
	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 39

Modification of Finite Automata Public Key Cryptosystem

Siranush Chopuryan, Gevorg Margarov
State Engineering University of Armenia
siranush.ch@gmail.com, gmargarov@gmail.com

Abstract: Existing finite automata public key cryptosystems (FAPKC) are analyzed in this paper. General types of
cryptanalytic attacks on FAPKC are discussed and methods of breaking FAPKC by some known types of attacks are
introduced. The times needed to perform the usual cryptanalytic attacks on FAPKC are calculated, in order to estimate
processing complexity of those attacks. The contrastive analysis of performed attacks’ processing complexities is made
to compare the vulnerabilities of FAPKC against discussed attacks. As a result, an improved FAPKC is designed in
order to resist the presented types of attacks. Strong FAPKC is obtained by generating invertible nonlinear and linear
automata of the suitable form.

Keywords: Automata theory, Linear finite automata, Public key cryptosystem, Cryptanalysis, Cryptanalytic attacks, Time
complexity

Received: 1 March 2010, Revised 28 March 2010, Accepted 3 April 2010

 2010 D-Line. All rights reserved.

1. Introduction

Public key cryptosystems, discussed in this paper, are based on the automata theory. Public key in FAPKC is the composi-
tion of nonlinear and linear finite automata, whose inverses are easily calculated. Private key is a specific combination of
those inverses.

It is known that the general inversion of public key automaton is a hard problem [1,2]. On the other hand, the
public key automaton components and their inverses can be efficiently discovered using the algebraic theory of
automata [3].

Weakness of the cryptosystem against the chosen plaintext attack, in case of non suitable nonlinear and linear automata us-
age, is investigated in this article. A method to generate suitable linear and nonlinear automata is introduced to increase the
stability of the FAPKC.

It is shown that FAPKC is vulnerable to the exhaustive search attack as well, if the ending of the plaintext is known to the
attacker. A method to prevent the exhaustive search attack is suggested in this article.

2. Finite automata public key cryptosystem

To design a FAPKC a pair of finite automata is offered. Encryption principle in FAPKC is shown in Figure 1, where Mnl
is a nonlinear weakly invertible finite automaton (WIFA for short) with delay 0 and Ml is a linear WIFA with delay τ . The
encryption automaton is the composition of Mnl and Ml , denoted by M = Mnl

o Ml

that is also a nonlinear WIFA with delay

τ = 0 + τ [4].

Figure 2 shows the decryption principle, where Mnl

−1 is the weak inverse of Mnl with delay 0 and Ml

−1 is the weak inverse of
Ml with delay τ . The composite finite automaton M is the public key in FAPKC, and the private key is Ml

−1 and Mnl

−1 finite
automata and their connection order.

40	 Journal of Information Security Research    Volume 1  Number 2   June 2010

2.1 Linear WIFA
Linear automaton is of the Ml = < X,Y,Sl,δl,λl

> form, where X is the input alphabet, Y is the output alphabet, Sl is the state

alphabet, δl:Sl

×X → Sl

is the transition function and λl:Sl

×X → Y is the output function. X and Y are l -dimensional linear

spaces over GF(2)={0,1}. The input sequence {x(i)} of the elements of the input alphabet X gives as an input of the finite
automaton at time i. Here and after the input sequence of the automaton at time i will be denoted as a x(i) (similarly s(i) and
y(i)). If x(i)∈ X and y(i) ∈Y present the input and the output at time i , respectively and both are l -dimensional column vec-
tors, then the automaton Ml can be defined as follows:

0 1
() , 0,1, 2,...

t

j j
j j

y i A x(i j) B y(i j) i
τ

= =

= − + − =∑ ∑ 	 (1)

Finite automaton Ml is said to be an 〈τ,t〉 -order memory finite automaton, which means that its initial state can be determined
uniquely from the information at least about the last τ inputs and corresponding t outputs. Therefore, the initial state of the
automaton Ml is determined the set of τ inputs and t outputs 〈x(−1),x(−2),K,x(−τ),y(−1),y(−2),K,y(−t)〉.

In equation (1) Aj (j = 0,1,2,K,τ) and Bj (j = 0,1,2,K,t) are l -dimensional linear coefficient matrices, which uniquely de-
termine the finite automaton Ml . Typically l is equal to the block size, which is usually matched with the key size of the
cryptosystem. The value of l defined by 〈τ,t〉 -order of the encryption automaton. It can be noticed, that operations in (1) are
usual addition and multiplication over GF(2).

The finite automaton Ml described above, defined by (1), is called a linear finite automaton [3]. The graphical and tabular
representations of the automaton Ml

, as well as its realization scheme are presented in Figure 3 and 4 respectively.

 1

Modification of Finite Automata Public Key Cryptosystem

Abstract: Existing finite automata public key cryptosystems (FAPKC) are analyzed in this paper. General types of
cryptanalytic attacks on FAPKC are discussed and methods of breaking FAPKC by some known types of attacks are
introduced. The times needed to perform the usual cryptanalytic attacks on FAPKC are calculated, in order to estimate
processing complexity of those attacks. The contrastive analysis of performed attacks’ processing complexities is made to
compare the vulnerabilities of FAPKC against discussed attacks. As a result, an improved FAPKC is designed in order to
resist the presented types of attacks. Strong FAPKC is obtained by generating invertible nonlinear and linear automata of
the suitable form.
Keywords: Automata Theory, Linear Finite Automata, Public Key Cryptosystem, Cryptanalysis, Cryptanalytic Attacks, Time Complexity

1. Introduction

Public key cryptosystems, discussed in this paper, are based on the automata theory. Public key in FAPKC is the
composition of nonlinear and linear finite automata, whose inverses are easily calculated. Private key is a specific
combination of those inverses.
It is known that the general inversion of public key automaton is a hard problem [1,2]. On the other hand, the public key
automaton components and their inverses can be efficiently discovered using the algebraic theory of automata [3].
Weakness of the cryptosystem against the chosen plaintext attack, in case of non suitable nonlinear and linear automata
usage, is investigated in this article. A method to generate suitable linear and nonlinear automata is introduced to increase
the stability of the FAPKC.
It is shown that FAPKC is vulnerable to the exhaustive search attack as well, if the ending of the plaintext is known to the
attacker. A method to prevent the exhaustive search attack is suggested in this article.

2. Finite automata public key cryptosystem

To design a FAPKC a pair of finite automata is offered. Encryption principle in FAPKC is shown in Figure 1, where nlM is
a nonlinear weakly invertible finite automaton (WIFA for short) with delay 0 and lM is a linear WIFA with delay . The
encryption automaton is the composition of nlM and lM , denoted by lnl MMM  that is also a nonlinear WIFA with
delay 0 [4].

Figure 2 shows the decryption principle, where 1
nlM is the weak inverse of nlM with delay 0 and 1

lM is the weak

inverse of lM with delay . The composite finite automaton M is the public key in FAPKC, and the private key is 1
lM

and 1
nlM finite automata and their connection order.

Figure 1. The encryption scheme

Figure 2. The decryption scheme

M-1
l M-1

nl

plaintextciphertext

Mnl Ml

plaintext

M

ciphertext

Figure 1. The encryption scheme

 1

Modification of Finite Automata Public Key Cryptosystem

Abstract: Existing finite automata public key cryptosystems (FAPKC) are analyzed in this paper. General types of
cryptanalytic attacks on FAPKC are discussed and methods of breaking FAPKC by some known types of attacks are
introduced. The times needed to perform the usual cryptanalytic attacks on FAPKC are calculated, in order to estimate
processing complexity of those attacks. The contrastive analysis of performed attacks’ processing complexities is made to
compare the vulnerabilities of FAPKC against discussed attacks. As a result, an improved FAPKC is designed in order to
resist the presented types of attacks. Strong FAPKC is obtained by generating invertible nonlinear and linear automata of
the suitable form.
Keywords: Automata Theory, Linear Finite Automata, Public Key Cryptosystem, Cryptanalysis, Cryptanalytic Attacks, Time Complexity

1. Introduction

Public key cryptosystems, discussed in this paper, are based on the automata theory. Public key in FAPKC is the
composition of nonlinear and linear finite automata, whose inverses are easily calculated. Private key is a specific
combination of those inverses.
It is known that the general inversion of public key automaton is a hard problem [1,2]. On the other hand, the public key
automaton components and their inverses can be efficiently discovered using the algebraic theory of automata [3].
Weakness of the cryptosystem against the chosen plaintext attack, in case of non suitable nonlinear and linear automata
usage, is investigated in this article. A method to generate suitable linear and nonlinear automata is introduced to increase
the stability of the FAPKC.
It is shown that FAPKC is vulnerable to the exhaustive search attack as well, if the ending of the plaintext is known to the
attacker. A method to prevent the exhaustive search attack is suggested in this article.

2. Finite automata public key cryptosystem

To design a FAPKC a pair of finite automata is offered. Encryption principle in FAPKC is shown in Figure 1, where nlM is
a nonlinear weakly invertible finite automaton (WIFA for short) with delay 0 and lM is a linear WIFA with delay . The
encryption automaton is the composition of nlM and lM , denoted by lnl MMM  that is also a nonlinear WIFA with
delay 0 [4].

Figure 2 shows the decryption principle, where 1
nlM is the weak inverse of nlM with delay 0 and 1

lM is the weak

inverse of lM with delay . The composite finite automaton M is the public key in FAPKC, and the private key is 1
lM

and 1
nlM finite automata and their connection order.

Figure 1. The encryption scheme

Figure 2. The decryption scheme

M-1
l M-1

nl

plaintextciphertext

Mnl Ml

plaintext

M

ciphertext

Figure 2. The decryption scheme

 2

2.1 Linear WIFA

Linear automaton is of the llll ,,X,Y,SM form, where X is the input alphabet, Y is the output alphabet, lS is the
state alphabet, lll SX:S is the transition function and YX:Sll is the output function.
X and Y are l -dimensional linear spaces over 1,02GF . The input sequence)(ix of the elements of the input

alphabet X gives as an input of the finite automaton at time i . Here and after the input sequence of the automaton at time i
will be denoted as a)(ix (similarly)(is and)(iy). If Xix)(and Yiy)(present the input and the output at time i ,
respectively and both are l -dimensional column vectors, then the automaton lM can be defined as follows:

t

j
j

j
j j)y(iBj)x(iAy(i)

10

, ,,,i 210 (1)

Finite automaton lM is said to be an t, -order memory finite automaton, which means that its initial state can be
determined uniquely from the information at least about the last inputs and corresponding t outputs. Therefore, the initial
state of the automaton lM is determined the set of inputs and t outputs

t),y(),),y(),y(,x(),),x(x( 2121 .

In equation (1) jA ,,2,1,0 j and jB tj ,,2,1,0  are l -dimensional linear coefficient matrices, which uniquely

determine the finite automaton lM . Typically l is equal to the block size, which is usually matched with the key size of the

cryptosystem. The value of l defined by t, -order of the encryption automaton. It can be noticed, that operations in (1)

are usual addition and multiplication over 2GF .
The finite automaton lM described above, defined by (1), is called a linear finite automaton [3]. The graphical and tabular
representations of the automaton lM , as well as its realization scheme are presented in Figure 3 and 4 respectively.

Figure. 3. Graphical and tabular representation of lM

Figure. 4. Realization scheme of lM

x=0 A B x=1 A B

A 0 1 A 1 0

B 1 0 B 0 1

A B

0 (1)

1 (1)

0 (0)

1 (0)

lM

xi-1 xi-… yi-1 yi-t…
xi

yi

Figure 3. Graphical and tabular representation of Ml

	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 41

The finite automaton Ml can be also considered as a linear finite automaton, only depending on τ inputs. The initial state of
such automaton is determined the set of τ inputs x(−1),x(−2),K,x(−τ). The finite automaton Ml defined by (2):

0 1
...1 , 0,1,2,...y(i) A x(i) A x(i) A x(i) iτ τ= + − + + − = 	 (2)

It is known, that for any finite automaton its inverse automaton can be constructed, which reproduces the inputs of the initial
finite automaton. Thus, the following statement is true.

Statement: The finite automaton Ml is a weakly invertible finite automaton with delay τ if and only if the collection of
matrices, A0

−1, A1
−1,K,Aτ

−1, ~A0

−1, ~A1
−1 ,K, ~Aτ

−1, can be derived from the collection of Aj

(j = 0,1,2,K,τ)such that [3,5]:

1

0 1
() , 0,1,2,...

t

jj
j j

x i A y(i j) A x(i j) i
τ ∼−

= =

= + + − =∑ ∑ 	 (3)

For any initial state s = 〈x(−1),x(−2),K,x(−τ)〉 of Ml and for any input sequence x(0)x(1)K x(n +τ) , if y(0)y(1)L y(n
+τ) =λ(x(0)x(1)L x(n +τ)) , then inputs x(0),x(1),K,x(n +τ)∈X can be calculated one by one from (3). Hence, the finite
automaton defined by the equation (3) specifies the weak inverse with delay τ of Ml

.

2.2 Nonlinear WIFA
Nonlinear automaton is of the Mnl = <X,Y,Snl,δnl,λnl > form, where X is the input alphabet, Y is the output alphabet, Snl is the
state alphabet, δnl:Snl ×F(X) →Snl

is the transition function and λnl:Snl ×F(X) →Y is the output function. X and Y are l -dimen-

sional linear spaces over GF(2) = {0,1} and F(X) is a function introducing a nonlinear operation ° defined over GF(2) [3].
The definition formula of Mnl is

1

0 1
1 , 0,1,2,...

r r

jj
j j

y(i) B x(i j) B x(i j) x(i j) i
− ∼

= =

= − + − − − =∑ ∑ o 	 (4)

where Bj

(j = 0,1,2...,r) and B~j

(j =1,2...,r-1) are l -dimensional linear coefficient matrices over GF(2), and B0 is an invertible

matrix.

The Mnl defined by equation (4) is an r -input memory finite automaton. As B0
-1 exists, then the definition formula of Mnl

−1
will be

1
1
0

0 1
1 , 0,1, 2,...

r r

jj
j j

x(i) B (y(i) B x(i j) B x(i j) x(i j) i
− ∼−

= =

= + − + − − − =∑ ∑ o 	 (5)

The r -output memory automaton Mnl

−1is a weak inverse with delay 0 of Mnl

. For any initial state 〈x(−1),x(−2),K,x(

−r)〉 of Mnl there exists s′ of Mnl

−1 such that λ′nl(s′,λnl(s,x)) = x , where s′ is the match state of s and is also defined by
〈 x(−1),x(−2),K,x(−r)〉.

 2

2.1 Linear WIFA

Linear automaton is of the llll ,,X,Y,SM form, where X is the input alphabet, Y is the output alphabet, lS is the
state alphabet, lll SX:S is the transition function and YX:Sll is the output function.
X and Y are l -dimensional linear spaces over 1,02GF . The input sequence)(ix of the elements of the input

alphabet X gives as an input of the finite automaton at time i . Here and after the input sequence of the automaton at time i
will be denoted as a)(ix (similarly)(is and)(iy). If Xix)(and Yiy)(present the input and the output at time i ,
respectively and both are l -dimensional column vectors, then the automaton lM can be defined as follows:

t

j
j

j
j j)y(iBj)x(iAy(i)

10

, ,,,i 210 (1)

Finite automaton lM is said to be an t, -order memory finite automaton, which means that its initial state can be
determined uniquely from the information at least about the last inputs and corresponding t outputs. Therefore, the initial
state of the automaton lM is determined the set of inputs and t outputs

t),y(),),y(),y(,x(),),x(x( 2121 .

In equation (1) jA ,,2,1,0 j and jB tj ,,2,1,0  are l -dimensional linear coefficient matrices, which uniquely

determine the finite automaton lM . Typically l is equal to the block size, which is usually matched with the key size of the

cryptosystem. The value of l defined by t, -order of the encryption automaton. It can be noticed, that operations in (1)

are usual addition and multiplication over 2GF .
The finite automaton lM described above, defined by (1), is called a linear finite automaton [3]. The graphical and tabular
representations of the automaton lM , as well as its realization scheme are presented in Figure 3 and 4 respectively.

Figure. 3. Graphical and tabular representation of lM

Figure. 4. Realization scheme of lM

x=0 A B x=1 A B

A 0 1 A 1 0

B 1 0 B 0 1

A B

0 (1)

1 (1)

0 (0)

1 (0)

lM

xi-1 xi-… yi-1 yi-t…
xi

yi

Figure 4. Realization scheme of Ml

42	 Journal of Information Security Research    Volume 1  Number 2   June 2010

3. FAPKC design principles

Finite automata public key cryptosystem works in the following way:

1. First construct two finite automata Mnl

and Ml

as defined above.

2. �Construct the encryption automaton from the composition of Mnl

and Ml

, denoted by M =Mnl

o Ml

. The definition formula

of M is obtained by substituting equation (1) into equation (3).

1

0 0 1
1 0,1,2,...

r r

jt j
t j j

z(i) A B x(i j t) B x(i j t) x(i j t) i
τ − ∼

= = =

 
 = − − + − − − − − =
 
 

∑ ∑ ∑ o 	 (6)

M = Mnl

o Ml

 is not exactly the same as Mnl

⋅Ml

. Each state s = < x(−1),x(−2),K,x(-r −τ) > of M = Mnl

o Ml

, is equivalent to

the state < snl ,sl

>, where snl = < x(−1),x(−2),...,x(−r) > is a state of Mnl and sl = <y(−1),y(−2),...,y(−τ) > is a state of Ml

.

The equation (6) can be simplified as follows:

1

0 1
1 , 0,1, 2,...

r r

jj
j j

z(i) C x(i j) C x(i j) x(i j) i
τ τ+ + − ∼

= =

= − + − − − =∑ ∑ o 	 (7)

where

0 0

1

0 0
, ,

tt

j j

j r j r

jj t j t j
t t

C A B C AB

ττ ==

= =

+ = −∼ ∼

= =

= =∑ ∑ 	 (8)

are l -dimensional matrix polynomials over GF(2), uniquely determining the finite automaton M.

The automaton M is made public.
3. Construct the inverse automata Mnl

−1

, Ml

−1 as defined above and keep them secret.
4. �First chose a sequence x(m +1)x(m +2)...x(m + τ) arbitrarily to encrypt the plaintext x(0)x(1)...x(m) . Then input the

plaintext x(0)x(1)...x(m +τ) into M =Mnl

o Ml

with initial state s .

The output z(0)z(1)...z(m +τ) is the ciphertext.

5. �To decrypt z(0)z(1)...z(m + τ) , first Ml
−1

and the initial state sl are used to obtain y(0)y(1)...y(m). Then the temporary se-
quence y(0)y(1)...y(m) is supplied into Mnl

−1 with initial state snl to obtain x(−τ)Kx(−1)x(0)x(1) Kx(m)as the output. The
first τ is thrown out to restore the plaintext x(0)x(1)...x(m) .

Take a notice, that the public key generated in the 2nd step certainly is transmitted by some method, including unsecured in-
formation channels for guaranteeing secured information exchange. Meanwhile, for the secret key, generated in the 3rd

step,

during the whole process of information exchange it doesn’t appear any necessity for its transition.

4 Cryptanalysis of FAPKC

The aim of the cryptanalysis of public key cryptosystem is to find out a method of private key or plaintext recovering. Pri-
vate key recovering performs with the assumption that appropriate private key is available for the attacker. While recovering
plaintext it’s assumed that private key is missing. Successful cryptanalysis of the cryptosystem make possible to elicit its
vulnerabilities, which leads to private key or plaintext recovery. It is obvious, that estimation and elimination of vulnerabilities
of cryptosystem allows to make it more secure. Therefore, while designing the cryptosystem it is necessary to analyze it via
simulating attacker possible actions and taking into account the following worst assumptions about information awareness
of the attacker [6]:

attacker knows the whole information about the cryptosystem except for the private key; •	
attacker has enough amount of ciphertexts; •	
attacker has some ciphertexts and its corresponding plaintexts; •	
attacker knows all public keys of current cryptosystem. •	

	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 43

During cryptanalysis of cryptosystem it is necessary to examine various scenarios of attacker behavior, depend on his information aware-
ness. Based on above mentioned worst assumptions the following five types of attacks on public key cryptosystem are formed [6]:

1. Private key direct calculation from public key
2. Ciphertext-only attack
3. Chosen-ciphertext attack
4. Chosen-plaintext attack
5. Privat key searching via exhaustive method

The first type of attack gives an opportunity to attacker to recover the private key from the appropriate public key of public
key cryptosystem. The next three types of attacks encourage recovering of the plaintext from the ciphertext. The fifth type
of attack like the first type is a method of private key recovery. The difference is the possibility to perform it without the
knowledge of public key.

The unified mathematical theory of cryptanalysis doesn’t exist to define whether the public key cryptosystem is secured or
not. The only way to analyze the public key cryptosystem is to evaluate it against the probable types of attacks. In order to
construct strong public key cryptosystem based on finite automata it is necessary to perform the cryptanalysis of existing
FAPKC’s. During FAPKC cryptanalysis it isn’t reasonable examine chosen-ciphertext attack and private key searching via
exhaustive method. It is conditioned by the following facts: the first one is just an insignificant modification of ciphertext-only
attack, and the second one is an enough trivial, but unsolvable problem for a reasonable period of time. That is why during
FAPKC cryptanalysis is examined only the following three types of attacks:

1. Private key direct calculation from public key
2. Ciphertext-only attack
3. Chosen-plaintext attack

As a result, becomes reasonable to find out the vulnerabilities of existing FAPKC’ against abovementioned three types of
attack. For this purpose, the methods are examined that allow attacker to recover the private key from the public key of the
cryptosystem, and methods to recover the plaintext from the ciphertext.

4.1 Private Key Direct Calculation from Public Key

Private key recovery is one of the problem of attacker, who’s main goal is to break public key cryptosystem. Hence, it is
reasonable to estimate stability of the FAPKC against attack of private key direct calculation from public key. Public key
of the cryptosystem FAPKC includes some information about encryption automaton, which is a composition of linear and
nonlinear automata. Attacker, who has an access to public key, in other words to composite automaton, is able to calculate
private key via composite automaton inversion. Inversion is possible to perform by two ways:

1. composite automaton direct inversion;
2. automaton componentwise inversion.

4.1.1 Composite Automaton Direct Inversion
The main idea of automaton direct inversion is to construct inverse automaton of the composite one without any knowledge
about component automata. Direct inversion schematic diagram presented in Figure 5 for composite finite automaton M
consisting of component automata M0, M1,K, Mn

with delay τ0,τ1,K,τn

 correspondingly.

It is known, that if finite automaton M is a weak invertible automaton with delay τ, then exists its inverse finite automaton
M −1 [10]. In case of inverse finite automaton M −1 calculation success from the composite automaton M = 〈M0,K, Mn〉

with

delay τ = τ0+L+τn

 private key calculation will be possible. Direct inversion of finite automaton M is a way to M −1 determine

the finite automaton . The objective of automaton direct inversion algorithm is the calculation of its input sequence for τ =
τ0+L+τn

 arbitrary output elements.

Further it is necessary to estimate attacker time resources for different types of attack. Time complexity is the time needed
to perform attack [7].

Time complexity of finite automaton direct inversion is calculated in consequence of analysis of current finite automaton tree.
Fig. 6 shows the input tree of the automaton Ml , where A is its initial state. The finite automaton tree is analyzed by value τ .
The value τ defines the depth of analysis in the automaton tree. This means that the more is the depth of finite automaton tree
analysis the more is time complexity of its direct inversion.

44	 Journal of Information Security Research    Volume 1  Number 2   June 2010

The composite finite automaton states quantity and its delay τ are the input data necessary to solve the problem of composite
finite automaton direct inversion. Time complexity of the composite automaton direct inversion problem for the input word
of length τ is equal to:

1

0
() ,j

j
T S

τ
ττ

−
−

=

=∑ 	 (9)

where τ is the composite finite automaton delay;

S is the finite set of states of the composite finite automaton Ml . As it is noticed, time complexity of finite automaton direct
inversion depends on depth finite automaton input tree analysis.

For instance, the finite automaton Ml direct inversion time complexity by three-level analysis exceeds time complexity by
two-level analysis approximately two times.

Let us assume that delays τi

, i ∈[0,n] of all component automata Mi are equal to each other and are τ ∗. Time complexity of

the composite finite automaton M direct inversion will be equal to:

 5

4.1 Private Key Direct Calculation from Public Key

Private key recovery is one of the problem of attacker, who’s main goal is to break public key cryptosystem. Hence, it is
reasonable to estimate stability of the FAPKC against attack of private key direct calculation from public key. Public key of
the cryptosystem FAPKC includes some information about encryption automaton, which is a composition of linear and
nonlinear automata. Attacker, who has an access to public key, in other words to composite automaton, is able to calculate
private key via composite automaton inversion. Inversion is possible to perform by two ways:

1. composite automaton direct inversion;
2. automaton componentwise inversion.

4.1.1 Composite Automaton Direct Inversion

The main idea of automaton direct inversion is to construct inverse automaton of the composite one without any knowledge
about component automata. Direct inversion schematic diagram presented in Figure 5 for composite finite automaton M
consisting of component automata nMMM ,,, 10  with delay n,,, 10  correspondingly.

Figure 5. Direct inversion schematic diagram for finite automaton M.

It is known, that if finite automaton M is a weak invertible automaton with delay , then exists its inverse finite automaton

1M [10]. In case of inverse finite automaton 1M calculation success from the composite automaton nMMM ,,0 

with delay n0 private key calculation will be possible. Direct inversion of finite automaton M is a way to

determine the finite automaton 1M . The objective of automaton direct inversion algorithm is the calculation of its input
sequence for n0 arbitrary output elements.
Further it is necessary to estimate attacker time resources for different types of attack. Time complexity is the time needed
to perform attack [7].
Time complexity of finite automaton direct inversion is calculated in consequence of analysis of current finite automaton
tree. Fig. 6 shows the input tree of the automaton lM , where A is its initial state. The finite automaton tree is analyzed by
value . The value defines the depth of analysis in the automaton tree. This means that the more is the depth of finite
automaton tree analysis the more is time complexity of its direct inversion.

M

M0

plaintext ciphertext
M1 Mn

M-1

 ciphertext plaintext

Figure 5. Direct inversion schematic diagram for finite automaton M

 6

Figure 6. Finite automaton lM input tree.

The composite finite automaton states quantity and its delay are the input data necessary to solve the problem of
composite finite automaton direct inversion. Time complexity of the composite automaton direct inversion problem for the
input word of length is equal to:

1

0

)(
j

jS , (9)

where is the composite finite automaton delay;
S is the finite set of states of the composite finite automaton lM .
As it is noticed, time complexity of finite automaton direct inversion depends on depth finite automaton input tree analysis.
For instance, the finite automaton lM direct inversion time complexity by three-level analysis exceeds time complexity by
two-level analysis approximately two times.
Let us assume that delays i , ,ni 0 of all component automata iM are equal to each other and are . Time
complexity of the composite finite automaton M direct inversion will be equal to:

n

j

jnS()
0

. (10)

From the equation (9) one can notice, that direct inversion method is impractical for the composite automaton with
sufficiently long delay n0 . Figure 7 shows direct inversion time complexity changing with increasing the delay

 of the composite automaton for the definite automaton M with the set of the states 910 ,,, sssS  .
Attack of the private key direct calculation from public key against FAPKC0 is reduced to the problem of composite
automaton direct inversion; therefore, time complexity of current attack has the same dependence on the value of as it is
shown in Figure 7.

 = 2, T=4

 = 3, T=8

 Ml

1(0)0(0)1(0)1(1)

1(0)1(1)

A

A B

A B A B

A B

0 (1)

1 (1)

0 (0)

1 (0)

Figure 6. Finite automaton Ml input tree

	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 45

0
.

n
n j

j
T() S

τ
ττ

∗
∗−

=

=∑ 	 (10)

From the equation (9) one can notice, that direct inversion method is impractical for the composite automaton with suffi-
ciently long delay τ = τ0+L+τn. Figure 7 shows direct inversion time complexity changing with increasing the delay τ of the
composite automaton for the definite automaton M with the set of the states S = {s0, s1,K, s9}.

Attack of the private key direct calculation from public key against FAPKC0 is reduced to the problem of composite automa-
ton direct inversion; therefore, time complexity of current attack has the same dependence on the value of τ as it is shown
in Figure 7.

Thereby, as it is shown, the FAPKC stability against attack of private key direct calculation from public key depends on the
composite automaton’s delay τ, which is the public key of the cryptosystem.

4.1.2 Composite Automaton Componentwise Inversion
Unlike to the previous method, where attacker tries to figure out the inverse automaton of the composite one directly, without
the knowledge about component automata, chief matter of this method is the decomposition of the composite automaton for
construction of its inverse automaton. Current method also might favor the realization of private key direct calculation from public
key attack. Attacker using information about composite finite automaton of encryption 〈M = M0,K, Mn〉, which is the public
key of the FAPKC cryptosystem, might detect component finite automata M0,K, Mn

 and inverse finite automaton Ml

−1 for any i
, where i ∈[0,n]. As a result of cascade connection of detected component automata inverses Mn

−1,K, M0
−1 constructed inverse

finite automaton M 
−1. The last one is the inverse automaton of the composite automaton M = 〈M0,K, Mn〉. The main object is

decomposition of the composite automaton M. Up to now exact method of finite automaton decomposition doesn’t exist [8].

The schematic representation of composite automaton M inversion via its decomposition is shown Figure 8.

In certain cases, for instance, in the public key cryptosystem FAPKC presented in Chapter 2, where the composite automaton
is consist of two linear automata which are connected sequentially, finite automaton M = 〈M1, M2〉 decomposition problem is
reduced to the factorization problem of the matrix polynomial Cj

[9].

1 2

0 0
,

t k

j t k
t k

C A B
τ τ= =

= =

=∑∑ 	 (11)

 7

Figure 7. The composite automaton direct inversion time complexity.

Thereby, as it is shown, the FAPKC stability against attack of private key direct calculation from public key depends on the
composite automaton’s delay , which is the public key of the cryptosystem.

4.1.2 Composite Automaton Componentwise Inversion

Unlike to the previous method, where attacker tries to figure out the inverse automaton of the composite one directly,
without the knowledge about component automata, chief matter of this method is the decomposition of the composite
automaton for construction of its inverse automaton. Current method also might favor the realization of private key direct
calculation from public key attack. Attacker using information about composite finite automaton of encryption

nMMM ,,0  , which is the public key of the FAPKC cryptosystem, might detect component finite automata

nMM ,,0  and inverse finite automaton 1
iM for any i , where ,ni 0 . As a result of cascade connection of detected

component automata inverses 1
0

1 ,, MM n  constructed inverse finite automaton 1M . The last one is the inverse

automaton of the composite automaton nMMM ,,0  . The main object is decomposition of the composite automaton

M . Up to now exact method of finite automaton decomposition doesn’t exist [8].
The schematic representation of composite automaton M inversion via its decomposition is shown Figure 8.
In certain cases, for instance, in the public key cryptosystem FAPKC presented in Chapter 2, where the composite
automaton is consist of two linear automata which are connected sequentially, finite automaton 21, MMM

decomposition problem is reduced to the factorization problem of the matrix polynomial jC [9].

,BAC
t

t

k

k
ktj

1 2

0 0
 (11)

where jC are coefficient matrices that are uniquely determine composite finite automaton M , where the definition formula

of M is the following:
21

0j
j j)x(iCz(i) , ...,,i 210 (12)

Figure 7. The composite automaton direct inversion time complexity

46	 Journal of Information Security Research    Volume 1  Number 2   June 2010

where Cj

are coefficient matrices that are uniquely determine composite finite automaton M , where the definition formula

of M is the following:
1 2

0
() (), 0,1, 2...j

j
z i C x i j i

τ τ+

=

= − =∑ 	 (12)

After figuring out the component matrices At

(t = 0,1,2..., τ1

) and Bk

(k = 0,1,2..., τ2

) it is possible to construct the finite au-

tomaton M1 and M2

, where the finite automata M1 and M2 are defined by the following equations correspondingly:

1

0
, 0,1, 2...t

t
y(i) A x(i t) i

τ

=

= − =∑ 	 (13)

and
2

0
, 0,1, 2...k

k
y(i) B x(i k) i

τ

=

= − =∑ 	 (14)

where x(i) ∈X and y(i)∈Y are input and output elements at the moment i respectively.

Thereby, the inverse automaton of the composite automaton M = 〈M1, M2

〉 can be detected when it is possible to construct

the inverse automata for the component finite automata M1 and M2.

In spite of the fact, that exists the polynomial algorithm of polynomials factorization over the field GF(q), there is no
probabilistic algorithm of matrix polynomials factorization over the field GF(q). Heretofore it is known some specific al-
gorithms of matrix polynomials factorization, e.g: factorization over linear (Ra

,Rb

) transformation [9] and factorization by

reducing canonical diagonal form for matrix polynomials. But those specific factorizations simplify private key detection
problem only if the public key is constructed from weak invertible finite automata, like in public key cryptosystem FAPKC.

 8

Figure 8. Componentwise inversion schematic diagram for finite automaton M.

After figuring out the component matrices)..., ,,(tAt 1210 and)..., ,, (kBk 2210 it is possible to construct the finite
automaton 1M and 2M , where the finite automata 1M and 2M are defined by the following equations correspondingly:

1

0t
t t)x(iy(i) , ,,,i 210 (13)

and

,
2

0k
k)x(ikBy(i) ,,,i 210 (14)

where Xix)(and Yiy)(are input and output elements at the moment i respectively.
Thereby, the inverse automaton of the composite automaton 21, MMM can be detected when it is possible to construct

the inverse automata for the component finite automata 1M and 2M .
In spite of the fact, that exists the polynomial algorithm of polynomials factorization over the field qGF , there is no
probabilistic algorithm of matrix polynomials factorization over the field qGF . Heretofore it is known some specific
algorithms of matrix polynomials factorization, e.g: factorization over linear ba RR , transformation [9] and factorization
by reducing canonical diagonal form for matrix polynomials. But those specific factorizations simplify private key detection
problem only if the public key is constructed from weak invertible finite automata, like in public key cryptosystem FAPKC.
For identification of the FAPKC stableness against private key direct calculation from public key attack it is necessary to
estimate time complexity of the composite automaton compositewise inversion algorithm, via its decomposition.
If one successfully decomposed the composite automaton and figured out the component automata, then time complexity of
componentwise inversion of n-component automata will be equal to:

n

i
i

1
)()(, (15)

where)(iT is time complexity of ith component automaton inversion and equal to:
n

j

j
ii

iS)(
0

. (16)

M

plaintext

M0 M1 Mn

M-1
0 M-1

1 M-1
n

M-1

 ciphertext

 ciphertext

plaintext

plaintext

Figure 8. Componentwise inversion schematic diagram for finite automaton M

	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 47

For identification of the FAPKC stableness against private key direct calculation from public key attack it is necessary to
estimate time complexity of the composite automaton compositewise inversion algorithm, via its decomposition.

If one successfully decomposed the composite automaton and figured out the component automata, then time complexity of
componentwise inversion of n-component automata will be equal to:

1
,

n

i
i

T() T()τ τ
=

=∑ 	 (15)

where T(τi

) is time complexity of ith component automaton inversion and equal to:

0
.i

n
- j

i i
j

T() S ττ
=

=∑ 	 (16)

The input data, necessary for component-wise inversion problem solving for n-component automata, are number of states of
each component finite automaton and their delays τi, i ∈[0,n].

If assume, that number of states of all component automata are equal to and delays τi are the same, then time complexity of
componentwise inversion will be equal to:

()
/

/

0 0 0 0
/

i
i

j n jn n n jj
i i

i i j j
T() T() S n S n

τ τ
τττ τ

− −
−−

= = = =

= = = ×∑ ∑∑ ∑ 	 (17)

This implyies that time complexity of private key detection problem for attacker who has an access to component automata
that are the part of the public key, is estimated via equation (17).

Figure 9 shows time complexity behavior for composite automaton componentwise inversion depending on increase in value
of τ of current composite automaton. Results are displayed for specific automaton M , which is the composition of two finite
automata with the set of states S1,2

={s0, s1,K, s4}.

Confront Figure 7 and Figure 9 one can notice, that time complexity of component automaton componentwise inversion
excels time complexity of component automaton direct inversion, presented in the previous chapter. Hence, in the public key
cryptosystem FAPKC private key direct calculation from public key via composite automaton direct inversion needs more
time then private key direct calculation from public key via composite automaton componentwise inversion.

 9

The input data, necessary for component-wise inversion problem solving for n-component automata, are number of states of
each component finite automaton and their delays nii ,0, .

If assume, that number of states of all component automata are equal to iS and delays i are the same, then time
complexity of componentwise inversion will be equal to:

jn

j

jnn

i

j

j

j
i

n

i
i nSnS

i
i

00 00
)()((17)

 This implyies that time complexity of private key detection problem for attacker who has an access to component
automata that are the part of the public key, is estimated via equation (17).

Figure 9 shows time complexity behavior for composite automaton componentwise inversion depending on increase
in value of of current composite automaton. Results are displayed for specific automaton M , which is the composition of
two finite automata with the set of states 4102,1 ,,, sssS  .

 Confront Figure 7 and Figure 9 one can notice, that time complexity of component automaton componentwise
inversion excels time complexity of component automaton direct inversion, presented in the previous chapter. Hence, in the
public key cryptosystem FAPKC private key direct calculation from public key via composite automaton direct inversion
needs more time then private key direct calculation from public key via composite automaton componentwise inversion.

Figure 9. The composite automaton componentwise inversion time complexity.

4.2 Ciphertext-only Attack

When attacker has access to the ciphertexts of several plaintexts, which are encrypted with the same encryption algorithm,
then he has a possibility to perform ciphertext-only attack. In the public key cryptosystem FAPKC attacker’s main goal is to
obtain appropriate plaintext nxxx 10 from the possessed ciphertext nzzz 10 , where ix and iz are input
and output symbols of the encryption automaton respectively. Ciphertext-only attack for FAPKC is reduced to the problem
of solving a system of linear equations over GF(2). This system of linear equations is formed from definition formula of
encryption automaton with arguments xxx ,,1,0  [11].

01

1011
100

01

101

10

xCxCxCz

xCxCxCz
xC-xCxCz -









 ,,,i 210 (18)

The current system of linear equations is formed from the equation (12) where the arguments are , n input elements
x,,1x,0x  of the encryption finite automaton. Solving of the system of linear equations (18) is simplified when it is

Figure 9. The composite automaton componentwise inversion time complexity

48	 Journal of Information Security Research    Volume 1  Number 2   June 2010

4.2 Ciphertext-only Attack
When attacker has access to the ciphertexts of several plaintexts, which are encrypted with the same encryption algorithm,
then he has a possibility to perform ciphertext-only attack. In the public key cryptosystem FAPKC attacker’s main goal is
to obtain appropriate plaintext x(0)x(1)...x(n) from the possessed ciphertext z(0)z(1)...z(n +τ), where x(i) and z(i) are input
and output symbols of the encryption automaton respectively. Ciphertext-only attack for FAPKC is reduced to the problem
of solving a system of linear equations over GF(2). This system of linear equations is formed from definition formula of
encryption automaton with arguments x(0), x(1),L, x(τ) [11].

 9

The input data, necessary for component-wise inversion problem solving for n-component automata, are number of states of
each component finite automaton and their delays nii ,0, .

If assume, that number of states of all component automata are equal to iS and delays i are the same, then time
complexity of componentwise inversion will be equal to:

jn

j

jnn

i

j

j

j
i

n

i
i nSnS

i
i

00 00
)()((17)

 This implyies that time complexity of private key detection problem for attacker who has an access to component
automata that are the part of the public key, is estimated via equation (17).

Figure 9 shows time complexity behavior for composite automaton componentwise inversion depending on increase
in value of of current composite automaton. Results are displayed for specific automaton M , which is the composition of
two finite automata with the set of states 4102,1 ,,, sssS  .

 Confront Figure 7 and Figure 9 one can notice, that time complexity of component automaton componentwise
inversion excels time complexity of component automaton direct inversion, presented in the previous chapter. Hence, in the
public key cryptosystem FAPKC private key direct calculation from public key via composite automaton direct inversion
needs more time then private key direct calculation from public key via composite automaton componentwise inversion.

Figure 9. The composite automaton componentwise inversion time complexity.

4.2 Ciphertext-only Attack

When attacker has access to the ciphertexts of several plaintexts, which are encrypted with the same encryption algorithm,
then he has a possibility to perform ciphertext-only attack. In the public key cryptosystem FAPKC attacker’s main goal is to
obtain appropriate plaintext nxxx 10 from the possessed ciphertext nzzz 10 , where ix and iz are input
and output symbols of the encryption automaton respectively. Ciphertext-only attack for FAPKC is reduced to the problem
of solving a system of linear equations over GF(2). This system of linear equations is formed from definition formula of
encryption automaton with arguments xxx ,,1,0  [11].

01

1011
100

01

101

10

xCxCxCz

xCxCxCz
xC-xCxCz -









 ,,,i 210 (18)

The current system of linear equations is formed from the equation (12) where the arguments are , n input elements
x,,1x,0x  of the encryption finite automaton. Solving of the system of linear equations (18) is simplified when it is

	 (18)

The current system of linear equations is formed from the equation (12) where the arguments are τ, τ < n input elements
x(0), x(1),...,x(τ) of the encryption finite automaton. Solving of the system of linear equations (18) is simplified when it is
made out only for the first τ input elements. For the complete detection of the plaintext x(0)x(1)...x(n), is formed the system
of linear equations (18) not only for the first but also for next τ input elements.

Cj( j = 0,1,2,K,τ)are l ×l -dimensional coefficient matrices over GF(2) in the system of linear equations (18), that are uniquely
determine encryption finite automaton. Input elements x(0),x(1),K,x(τ)are only unknowns in this system of linear equations,
as the encryption finite automaton and so the coefficient matrices Cj are public knowledge. Thereby, plaintext detection via
ciphertext-only attack is reduced to the problem of solving the system of τ linear equations with τ unknowns.

Time necessary to attacker for ciphertext-only attack against FAPKC is estimated via time complexity of solving the system
of τ linear equations with τ unknowns [4]. Hence, time complexity of ciphertext-only attack for FAPKC is equal:

()3T = τΘ 	 (19)

Solving the system of linear equations over the field GF(2) is not an intractable problem for the moderate amount of argu-
ments [8]. The arguments of the system of linear equations (18) are input elements x(0), x(1),...,x(τ) of the encryption finite
automaton, which is defined by the equation (12). The amount of arguments in the equation (12) is depends on delay τ of the
encryption finite automaton. Delay τ of the encryption finite automaton is equal to τ = τ1

+τ2

, where τ1 is delay of the compo-

nent automaton M1

, and τ2

is delay of the component automaton M2

, where M1 and M2 compose the encryption automaton.

From the equation (19) one can notice, that current FAPKC shortcoming against ciphertext-only attack is conditioned by
usage of linear finite automata with short delay τ. Finite automata short delay τ cause the small amount of arguments in the
system of linear equations over GF(2), that simplifies its solving. The above mentioned shortcoming of public key crypto-
system FAPKC is possible to eliminate by increasing the encryption automaton delay τ, that in turn leads to increasing of the
arguments of the equation (12). As a result, it makes difficult the solving of the system of linear equations (18).

Figure 10 shows the relation of ciphertext-only attack time complexity against the cryptosystem FAPKC and the encryption
composite automaton delay τ of current cryptosystem.

Thereby, as it is shown, the public key cryptosystem FAPKC stability against ciphertext-only attack depends on time com-
plexity of system of linear equation solving for τ unknowns and defines by the equation (19).

4.2 Chosen-plaintext Attack
Since the encryption algorithm of FAPKC is known for everyone, one may guess the possible plaintexts and encrypt them
easily. When the result of encrypting some guessed plaintext coincides with the ciphertext, the guessed plaintext is the vir-
tual plaintext. FAPKC is sequential and its block length is small in order to provide a small key size. But small block length
causes to the weakness of the cryptosystem for the divide and conquer attack. In fact, the guess process can be reduced to
guessing a piece of plaintext of length τ and deciding its first digit. That is, guess a value of the first τ digits of the plaintext
and encrypt it using the public key and compare the result with the first τ digits of the virtual ciphertext. If they coincide, the
process repeated for guessing next digit of the plaintext.

Different texts random selection, their encryption and comparison with available ciphertext is an intractable problem and
practically unsolvable problem. This complicates plaintext detection for the attacker. The mentioned problem is simplified in
the public key cryptosystem FAPKC, presented in Chapter 2. It is conditioned by the usage of finite automata which makes

	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 49

public key cryptosystem sequential. It means that each symbol encrypted via such cryptosystem includes information about
previously encrypted symbols. Finite automata public key cryptosystem is sequential because of finite automata behavior.
Chosen-plaintext attack against FAPKC is simplified for attacker also by the usage of small block size during block encryption
that leads to the increasing of the key size in the current cryptosystem. As a rule, the block size is defined by delay τ of the
encryption finite automaton. But the small key size causes the cryptosystem FAPKC vulnerability against chosen-plaintext
attack because of the possibility to apply divide and conquer principle. As it is noticed, plaintext detection in public key
cryptosystem FAPKC can be reduced to the detection of the part of the plaintext. In fact, the guess process can be reduced to
guessing a piece of plaintext of length τ = τ0+...+τn

 and deciding its first digit. That is, guess a value of the first τ = τ0

+...+τn

digits of the plaintext first, and then encrypt it using the public key and compare the result with the first τ = τ0+...+τn

 digits

of the virtual ciphertext. If they coincide, then the first digit of the guessed plaintext is indeed the first digit of the virtual
plaintext. Repeat this process for guessing next digit of the plaintext, and so on [12].
Schematic representation of chosen-plaintext attack against FAPKC is introduced in Figure 11. The length of guessing piece
of the plaintext is defined by the encryption finite automaton delay.
Since in finite automata public key cryptosystem the plaintext is encrypted by the usage of finite automaton, then the plaintext
sequential detection is reduced to the sequential search problem, allowing to find output sequence of finite automata from its

 10

made out only for the first input elements. For the complete detection of the plaintext nxxx 10 , is formed the
system of linear equations (18) not only for the first but also for next input elements.

 ,,2,1,0 jC j are ll -dimensional coefficient matrices over GF(2) in the system of linear equations (18),

that are uniquely determine encryption finite automaton. Input elements x,,1x,0x  are only unknowns in this system
of linear equations, as the encryption finite automaton and so the coefficient matrices jC are public knowledge. Thereby,
plaintext detection via ciphertext-only attack is reduced to the problem of solving the system of linear equations with
unknowns.
Time necessary to attacker for ciphertext-only attack against FAPKC is estimated via time complexity of solving the system
of linear equations with unknowns [4]. Hence, time complexity of ciphertext-only attack for FAPKC is equal:

 3 (19)
Solving the system of linear equations over the field 2GF is not an intractable problem for the moderate amount of
arguments [8]. The arguments of the system of linear equations (18) are input elements x,,1x,0x  of the encryption
finite automaton, which is defined by the equation (12). The amount of arguments in the equation (12) is depends on delay

 of the encryption finite automaton. Delay of the encryption finite automaton is equal to 21 , where 1 is delay
of the component automaton 1M , and 2 is delay of the component automaton 2M , where 1M and 2M compose the
encryption automaton.
From the equation (19) one can notice, that current FAPKC shortcoming against ciphertext-only attack is conditioned by
usage of linear finite automata with short delay . Finite automata short delay cause the small amount of arguments in
the system of linear equations over 2GF , that simplifies its solving. The above mentioned shortcoming of public key
cryptosystem FAPKC is possible to eliminate by increasing the encryption automaton delay , that in turn leads to
increasing of the arguments of the equation (12) . As a result, it makes difficult the solving of the system of linear equations
(18).
Figure 10 shows the relation of ciphertext-only attack time complexity against the cryptosystem FAPKC and the encryption
composite automaton delay of current cryptosystem.

Figure 10. Time Complexity of the Ciphertext-only attack.

Thereby, as it is shown, the public key cryptosystem FAPKC stability against ciphertext-only attack depends on time
complexity of system of linear equation solving for unknowns and defines by the equation (19).

Figure 10. Time Complexity of the Ciphertext-only attack

 11

4.2 Chosen-plaintext Attack

Since the encryption algorithm of FAPKC is known for everyone, one may guess the possible plaintexts and encrypt them
easily. When the result of encrypting some guessed plaintext coincides with the ciphertext, the guessed plaintext is the
virtual plaintext. FAPKC is sequential and its block length is small in order to provide a small key size. But small block
length causes to the weakness of the cryptosystem for the divide and conquer attack. In fact, the guess process can be
reduced to guessing a piece of plaintext of length and deciding its first digit. That is, guess a value of the first digits of
the plaintext and encrypt it using the public key and compare the result with the first digits of the virtual ciphertext. If
they coincide, the process repeated for guessing next digit of the plaintext.
Different texts random selection, their encryption and comparison with available ciphertext is an intractable problem and
practically unsolvable problem. This complicates plaintext detection for the attacker. The mentioned problem is simplified
in the public key cryptosystem FAPKC, presented in Chapter 2. It is conditioned by the usage of finite automata which
makes public key cryptosystem sequential. It means that each symbol encrypted via such cryptosystem includes information
about previously encrypted symbols. Finite automata public key cryptosystem is sequential because of finite automata
behavior. Chosen-plaintext attack against FAPKC is simplified for attacker also by the usage of small block size during
block encryption that leads to the increasing of the key size in the current cryptosystem. As a rule, the block size is defined
by delay of the encryption finite automaton. But the small key size causes the cryptosystem FAPKC vulnerability against
chosen-plaintext attack because of the possibility to apply divide and conquer principle. As it is noticed, plaintext detection
in public key cryptosystem FAPKC can be reduced to the detection of the part of the plaintext. In fact, the guess process can
be reduced to guessing a piece of plaintext of length n0 and deciding its first digit. That is, guess a value of the
first n0 digits of the plaintext first, and then encrypt it using the public key and compare the result with the first

n0 digits of the virtual ciphertext. If they coincide, then the first digit of the guessed plaintext is indeed the first
digit of the virtual plaintext. Repeat this process for guessing next digit of the plaintext, and so on [12].
Schematic representation of chosen-plaintext attack against FAPKC is introduced in Figure 11. The length of guessing piece
of the plaintext is defined by the encryption finite automaton delay.

'
0x

'
1x 

'
1x 'x '

1x 
'
lx

 0x 1x  1x x 1x
 lx

'
0y

'
1y 

'
1y

 0y 1y  1y y  ly

Figure 11. Schematic representation of chosen-plaintext attack against FAPKC.

Since in finite automata public key cryptosystem the plaintext is encrypted by the usage of finite automaton, then the
plaintext sequential detection is reduced to the sequential search problem, allowing to find output sequence of finite
automata from its input sequence of length . For sequential search algorithm description is examined the finite automaton

X,Y,S, ,M . It is assumed, that attacker knows the initial state 0s of the finite automaton M and its output sequence

yyy 10 . The main goal of attacker is the finding of finite automaton M input sequence xxx 10 . The sequential
search algorithm to find an input sequence from an output sequence is the like of the following, where the input data is the
stat s of automaton M and an output sequence yyy 10 , and the output data is an input sequence xxx 10 :

M

Figure 11. Schematic representation of chosen-plaintext attack against FAPKC

50	 Journal of Information Security Research    Volume 1  Number 2   June 2010

input sequence of length τ . For sequential search algorithm description is examined the finite automaton M =〈 X,Y,S,δ,λ〉 . It
is assumed, that attacker knows the initial state s0

of the finite automaton M and its output sequence y0

y1...yτ

. The main goal of

attacker is the finding of finite automaton M input sequence x0

x1...xτ

. The sequential search algorithm to find an input sequence

from an output sequence is the like of the following, where the input data is the stat s of automaton M and an output sequence
y0

y1...yτ, and the output data is an input sequence x0

x1...xτ

:

1.	 Assume, that i = 0.

2.	 Identify with Xs,x′0 ,x′1,...,x′i-1 = {x|x ∈ X,yi = λ(δ(s0,x′0 ,x′1,...,x′i-1),x)} in the case of i > 0 , or with {x|x ∈ X,yi = λ(s0,x)} otherwise.

3.	 If Xs,x′0 ,x′1,...,x′i-1 ≠ ∅, then choose an element in it as x′i , delete this element from the set. Increase i by 1 and go to the Step
4, otherwise, decrease i by 1 and go to the Step 5.

4.	 If i >τ , then the output sequence x′0 ,x′1,...,x′i-1 is the desired sequence x0x1Lxτ

, and the further operations is stopped. Oth-

erwise, go to the Step 2.
5.	 If i ≥ 0, go to the Step 3. Otherwise, prompt failure information and the further operations are stopped.

The presented algorithm implements backtracking, that is during each unsuccessful outcome make the jump to the previ-
ous state.

It is convenient to understand the execution of this algorithm, by means of the tree ТМ,s0,y0 ,...,yτ, presented in the Figure 12.

The input data of the algorithm is the initial state s and the output sequence y0

y1... yτ

. The purpose of the algorithm is to figure

out the arc label sequence of input sequanece x0x1...xτ

 from the paths with longth τ+1 in the tree ТМ,s0,y0 ,...,yτ. To find one of the

paths of length τ +1 in ТМ,s0,y0 ,...,yτ the algorithm attempts to exhaust all possible paths from the root to leaves. Whenever the level
of a searched leaf is less than τ +1, i.e., the path is not one of the longest, the search process comes back until an arc which is
not searched yet is met, then the search process goes forward again. Whenever the level of a searched leaf is τ +1, i.e., the path
from the root to this leaf is the longest, the search process finishes and the arc label sequence of this path is the output. As a
result, the detected sequence of arcs is the desired sequence, that leads from the input element x0 to the input element xτ

. The

amount of passed arcs in during sequential search algorithm ТМ,s0,y0 ,...,yτ shows the search amount in the tree.

Since chosen-plaintext attack against FAPKC reduced to finite automaton tree sequential search problem where search depth
is τ , time complexity of chosen-plaintext attack against FAPKC is estimated via tree search time complexity. The last one
is equal to:

 12

1. Assume, that 0i .

2. Identify with ,x,...,x,x,xsX,yxxX '
i

''
i,...,x,xs,x '

i
'' 1100

110
 in the case of 0i , or with

xsyXxx i ,, 0 otherwise.

3. If '
i

'' ,...,x,x,xsX
1100

, then choose an element in it as '
ix , delete this element from the set. Increase i by

1 and go to the Step 4, otherwise, decrease i by 1 and go to the Step 5.

4. If i , then the output sequence '
i

'' ...xxx 110 is the desired sequence xxx 10 , and the further
operations is stopped. Otherwise, go to the Step 2.

5. If 0i , go to the Step 3. Otherwise, prompt failure information and the further operations are stopped.
The presented algorithm implements backtracking, that is during each unsuccessful outcome make the jump to the previous
state.
It is convenient to understand the execution of this algorithm, by means of the tree ,...,y,y,s 00

, presented in the Figure 12.

Figure 12. Work tree yys ,...,,, 00
of the finite automaton M .

The input data of the algorithm is the initial state s and the output sequence yyy 10 . The purpose of the algorithm is to
figure out the arc label sequence of input sequanece xxx 10 from the paths with longth 1 in the tree ,...,y,y,s 00

.

To find one of the paths of length 1 in ,...,y,y,s 00
 the algorithm attempts to exhaust all possible paths from the root to

leaves. Whenever the level of a searched leaf is less than 1 , i.e., the path is not one of the longest, the search process
comes back until an arc which is not searched yet is met, then the search process goes forward again. Whenever the level of
a searched leaf is 1 , i.e., the path from the root to this leaf is the longest, the search process finishes and the arc label
sequence of this path is the output. As a result, the detected sequence of arcs is the desired sequence, that leads from the
input element 0x to the input element x . The amount of passed arcs in yys ,...,,, 0

 during sequential search algorithm

shows the search amount in the tree.
Since chosen-plaintext attack against FAPKC reduced to finite automaton tree sequential search problem where search depth
is , time complexity of chosen-plaintext attack against FAPKC is estimated via tree search time complexity. The last one
is equal to:

 (20)
Time complexity behavior of the chosen-plaintext attack against the public key cryptosystem FAPKC due to increasing the
value of encryption finite automaton is presented in Figure 13.

x1 /<s, y2> x1 /<s, y1> x8 /<s, y1>

x0 /<s, y5> x1 /<s, y2> x0 /<s, y3> x2 /<s, y2> x2 /<s, y1>

<s0, y0>

1

2

x -1 /<s, y5> x /<s, y >
x /<s, y >

x -2 /<s, y1>

 l

Figure 12. Work tree ТМ,s0,y0 ,...,yτ of the finite automaton M

	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 51

()T = τΘ 	 (20)

Time complexity behavior of the chosen-plaintext attack against the public key cryptosystem FAPKC due to increasing the
value τ of encryption finite automaton is presented in Figure 13.

As it is shown in this chapter, the public key cryptosystem FAPKC stability against chosen-plaintext attack depends on time
complexity of sequential search in the input tree of the encryption finite automaton and the stability is defined by the equa-
tion (2.12).

5. Contrastive Analysis of Cryptanalytic Attacks on FAPKC

Cryptanalysis of the FAPKC cited above allows to estimate the cryptosystem and to detect its vulnerabilities against exam-
ined types of attack. Consequently, taking into account discovered vulnerabilities, it is possible to define basic objectives of
strong public key cryptosystem construction based on finite automata.

In order to analyze findings of the performed attacks on the FAPKC it is necessary to compare their time complexities. On the
assumption of the large spread of time complexities of performed attacks, they are presented in the logarithmic scale on the
Figure 14. Logarithmic scale allows to show the evident differences between time complexities of attacks. As one can see from
the Figure 14 time complexity of the private key direct calculation from public key attack in both direct and componentwise
inversion of the encryption automaton excels time complexities of ciphertext-only attack and chosen-plaintext attack.

From the equations (9) and (16) it is obvious that the private key direct calculation from the public key attack via both methods
of the encryption automaton inversion can be implemented with the exponential time algorithms. Implementation algorithms
of ciphertext-only attack and chosen-plaintext attack are polynomial-time algorithms, i. e., they have the polynomial time
complexities, as it is shown in the equations (19) and (20).

As it is visible from the Figure 14, the spread of the attacks implemented via polynomial algorithm and attacks implemented via
exponential algorithms, changes its behavior for small amount of input data. In the cryptosystem FAPKC input data depends
on the value of τ. For instance, time complexity function of the private key direct calculation from the public key attack via
encryption automaton componentwise inversion has a better behavior then time complexity function of the ciphertext-only
attack for τ ≤ 3 . For mentioned values these attacks can be performed in reasonable time without any special computation
resources. Hence, here and after attack on FAPKC will be examined only for definite value of τ.

 13

Figure 13. Time Complexity of the Chosen-plaintext attack.

As it is shown in this chapter, the public key cryptosystem FAPKC stability against chosen-plaintext attack depends on time
complexity of sequential search in the input tree of the encryption finite automaton and the stability is defined by the
equation (2.12).

5 Contrastive Analysis of Cryptanalytic Attacks on FAPKC

Cryptanalysis of the FAPKC cited above allows to estimate the cryptosystem and to detect its vulnerabilities against
examined types of attack. Consequently, taking into account discovered vulnerabilities, it is possible to define basic
objectives of strong public key cryptosystem construction based on finite automata.
In order to analyze findings of the performed attacks on the FAPKC it is necessary to compare their time complexities. On
the assumption of the large spread of time complexities of performed attacks, they are presented in the logarithmic scale on
the Figure 14. Logarithmic scale allows to show the evident differences between time complexities of attacks.
As one can see from the Figure 14 time complexity of the private key direct calculation from public key attack in both direct
and componentwise inversion of the encryption automaton excels time complexities of ciphertext-only attack and chosen-
plaintext attack.
From the equations (9) and (16) it is obvious that the private key direct calculation from the public key attack via both
methods of the encryption automaton inversion can be implemented with the exponential time algorithms. Implementation
algorithms of ciphertext-only attack and chosen-plaintext attack are polynomial-time algorithms, i. e., they have the
polynomial time complexities, as it is shown in the equations (19) and (20).
As it is visible from the Figure 14, the spread of the attacks implemented via polynomial algorithm and attacks implemented
via exponential algorithms, changes its behavior for small amount of input data. In the cryptosystem FAPKC input data
depends on the value of . For instance, time complexity function of the private key direct calculation from the public key
attack via encryption automaton componentwise inversion has a better behavior then time complexity function of the
ciphertext-only attack for 3 . For mentioned values these attacks can be performed in reasonable time without any
special computation resources. Hence, here and after attack on FAPKC will be examined only for definite value of .

Figure 13. Time Complexity of the Chosen-plaintext attack

52	 Journal of Information Security Research    Volume 1  Number 2   June 2010

The private key direct calculation from the public key with both methods of encryption automaton inversion is implemented
via exponential time algorithms. Therefore, it is not vital to increase FAPKC resistance against attack of private key’s direct
calculation from public key. FAPKC resistance is reasonable to increase against ciphertext-only attack and chosen-plaintext
attack, as their algorithms are polynomial-time.

6. Modified FAPKC

The weakness of FAPKC against chosen plaintext attack is conditioned by usage of nonlinear WIFA with delay 0 and linear
WIFA with delay τ.

Chosen plaintext attack for FAPKC is reduced to the problem of solving a system of nonlinear equations (18) over GF(2),
that is known to be very hard if the number of its arguments is large. To increase the number of arguments in (12), the delay
τ of the encryption automaton is increased. The delay τ of the encryption automaton is: τ = 0 +τ , where 0 is the delay value
of the nonlinear component automaton, and τ is the delay value of the linear component automaton.

First way to increase the encryption automaton delay τ is to change the nonlinear component automaton into a WIFA with delay
τl

. Second way is to make the component linear WIFA automaton’s delay longer by adding new states to its state alphabet.

 14

Figure 14. Time complexities contention of different attack against FAPKC.

The private key direct calculation from the public key with both methods of encryption automaton inversion is implemented
via exponential time algorithms. Therefore, it is not vital to increase FAPKC resistance against attack of private key’s direct
calculation from public key. FAPKC resistance is reasonable to increase against ciphertext-only attack and chosen-plaintext
attack, as their algorithms are polynomial-time.

6 Modified FAPKC

The weakness of FAPKC against chosen plaintext attack is conditioned by usage of nonlinear WIFA with delay 0 and linear
WIFA with delay .
Chosen plaintext attack for FAPKC is reduced to the problem of solving a system of nonlinear equations (18) over GF(2),
that is known to be very hard if the number of its arguments is large. To increase the number of arguments in (12), the delay

 of the encryption automaton is increased. The delay of the encryption automaton is: 0 , where 0 is the delay
value of the nonlinear component automaton, and is the delay value of the linear component automaton.
First way to increase the encryption automaton delay is to change the nonlinear component automaton into a WIFA with
delay l . Second way is to make the component linear WIFA automaton’s delay longer by adding new states to its state
alphabet.

finite automaton componentwise inversion

finite automaton direct inversion

chosen-plaintext attack

ciphertext-only attack

Figure 14. Time complexities contention of different attack against FAPKC

	 Journal of Information Security Research    Volume 1  Number 2   June 2010	 53

6.1 Nonlinear WIFA modification

The definition formula of the automaton Mnl is
1

0 1
1

r r

jj
j j

y(i) B x(i j) B x(i j) x(i j)
− ∼

= =

= − + − − −°∑ ∑ , where Bj

(j

= 0,1,2...,r) j = 0 j =1 and Bj

(j = 1,2...,r-1) are l ×l coefficient matrices over GF(2), and B0 is an invertible matrix.

The operation ° is defined to be a nonlinear operation over GF(2).

To modify the nonlinear WIFA with delay 0 to a nonlinear WIFA with delay τ , we redefine the operation ° such a way to get
nonlinear WIFA with delay τ . Definition formula will be

0 1

... 0,1, 2...,
r r

jj
j j

y(i) B x(i j) B x(i j) x(i j) i
τ

τ
+ ∼

= =

= − + − − − =°°∑ ∑ 	 (21)

Apparently, Mnl now is a nonlinear WIFA with delay τ . The equation (21) now can be rewritten as follows:
2

0 1

... 0,1,2...,
r r

jj
j j

z(i) C x(i j) C x(i j) x(i j) i
τ τ

τ
+ + ∼

= =

= − + − − − =°°∑ ∑ 	 (22)

6.2 Linear WIFA modification
New states can be added between any two states to have a longer delay for the linear automaton Ml . The resultant automaton
has to be equivalent to the source automaton according to the Definition 1.

Definition 1. Let M1

=< X,Y,S1,δ1,λ1

> and M2

=< X,Y,S2,δ2,λ2

> be a pair of automata. States s1

∈S1

and s2

∈S2

are said to be

equivalent if for any x(0)x(1)... x(m), such that x(0)x(1)... x(m) ∈ X,

λ1(s1,x(0),x(1),...,x(m)) = λ2(s2,x(0),x(1),...,x(m))

Finite automata M1 and M2 are said to be equivalent if for any state s1

∈ S1, there exists a state s2

∈ S2

equivalent to s1

and for

any s2

∈ S2

, there exists s1

∈S1

equivalent to s2.

Figure 15 shows a pair of equivalent automata with different number of states.

 15

6.1. Nonlinear WIFA modification

The definition formula of the automaton nlM is
1

10

1~r

j
j

r

j
j)jx(ij)x(iBj)x(iBy(i)  , where ...,r) ,, (jB j 210

and)...,r-,(jB j 121~ are ll coefficient matrices over GF(2), and B0 is an invertible matrix. The operation ° is defined to
be a nonlinear operation over GF(2).
To modify the nonlinear WIFA with delay 0 to a nonlinear WIFA with delay , we redefine the operation ° such a way to
get nonlinear WIFA with delay . Definition formula will be

r

j
j

r

j
j)jx(ij)x(iBj)x(iBy(i)

10

~
 ...,,i 210 , (21)

Apparently, nlM now is a nonlinear WIFA with delay . The equation (21) now can be rewritten as follows:

)jx(ij)x(iCj)x(iCz(i)
r

j
j

r

j
j 

2

10

~
, ...,,i 210 (22)

6.2. Linear WIFA modification

New states can be added between any two states to have a longer delay for the linear automaton lM . The resultant
automaton has to be equivalent to the source automaton according to the Definition 1.
Definition 1. Let 1111 ,,X,Y,SM and 2222 ,,X,Y,SM be a pair of automata. States 11 Ss and 22 Ss are
said to be equivalent if for any mx1x0x  , such that Xmx1x0x  ,

)),...,x(m)),x(,x((s)),...,x(m)),x(,x((s 1010 2211
Finite automata 1M and 2M are said to be equivalent if for any state 11 Ss , there exists a state 22 Ss equivalent to 1s
and for any 22 Ss , there exists 11 Ss equivalent to 2s .
Figure 15 shows a pair of equivalent automata with different number of states.

Figure 15. Graphical and tabular representation of two equivalent automata.

One can make sure that the same input supplied to both automata produces the same output.

x=0 A B x=1 A B
A 0 1 A 1 0
B 1 0 B 0 1

0 (0)

A B1 (1) 1 (0)

0 (1)̀

C

0 (0) 1 (0)̀

x=0 A B C x=1 A B C
 A 0 0 1 A 1 0 0
 B 1 0 0 B 0 1 0
 C 1 0 0 C 0 1 0

A B

0 (1)

1 (1)

0 (0)

1 (0)

Figure 15. Graphical and tabular representation of two equivalent automata

54	 Journal of Information Security Research    Volume 1  Number 2   June 2010

One can make sure that the same input supplied to both automata produces the same output.

It is known that linear automaton is weak invertible with delay at most

1
,

2

S (S)
τ

−
= 	 (23)

where S is the automaton state alphabet [3].

Equation (23) shows that with increasing S the value of τ is being increased quadratically.

Thus, replacing the linear automaton Ml

by an equivalent automaton with larger state alphabet, we can obtain longer delay τ .

The above mentioned modification increases the resultant delay τ of the encryption automaton.

7. Conclusion

The presented finite automata public key cryptosystem is secure against the chosen plaintext attack and the exhaustive
search attack. Security of FAPKC is mainly based on the growth of public key size due to increasing delays of component
automata. The proposed modifications of both component nonlinear and linear automata complicate the process of breaking
the cryptosystem allowing to design stronger FAPKC.

References

[1]	 Margarov, G. I., Chopuryan, S. H., Alaverdyan, Y. (2007). Fast Public Key Algorithm Based on Finite Automata, In:
Proc. of the Int’ Conf. on Computer Science and Information Technologies (CSIT’07), Yerevan, p. 112-115.

[2]	 Chopuryan, Y. (2009). The Stability of Trapdoor One Way Function Based on Finite Automata, In: Proc. of the 2009 Int’
Conf. on Security & Management (WORLDCOMP’09), V.2, CSREA Press, Las Vegas Nevada, USA, p. 429-433.

[3]	 Arbib, M. A. (1969). Theories of Abstract Automat, Prentice-Hall, Englewood Cliffs, NJ, p.414.
[4]	 Tao, R. (2009). Finite Automata and Application to Cryptography, Springer Berlin Heidelberg, 2009
[5]	 Salomaa, A. (1985). Computation and Automata, Cambridge University Press, 1985, p.284.
[6]	 Schneier B. (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C. Second Edition. N.Y.: John

Wiley & Sons, 1996, p.760.
[7]	 Garey, M.R., Johnson, D.S. (1979). Computer and Intractability (A Guide to the Theory of NP-completeness), W. H.

Freeman and Co., San Francisco.
[8]	 Kohavi, Z. (1978). Switching and Finite Automata Theory. McGraw-Hill.
[9]	 Tao, R. J., Chen, S. H. (1997). A necessary condition on invertibility of finite automata, Science in China, Ser. E, p.

637-643.
[10]	 Levenshtein, S. H. (1962).On the Inversion of Finite Automata, Doklady Akad. Nauk SSSR, 147 (6) 1300-1303.
[11]	 Margarov, G., Chopuryan, S. (2009). Strong Finite Automata Public Key Cryptosystem, In: Proc. of the Second

International Conference on the Applications of Digital Information and Web Technologies (ICADIWT’09), London,
United Kingdom August 2009.

[12]	 Bao, F., Igarashi, Y (1995). Break Finite Automata Public Key Cryptosystem, ICALP, p. 147-158.

