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ABSTRACT: Natural Metaheuristics have been widely used to solve difficult optimization problems. This is mainly due to
their ability to converge in reasonable time. However, they remain inefficient where handling large instances. Current
research tends to improve these techniques in order to produce hybrid algorithms able to solve these problems. The encryption
information has long been a challenge for cryptanalysis. It was always attacked by classical techniques and heuristics but
results are limited.

In this paper, an approach of a PSO algorithm was proposed for cryptanalysis of classical encryption. After comparison with
other heuristics in the same category, we show experimentally the superiority of PSO on the instances tested and underline
the difficulties encountered.
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1. Introduction

Cryptanalysis allows to extract readable messages from an encrypted texts without knowing the decryption key. Therefore,
being abusive, but contributes to the improvement of data security. Ciphering existed since antiquity. Cryptanalysis by brute
force was the first used in this area. Currently, it’s no longer effective of its abundant resources consumption. With the arrival
of calculators, other alternatives have developed, linear and differential cryptanalysis was among them. They are able to break
certain encryption in an acceptable time but are ineffective against modern cryptography seen their specificity and reduced
setup. Research tends toward heuristics methods that have the ability to handle more large and diversity of instances.

Taking part of natural heuristics, the particle swarm optimization (PSO for short) have the ability to achieve an acceptable solution with
minimal resources [1]. In this context, one approach has been implemented and tested on several instances from classical cryptography
algorithms. The paper also includes a comparative performance of similar algorithms. It is organized into five sections: the first being
the introduction to the problem, the second provides an overview of the PSO, properties and alternatives. The third section illustrates
the problem of cryptanalysis and various forms of resolution. The fourth section presents the model and implementation of the
approach. A study comparison with some other results in the literature is presented in the fifth section, followed by a brief discussion
and conclusion of work.
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2. Natural algorithms

2.1 Introduction
The heuristics let satisfy at least one of the two goals of information technology: the generation of solutions with maximum benefit and
minimal resources consumption, however, no proof of optimality of the solution can be pronounced [2].

The PSO, part natural heuristic algorithms dates back to 1995 [3]. They are inspired by social behavior of organisms that live in groups,
including the swarming flocks of birds, fish, or colonies of bees. PSO evolve with a population of individuals called particles which,
at each time interval, the best individuals (according to a predefined criterion as finding food), in their activity, are followed by other
towards the better goal. PSO algorithms provide optimal solutions or close to optimal for multidimensional numerical problems [4],
optimization [5], automation [6], biometrics identification [7] and other mathematical and scientific fields [8].

2.2 Characteristics
2.2.1 Principle
The population of swarm moves in space research respecting two rules:

Cohesion: not to hurt neighbors or move away from the group,

Alignment: each particle moves in the same way with a relative speed and direction as the whole of collective.

These basic rules allow the attraction and repulsion of each individual and maintain the stability of group movement which tends to
converge towards an optimum goal represented by a cost function.

2.2.2 Algorithm
In the search space R n, each particle i, at a given time t, has a history of activities called coefficients of confidence [9]. It has a position
xi

t, the best position in its neighborhood pi
t, and the position gt of particle in the best position of all. At each time t, the particle i moves

with a speed vi
t ∈ R n  to a new position calculated based on values xi,  pi and g according to  equation [11]:

vi ←←←←← civi + cp( pi - x
t ) + cg( g - xi )

The simplified algorithm of the particle path will be as follows:

(1)

Initialize data:  population: m, positions xi (i=1..n), iter_max
                         Search space: n nods
For each particle i,
  Evaluation cost function f(xi)
  Initialize pi ← xi
  If ( f ( pi ) > f (g)) update the swarm’s best known position: g ← pi
  Initialize the particle’s velocity: vi ~ U(vmin,vmax)
Repeat:
  For each particle i:
     Pick random numbers: ci, cp, cg ~ U(Cmin,Cmax)
    Update particle’s velocity: vi

t+1 ← civi
t + cp(pi

t - xi
t) + cg(g

t - xi
t)

    Update the particle’s position: xi
t+1 ← xi

t + vi
t+1

   If ( f (xi) > f ( pi )) do
    Update the particle’s best known position: pi ← xi
    If ( f ( pi ) > f ( g)) update the swarm’s best known position: g ← pi
 Endfor
Until (g holds the best found solution) or (iter_max)
Report results(g, f ( g))
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2.2.3 Variantes
The basic PSO has been designed for continuous instances. Given the diversity of combinatorial problems, other alternatives have
been developed in order to solve other kinds of data, such:

Discrete-PSO [10]: where the particle velocity is limited to the interval [0,1]. Binary-PSO [11] is a variant where each particle moves
independently of the others, this principle avoids blocking in local minima. Multivalued-PSO, version designed to solve combinatorial
multidimensional problems. Genetic-SO [12], a hybrid technique that combines the advantages of PSO and genetic algorithms to
overcome the premature convergence of the process. Other versions deduced from hybridization with such heuristic techniques,
including DMS-PSO [13], GPSO [14], OPHL [15], etc.

2.3 State of art
In literature, there is various studies for modeling and development of PSO algorithms: [16] showed that DPSO is not as effective in
regard of some specific algorithms, but on the other hand, it is easily adaptable to any combinatorial problem for which does not have
a dominant algorithm. [17] Developed a version of DPSO to vary the value of the speed. [18] has developed a model of CPSO using only
four parameters. It’s allowed to converge quickly. [19] Proposed a hybrid version called MHPSO which integrates the genetic crossing
within PSO algorithm in order to expand the exploration of the search space. The approach was designed to solve multidimensional
problems. [20] Proposed a version in which all particles are mutual attracted.

3. Classical cryptanalysis

3.1 Definition
Let A = {a0 , a1 , .., an-1}  and  B = {b0 , b1 , .., bn-1}} are two sets of ASCII or binary characters and k, a bijective function k: A →
B, which transforms two characters ai, aj  of A to bi. k is called encryption key, it transform a plaintext A to a ciphertext B. The
inverse function k-1, is called decryption key. The transformation (or encryption) can be a simple substitution, transposition, or
a complex mathematical or logical function. Various classic encryption algorithms are available in literature: Vegeneire Cipher
[21], Hill encryption [22], affine cipher [23] and various versions of polyalphabetic substitutions. The following example illustrates
a cryptogram using a table: The first two entries are the encryption key. Other entries are respectively plain and cipher messages.

A B C D E FG H I J K L M N O P Q R S T U V W X Y Z
P O I U Y T R E Z A M S K J H G F D L Q N B V C X W
C R Y P T A N A L Y S I S P E R S U B S T I T U T IO N
I D X G Q P J P S X L Z L G Y D L N O L Q Z Q N Q Z H J

k

A
B

Table I.  Résults (B) of cifering of  (A)  using k

3.2 Statistics tables
The frequency of occurrence of any character in the alphabet in a given text is different from one language to another. The frequency
of appearance of the alphabet in an English text (unigram) is presented in the order ETAON RISHD LFCMU GYPWB VKXJQ Z [24].
In other words, the letter E is the one that appears most often in a text. The frequency of occurrence of pairs of letters (bigrams) is given
by the following order: TH HE ER RE IN ON AN AT  ND ES OF TE ED IT OR AS TO HI and occurrence of letters within the same word
is presented in the order: LL EE TT SS OO RR NN PP FF CC. Other specifics regarding the redundancy of certain groups of characters
were found. For example: the appearance of the pair NT is often more important than BT, while the pair JX or identical vowels is rarely
used.

Various other projects are present in the literature [25] [26]. The ICE is the most popular. It includes statistics from several
variants of the English language from a dozen English-speaking countries [27]. In general, the average statistics of appearance
of characters were compiled in tables, called character frequencies tables. They are used as references when decrypting texts to
determine the nature of characters according to their occurrence in text. A model is shown in the following example:

3.3 Cost function
When decrypting, the difference between the frequency of the initial character and the one with which it was swapped is even
smaller than text produced is close to the plaintext. The cost function most used is illustrated by the equation:
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cost(k) = 1- abs (       [D(i) - C(i)] +       [D(i, j) - C(i, j)] )∑ ∑
i =1

n

i =1

n
(2)

Char Freq. Char Freq. Char Freq.
  a 8.167   j 0.153   s 6.327
  b 1.492   k 0.772   t 9.056
  c 2.782   l 4.025   u 2.758
  d 4.253  m 2.406   v 0.978
  e 12.702  n 6.749   w 2.360
  f 2.228  o 7.507   x 0.150
  g 2.015  p 1.929   y 1.974
  h 6.094  q 0.095   z 0.074
  i 6.966   r 5.987

Table 2. Character frequency [28]

where k is the deciphering key. D, C denote the portions of the ciphertext and plaintext produced after swapping characters (i) and
pairs of character (i, j). The function will be 1 if  k  is much to encryption key.

3. 4 Importance of classical cryptanalysis
Modern symmetric cryptosystems uses concepts of classical encryption in order to develop their keys by using Feistel networks [29].
The AES algorithm [30] uses a product of substitution and combination. The IDEA algorithm [31], uses three operators: substitution,
permutation and XOR. The RC algorithm uses random permutation operations and rotation. The SEAL algorithm uses various logical
operations including XOR and a binary transposition. However, all bases of classical encryption are used in building blocks of modern
ciphers, which means that the classical ciphers are usually first regarded when it comes to develop new cryptanalysis attacks [32].

4.  Approch proposed

4.1 Wave of Swarm of particles (WSOP)
It is a variant of PSO proposed by [33] [34] used to avoid blocking around local minima. Its principle is the existence of the concept of
wave, a factor of excitement that will be exercised on certain portions of the search space in order to disperse grouped particles and thus
to extend the exploration away from local minima.

4.2 Difficulties in implementing the WSOP
Analysis of PSO variants described in above shows the WSOP is so far from being the best suited algorithm to solve the classical
cryptanalysis problems. Several other discrete versions would do likewise. However, cryptanalysis using frequency tables has some
specific characteristics illustrated by the following:

- A performance of a high function cost does not imply a totally decrypted text because the characters have an approximate equal costs
and are interchangeable (m/w, c/u, x/d, ..) ,

- The fact to swap two wrong characters will change cost function. This fact allow particle to follow, in sometimes the wrong direction
and perturb their neighbors.

4.3 Modelization of WSOP
The advantage of this algorithm compared with other PSO, since it is semi-automatic, in other words, the factor of excitement Ef
supervises the movement of particles. It records their parameters during the course. It intervene when particle loop around a finite
number of nodes many times or a digression of the cost function happens. Its role is to force the concerned particles to change
direction in order to avoid minima local.
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4.4 Material and method
4.4.1 Initial data and initialization
The field of exploration is a strongly connected graph of n nodes where each node corresponds to a character. The population
is composed of a 1) swarm of m particles (keys). Each particle has a position xi, a vilocity vi, a coefficient of enertie ci. and its best
position pi . Ef  parameters are: Wm, number of blocked particles and  Witer, number of suspecious blocking iterations.

4.4.2 Iterations
The displacement of particle i on the arc (xi , yi) corresponds to a key generation kx

t,  obtained by swapping characters x and y
and compute cost of the decipherd  text function f (xi

t).

Since at each node, the particle will choice its next move according to equation (1), the factor of excitation Ef  records for each
particle its new choice xi and check it in particle history. It also checks the number of valid blocks in the decrypted text (bigrams
and trigrams as mentioned in III.B).

Factor of excitation intervenes if  xi
  appears (Witer ) times in (Wm) particles history or there is a digression  of valid blocks  (Witer)

times also.

4.4.3 End of process
Il happens when f (g) reached a fixed value (0.8..1) in general, or after a fixed number of iterations.

4.5 Algorithm WSOP
The proposed algorithm describes the course of particles (without local minima) in order to optimize cost function. It ilustrate as
follows:

Inputs: population : m, positions: xi  (i = 1..n), max_iterations
            particles parameters : vi  ci  pi  (i = 1..m), g, cp ,cg
Initialize (for all particles)
           positions  xi

0

           best neighbours  pi
0 ← xi

0

        pathHistory [1..max_iterations] ← xi
0

       Nbr_valid_blocs0  ← 0
       Pick random Wave iteration  Witer  (∈ U|1 ,Wmax|)

  Repeat
 For each particle i :

Initialize particle’s velocity: vi
 0 (∈ U|bup ,blo|):

   Pick random numbers: ci ,cp ,cg (∈ U(0,Cmax))
   Update particle’s parameters:

vi
t+1 ← civi

t + cp (pi
t-xi

t) +  cg (g
t-xt))

         xi
t+1 ← xi

t + vi
t

             pathHistory[] ← xi
t+1

            compute (Nbr_valid_blocst+1)
     If ( f (xi

 t+1)>f ( pi ))Update particle’s best position: pi ← xi
 t+1

       If ( f ( pi) > f ( g)) update swarm’s best position: g ← pi
          If(xi

 t+1) in pathHistory[]  for Witer  times OR
       If(Nbr_valid_blocst+1) <<(Nbr_valid_blocst) swap (ci ,cp ,cg )
    Until ( g holds the best found solution) or (max_iterations).
Output: g: best decryption key
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5. Experiments & Conclusion

5.1 Data of experiments
Experiments were carried out on different ASCII text passages extracted from ICE [35]. These were previously encrypted with
some classical algorithms such Vigéneire, Polybius and Affine. A simplified model of Feistel network was also tested.

5.2 Evaluation of Algorithm
Treatment was operated with a C++ code on a PC 2.2 GHz and using some standard values   of constants that found in literature:
particles 20 to 30, rate constants between 0.5 and 1.5 and a text of 200 characters. An average of the results obtained after 150
iterations are presented in the following table.

Algorithm of Ciphertext         Key length       Cost           Avg. much   Time
                                                                                                Chars (max 27)      (ms)
Polyalph. Substitution                  4                    0.85      21.11     850
Transposition                  8                    0.88      21.78     1220
Vigéneire                  6                    0.92        25                     800
Delastelle                5 x 5        0.58     18.35     1058
Feistel network  (2 rounds)         XOR % 26      0.43        15                     1520

Table 3. Résults of cryptanalysis by Wpso

A similar study was conducted with other heuristics, ACO[36], AG[37] and GPSO for a laps time of 2000 ms. The number of much
char obtained are illustrated by the following table:

Polyalph. Substitution            8          15                      9
Vigéneire            8          18                    10
Polybe/Delastelle          10          21                    13
Feistel network(2 rounds)       7          13                      8

 Genetic       Group             ACO
Algorithm  SOAlgorithm      Algorithm

Algorithm of
  ciphertext

Number of much Chars (max 27)

Table 4. Résults of cryptanalysis by other natural heuristics

6.3 Synthesis with literature
Various heuristics have been subject of experimentation in the attacks of ciphers. The results were varied depending on many
circumstances: nature of the texts chosen, encryption algorithm, statistical tables used and the values   of parameters of the
algorithms tested. The most significant conclusions of this work are summarized by the following:

• The results presented by [38] using genetic algorithms were interesting: fully decrypted texts. Nevertheless, the size of these
texts seems quite large: 2000 characters, which exceeds the size most common encrypted messages exchanged across networks,
which is, statistically between 90 to 300 characters.

• A comparison between GA and TabuSearch algorithms was conducted by [39], The results were in favor of the GA in testing
small texts (less than 800 characters). Otherwise, it is the TS that becames well. However, AG is more consuming in resource.

• H. Hadi [40] proposed a hybrid approach using PSO and IPSO for cryptanalysis of substitution cipher. The tests gave a result
almost identical for both versions: a cost function of 0.9 was reached. However the text was too short: twenty characters. The
study found the best parameter values   used.

• Ganapathi [41] had presented a comparison between GA and PSO to search for Vigéneire key encryption. Tests showed that the
technique PSO may be substantially
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• better than the AG. The experiments were made on 200 characters of text encrypted with keys contains less than 10 characters.

6.4 Conclusion
In this paper, we presented a comparison of some natural heuristics algorithms. Experimentation data is a set of texts encrypted
by various classical algorithms. The synthesis of the tests proved that the PSO algorithms can give better results than other
revolutionary algorithms of the same class.

The proposed approach is a modified WSOP algorithm which associates with a control module. It allows to supervise continuously
the path of the particles and thus to avoid any blockage in a local minima, challenge difficult to avoid in most cases.
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