerates output conflicts using a reconfigurable bus in each
output column of the fabric. In this way, controllers distributed in input ports are able to operate independently and in parallel.
This feature reduces the scheduling complexity and wire complexity, and makes CTC (N) more scalable than conventional
crossbar switches. CTC (N) opens a new perspective on designing switches. This paper focuses on further discussion on CTC
(N), and presents an improved contention-tolerant switch architecture called diagonalized contention-tolerant crossbar switch,
denoted as DiaCTC (N). Simulation results show that, with staggered polling (SP) scheduling algorithms [20], DiaCTC (N)
significantly enhances the performance with the same low cost of CTC (N).

Figure 1. (a) A crosspoint SE and its two states; (b) Each output line of CTC (N) is a reconfigurable bus
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2. Throughput Bottleneck of CTC (N)

In our previous work, we presented the CTC (N) architecture. Similar to conventional crossbar, the fabric of CTC (N) is
comprised of N 2 crosspoints (Switching Element, SE) arranged as an N × N array. Each SE has three inputs, three outputs and

two states, as shown in Figure 1 (a). Each input port i is equipped with a scheduler S
i
. In one time slot, if input port i (0 ≤ i ≤ N

− 1) wants to transmit a cell to an output port j (0 ≤  j ≤ N − 1), S
i
 sets the state of corresponding SE

i, j
 to receive-and-transmit (RT)

state. The remaining SEs in the same row be kept in cross (CR) state. If more than one input ports set their SEs as RT in the same
output line (column), the output line is configured as a pipeline, as shown in Figure 1 (b). Cells transmitted from upstream input
ports will be intercepted and buffered in downstream input ports. In this way, output contentions are tolerated in CTC (N). Buffer
in each input ports can be arranged as single FIFO queue or Virtual Output Queues according to queueing management policies,
which contains cells both from outside of switch and from upstream input ports (if exist).

In [19], we theoretically proved that the throughput of CTC (N) with single FIFO in each input ports and without speedup is
bounded by 63%. To improve the performance of CTC (N), we proposed staggered polling scheduling algorithm scheme (SP
for short) [20]. In order to ease scheduling operations, buffer in input port i is arranged as N VOQs denoted by VOQ

i, j
 . S

i
, the

scheduler in input port i, maintains two sub-schedulers, i.e. the primary sub-scheduler PS
i
 and the secondary sub-scheduler

SS
i
, as shown in Figure 2. PS

i
 generates a unique number c

i 
(t), 0 ≤ c

i
 (t) ≤ N − 1, in time slot t. That is, c

i
 (t) = c

i
 (t) if i = i. At time

t, if VOQ
i, ci

 (t) is not empty, the cell selected by PS
i
 is the HOL cell of VOQ

i, ci
 (t), denoted by PS

i
 (t) = VOQ

i, ci 
(t). Otherwise, PS

i

returns null, denoted by PS
i
 (t) = null. SS

i
 maintains a set L

i
 (t) of non-empty VOQ indices (i.e. L

i
 (t) = {k |VOQ

i, k
 is not empty in

time slot t}), which is updated in every time slot. SS
i
 chooses one from L

i 
(t) according to some algorithms as its scheduling

result. Random pattern is one of representative secondary scheduling algorithm, i.e. SS
i
 picks one index of VOQ from L

i
 (t)

randomly. We use q
i
 (t) to denote the index number of the VOQ chosen by SS

i
 in time slot t, i.e. SS

i
 (t) = VOQ

i, qi
 (t). If the L

i
 (t)

is empty, SS
i
 (t) = null.

Figure 2. Scheduling process in input port i
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zero knowledge of other input ports, the fully distributed schedulers “smartly” cooperated with each other and attained high
performance. However, due to the intrinsic feature of CTC (N), it is hard for the throughput of CTC(N) to achieve 100%.

In what follows we analyze the main factors that affect the performance of CTC (N). For easy analysis, let us consider the case
with heavy offered load. Since each input port transmits one cells during one time slots, input port i can be modeled as a queue,
denoted as Q

i
, which contains cells from both outside and upstream and with N output destinations. CTC (N) can be modeled

as a queueing network as shown in Figure 3, where a
i
  = λ is the arrival rate of Q

i
 from outside, and a

i
   is the arrival rate of Q

i
 from

upstream input ports. r
i
 is the service rate of Q

i
. For switch without internal speedup and under heavy traffic, we have r

i
 = 1.

For Q
i
, the aggregate arrival rate a

i
 is:

o u

a
i
 = a

i
  + a

i
  = λ + a

i
o u u

Figure 3. Queueing model of CTC (N) with single FIFO queue in each input port
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for i > k. Clearly, the aggregate upstream traffic increases as input port i increments. In the worst case with λ = 1, from Equation
(1) and (2), we have:

a
i
 =

1              if i = 0

Σ N − 1

j = 0
a

i, j
u if   0 < i ≤ N − 1⎩

⎨
⎧

1 +

Obviously, even Q
1
 is overloaded for a

1
 > r

1
. With the same service rate and multiple times heavier arrivals, downstream input

ports suffer from more severe overload.

SP scheduling algorithm scheme was designed for reducing upstream arrivals by diminishing interceptions. With staggered
polling pattern, the primary sub-schedulers select cells to form a conflict-free I/O matching. In order to maximize the utilization
of input ports, the second sub-schedulers select cells arbitrarily, which may cause conflicts and interceptions. Simulation results
in [20] showed that SP algorithms successfully enhance the throughput. However, the structure of CTC (N) dictates that
Equations (3) and (4) still hold with SP algorithms. Unbalanced upstream arrivals lead to overloading traffic for downstream
input ports. It explains the phenomenons in [20] that the throughput began to go down when offered load λ = 0.5, where the input
port N − 1 who had heaviest upstream traffic started to be overloaded.

3. Diagonalized Contention-tolerant Crossbar Switch Architecture

In order to improve the throughput of CTC (N), we introduce an improved CTC (N) architecture called Diagonalized Contention-
Tolerant Crossbar Switch, denoted as DiaCTC (N). DiaCTC (N) is exactly the same in all aspects of CTC (N), except the
connections in each SE column.

In CTC (N), SEs in each output column form a unidirectional alignment. SE
i,  j

 is an upstream node of SE
i,  j

 in output column j,
where 0 ≤ i < i ≤ N − 1 and  0 ≤ j ≤ N − 1. Therefore, input port 0 is the top input for any output destination and it only has traffic
from outside. A cell transmitted out from input port 0 could be intercepted by N −1 downstream input ports. Input port N − 1 is
the bottom input for any output destination. Cells buffered in input port N − 1 are from outside and N − 1 possible upstream input
ports by N possible output columns. While in DiaCTC (N), consider output column j, 0 ≤ j ≤ N − 1. SEs in output column j are
classified into the following three classes:

• Head SE: SE
i,  j

 is the head SE of output column j when i = j. The associated Ii is the top input for output destination O
j
 . Cell

transmitted from I
i
 to O

j
 possibly is intercepted by Id, d = i + k mod N and 1 ≤ k ≤ N−1.

• Tail SE: SE
i,  j

 is the tail SE when i = j − 1 mod N. The associated I
i
 is the bottom input for output destination O

j
 . Cells transmitted

from I
i
 to O

j
 arrives at O

j
 without being intercepted.

• Internal SE: SE
i,  j

 is an Internal SE when i = j + k mod N, 1 ≤ k ≤ N − 2. I
i
 has upstream inputs and downstream inputs for output

destination O
i 
. A cell transmitted from I

i
 to O

j
 could be intercepted by its downstream input I

d 
, i.e. d = i + k mod N and 1 ≤ k ≤

( j − 1− i) mod N.

Let C
i
 be the aggregation of cells which might be buffered in I

i
. c

s, d
 is the cell which originally arrived at I

s
 from outside with O

d

as its destination. c
s, d

 ∈ C
i
 and it satisfies following condition:

s =
i                                                          if d = i

⎩
⎨
⎧

(i − k) mod N, 0 ≤ k  ≤ (i − d) mod N    otherwise

Figure 4 (b) shows a DiaCTC (4), and its counterpart CTC (4) is shown in Figure 4 (a) with SEs serving as Heads and Tails being
labeled. In CTC (N), all SEs in the top row are Head SEs and SEs in the bottom row are Tail SEs, while in DiaCTC (N) there is
exactly one Head SE and exactly one Tail SE in each row.

Compared with CTC (N), DiaCTC (N) balances the aggregate upstream traffics over all input ports without additional hardware
cost, and Equations (3) and (4) don’t hold. In the next section, we show that better performance will be achieved by this simple,
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but meaningful, modification of CTC (N).

Figure 4. (a) CTC (4) architecture; (b) DiaCTC (4) architecture
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4. Performance Evaluation

The performance of DiaCTC (32) and CTC (32) with Staggered Polling (SP) algorithm scheme are compared in terms of mean cell
delay under uniform traffic and nonuniform traffic by simulations. Random pattern is chosen as an example secondary scheduling
algorithm in SP algorithm scheme. We also consider the well-known iSLIP method of one iteration for 32 × 32 conventional
crossbar switch for the reason that only one iteration may be performed in each time slot in cell switching at the line speed.

4.1 Uniform Traffic

Figure 5. Mean cell delay under Bernoulli i.i.d. uniform traffic

For uniform traffic, the traffic distributed over all output destinations uniformly with Bernoulli arrivals and Bursty arrivals. Under
Bernoulli uniform traffic, DiaCTC (32) SP Random performs the same performance with iSLP when offered load λ ≤ 0.55, and has
smaller mean cell delay than iSLIP when 0.55 ≤ λ ≤ 1, as shown in Figure 5. Obviously, compared to the performance of CTC (32)
SP Random, DiaCTC (32) SP Random has remarkable improvement.

Figure 6 illustrates the performance under bursty arrivals with burst length are 16, 32 and 64. The performance of DiaCTC (N) SP
Random, CTC (N) SP Random and iSLIP decrease slightly with increasing burst length at the same offered load λ, and the
performance decline of iSLIP is more evident than the other two. It implies that CTC (N) and DiaCTC (N) switches are affected
less than iSLIP by burst length. The iSLIP outperforms DiaCTC (32) SP Random and CTC (32) SP Random in these three graphs
when λ ≤ 0.6, however, DiaCTC (32) SP  Random shows the best performance when 0.6 < λ ≤ 1. CTC (32) SP Random has the
similar performance with DiaCTC (32) SP Random and iSLIP at λ = 1 with minor difference.

4.2 Non-uniform traffic
We chose three schemes from several nonuniform traffic models: Asymmetric [22], Chang’s [23], and Diagonal [24]. Let λ

i, j
 be the

offered load arriving at input port i and forwarding to output port j. Asymmetric traffic model is defined as

λ
i, (i + j)

 mod N = λ a
j

where a
0
 = 0, a

1
 = (r − 1) / (r N − 1), a

j
 = a

1 
r j − 1∀ j ≠ 0, and λ

i, j 
/ λ

(i + 1)
 mod N, j = r, ∀i ≠ j, (i + 1) mod N = j, r = λ

min
 / λ

max
 = aN−1/

a1 = r − 1/ (N − 2). Chang’s traffic model is defined as
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Figure 6. Mean cell delay under bursty traffic with different burst length
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The performance of DiaCTC (32) and CTC (32) with SP scheduling algorithm and iSLIP are given in figure 7. DiaCTC (32) SP
Random shows the best performance with both asymmetric and Chang’s arrivals. CTC (32) performs similar with DiaCTC (32)
and is better than iSLIP when 0.8 ≤ λ ≤ 1 under asymmetric traffic.

Under diagonal traffic, the mean cell delay of CTC (32) SP Random increases sharply when 0.65 ≤ λ ≤ 0.75, and goes up slightly
with 0.75 ≤ λ ≤ 0.8. The delay of DiaCTC (32) SP Random and iSLIP rise smoothly with increasing offered load, and iSLIP
outperforms DiaCTC (32) SP Random. DiaCTC (N) tends to scatter the traffic over all of the VOQs in one input by intercepting
cells from other inputs. Thus SP scheduling algorithm operates well and the switch achieves high performance. It is good for the
situation with heavy and more balanced traffic load, such as Bernoulli traffic, Bursty traffic, Asymmetric non-uniform traffic and
so on. However, for diagonal traffic which only has cells forwarding to two output destinations in each input ports, load
balancing process in DiaCTC (N) leads to unexpected delay. Even though DiaCTC (32) SP Random has slightly higher delay
than iSLIP, considering its low arbitration complexity and fully distributed control feature, the performance is really prominent.

From above simulation results, we can conclude that DiaCTC (32) significantly enhances the performance, but has the same
good feature and low complexity as CTC (N).

Bursty traffic (burst length = 64)

iSLIP

CTC (32) SP_Random

DiaCTC (32) SP_Random

M
ea

n 
ce

ll
 d

el
ay

 (
ti

m
e 

sl
ot

s)
103

104

102

101

Offered Load (λ)

0.1           0.2          0.3          0.4           0.5           0.6          0.7         0.8           0.9



   36                  Journal of Information & Systems Management   Volume   4   Number  1    March   2014

iSLIP

CTC (32) SP_Random

DiaCTC (32) SP_Random

Offered Load (λ)

 0.1         0.2          0.3         0.4          0.5          0.6         0.7         0.8          0.9           1

M
ea

n 
ce

ll
 d

el
ay

 (
ti

m
e 

sl
ot

s)

103

104

102

100

Asymmetric traffic

101

10−1

iSLIP

CTC (32) SP_Random

DiaCTC (32) SP_Random

Asymmetric traffic

M
ea

n 
ce

ll
 d

el
ay

 (
ti

m
e 

sl
ot

s)

103

104

102

100

101

10−1

Offered Load (λ)

 0.1         0.2          0.3         0.4           0.5           0.6          0.7          0.8         0.9           1
10−2



                     Journal of Information & Systems Management   Volume   4   Number  1   March    2014           37

Figure 7. Mean cell delay under three nonuniform traffic schemes

5. Concluding Remarks

In our previous work, we proposed an innovative agile crossbar switch architecture CTC(N) and proved that its throughput of
simple FIFO scheduling under Bernoulli i.i.d. uniform traffic is bounded by 63%. To improve performance, we proposed a fully
distributed scheduling algorithm scheme called staggered polling (SP in short). Simulation results showed that, using SP
scheduling algorithm scheme, the fully distributed schedulers “smartly” cooperate with each other and achieve high performance
even with zero knowledge of other input ports.

This paper analyzes the main factor influencing performance of CTC (N). We present an improved contention-tolerant crossbar
switch called diagonalized contention-tolerant crossbar, denoted as DiaCTC (N). Since DiaCTC (N) has the same fully
distributed control property and low complexity of CTC (N), SP scheduling algorithms are able to operate on DiaCTC (N)
without any change. DiaCTC (N) enhances the performance by balancing upstream traffic load for input ports. Simulation
results show the outstanding improvement of performance of DiaCTC (N) with SP scheduling algorithms. DiaCTC (N) illustrates
a new approach to improving CTC (N). However, out of sequence problem, which exists in CTC (N), remains a challenging open
problem for DiaCTC (N). It can be reduced by designing sophisticated scheduling algorithms and queueing management
methods.We remain the discussion of this problem in our subsequence papers. On the other hand, more algorithms can be
designed for achieving good performance according to other QoS measures.
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