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ABSTRACT: Anomalies in computer networks has increased in the last decades and raised concern to create techniques to
identify the unusual traffic patterns. This research aims to use data mining techniques in order to correctly identify these
anomalies. Weka is a collection of machine learning algorithms for data mining tasks which was used to identify and analyze
the anomalies of a data set called SPAMBASE  in order to improve this environment.
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1. Introduction

Spam email damaging effects are currently investigated widely and the literature has extensive studies on it. As the spammers
indulge in breaking the filters using sophisticated techniques, the researchers also generate newer measures to counter the
attacks. The efforts include many tools and techniques and one significant among them is the use of artificial neural networks
and data mining processes with decision trees in order to minimize the spam e-mails’ damaging effects. Data Mining as a domain
experiences new focus on varied applications across disciplines. It has potential in the spam detection.

Data mining is a part of KDD (Knowledge Discovery in Data bases) process which aims to select techniques to be used to find
patterns in these data set in order to find correlated patterns about a specific interest [1] [2].

The steps for knowledge discovery in KDD [1] [2] can be presented in a cognitive, interactive and exploratory way based in the
following stages: defining the type of knowledge to search for, defining a group or subgroup of data to search for, pre-
processing, reduction of the data set, data mining, interpretation of the pattern results and applying the knowledge discovered.

2. Methodology

This research applies data mining techniques in a labeled data set i.e. a collection of spam and non-spam emails called SPAMBASE
[3], which contains 4, 601 tuples previously identified – 1, 813 classified as non-spam (39.40% of the base) and 2,788
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classified as spam (60.60% of the base) e-mails. Weka was used in order to analyze and quantify the types of spam e-mails
presented in this data set helping the network management process.

This experiment used a public data set called SPAMBASE, which contains fifty seven data attributes and one classification
attribute to determine the type of the content. This data set was created in order to improve security software in computer
networks as attacks using spam e-mails can cause losses such as unnecessary time spending, cost increasing, productivity
loss, improper or offensive content and financial loss caused by fraud [4].

The UCI Machine Learning Repository has developed the Spambase Database’ which is located at its data bed. [5]

2.1 Weka Tool
Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning software written in Java, developed
at the University of Waikato, New Zealand. Weka is free software available under the GNU General Public License, which
contains a collection of visualization tools and algorithms for data analysis and predictive modeling, together with graphical
user interfaces for easy access to this functionality [6].

Weka supports several standard data mining tasks, more specifically, data preprocessing, clustering, classification, regression,
visualization, and feature selection. All of Weka’s techniques are predicated on the assumption that the data is available as a
single flat file or relation, where each data point is described by a fixed number of attributes (normally, numeric or nominal
attributes, but some other attribute types are also supported) [7] [8].

The Preprocess panel has facilities for importing data from a database, a CSV file, etc., and for preprocessing this data using a
so-called filtering algorithm. These filters can be used to transform the data (e.g., turning numeric attributes into discrete ones)
and make it possible to delete instances and attributes according to specific criteria [7].

The Classify panel enables the user to apply classification and regression algorithms to the resulting dataset, to estimate the
accuracy of the resulting predictive model, and to visualize erroneous predictions, ROC curves, etc., or the model itself.

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attributes.

2.2 The SPAMBASE Database
To analyze and quantify the anomalies presented in the SPAMBASE data set, data mining techniques were used through Weka.
The data set could be loaded into Weka in an Attribute-Relation File Format file (ARFF). In this file, each column contains the
type of data, I.e. attribute, for instance: a number or character and in each line there is a data with its respective data delimited
by commas.

This research uses the SPAMBASE data set converted in CSV – Comma Separated Values and then converted into ARFF,
compatible with Weka data miner. All the fifty-seven attributes – as each attribute represents a word and its frequency in a given
email – all the SPAMBASE data set were selected as they have relevant characteristics for the tests.

2.3 The Classifiers
To execute the data mining, Discretize filter was applied first and then two techniques were used separately: (J48) decision tree
algorithm and the Artificial Neural Network (ANN) Multi-Layer Perceptron (MLP) commonly used in data mining classification
[9] [10].

2.3.1 Decision Tree (J48)
J48 is an open source Java implementation of the C4.5 algorithm in the Weka data mining tool. C4.5 is an algorithm used to
generate a decision tree, which can be used for statistical classification [11].

C4.5 builds decision trees using the concept of information entropy. The training data is a set of already classified samples. Each
sample (Si) consists of a p-dimensional vector, where the Xj represent attributes or features of the sample, as well as the class in
which (Si) falls [12].

At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets



   30                   Journal of Information Security Research  Volume  5   Number  1   March   2014

enriched in one class or the other. The splitting criterion is the normalized information gain. The attribute with the highest
normalized information gain is chosen to make the decision. The C4.5 algorithm then recourses on the smaller sub lists [13].

2.3.2 Radial-Basis Function (RBF)
Radial basis function network (RBF) have been successfully employed in different Machine Learning problems. The use of
different radial basis functions in RBF has been reported in the literature [24].

RBF network are a class of Artificial Neural Networks where RBF are used to compute the activation of artificial neurons. RBF
networks have been successfully employed in real function approximation and pattern recognition problems. In general, RBF
networks are associated with architectures with two layers, where the hidden layer employs RBF to compute the activation oh
the neurons are a class of real-valued functions where its output depends on the distance between the input and the center of
the RBF.

However the author [25] describe that RBF network are class of the Weka tool that implements a normalized Gaussian radial basis
function network. It uses the k-means clustering algorithm to provide the basis functions and learns either a logistic regression
(discrete class problems) or linear regression (numeric class problems) on top of that. Symmetric multivariate Gaussians are fit
to the data from each cluster. If the class is nominal it uses the given number of clusters per class. It standardizes all numeric
attributes to zero mean and unit variance [25] [26].

2.3.3 Multi-Layer Perceptron (MLP)
In order to classify, the Artificial Neural Network (ANN) Multi-Layer Perceptron (MLP), was used, with a supervised learning
paradigm [14] [15].

The ANN tries to calculate the output layer error and sends the result backwards to the hidden layers to update the weight
values in all layers through backpropagation [14].

The training process has two phases: the forward propagation, used to generate the propagation’s output activations of a
training pattern’s input and the backward propagation, which uses a given output and the network output to update the weight
values in all layers [14]. The MLP network will only be considered trained when the error rate among the outputs is reduced to
an accepting value, i.e., this value depends on how the algorithm is used.

According to Haykin [14], the algorithm follow any steps like Initialization, Training sample presentation, Propagation and
Backpropagation.

2.4 Standard Statistic Methods
A standard statistic method called Cross Validation [143] was chosen to assess the algorithms. Cross validation divides the data
set randomly into a training group formed by 75% of the data set and into a test group formed by 25% of the data set. The
samples are then divided into 10 partitions mutually exclusive. The procedure is repeated in each partition. The assessment
degree of the classifier will be set this way to guarantee this method.

2.5 Classifier Performance Assessment
A result analyses technique called ROC Curve (Receiver Operating Characteristic) [16], developed by Metz [17], has been
used in order to assess the classifiers’ performance in similar researches.

This method presents a result that can only show two options, there are abnormalities or not. The tuple has an abnormality or
not. It is possible to have an affirmative or negative answer. In an affirmative case, (an abnormality is present) the result is a true
positive (TP). It occurs when there is an abnormality and it is possible to notice it; and a true negative (TN), when it is not
possible to notice an abnormality [18].

However, it is possible to interpret a normal data as an anomaly and the result will be false positive (FP), or to interpret an
anomaly as a normal data and the result will be false negative (FN).

Each point in the ROC Curve represents a different threshold between the fraction of true-positives and the fraction of false-
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positives, i.e., the ROC Curve is conceptually similar to a curve, which shows the relation between the test strength and the
probability to commit a mistake. Each point in the ROC Curve describes criteria to distinguish a normal data or an anomaly. These
are the operation points in the ROC Curve [18].

Precision is an index that indicates the fraction of correctly classified cases. Precision is calculated by sensibility and specificity
terms. Sensibility is a parameter, which indicates how many correct positive results occur, and specificity is a parameter, which
indicates how many incorrect positive results occur. This precision means enables trust ability of the information [18].

According to Metz [17], a ROC Curve represents the performance, which can be reached between sensibility and specificity in
a diagnosing system when the threshold is varied. A comparison between the systems can be done through the areas of the
curve in each system [15].

The Az area in the ROC Curve is one of the indexes more frequently used and it represents the correct results in the system
(classifier), i.e., the biggest the area, the greater is the correct results. This means that if the system is well weighted and highly
precise, the curve should be the nearest possible of the upper left part of the Cartesian ax, increasing the curve area. [19] [20] [21]
[22] [23].

3. Results

After completing the data mining using both algorithms, it was possible to achieve a great amount of correctly classified
instances using all the SPAMBASE data set with 4, 601 instances. It is important to highlight that the cross-validation method
was used to assess the tests.

The J48 algorithm presented a 92.76% rate of correctly classified instances, where 89.79% were classified as non-spam e-mails
and 93.34% were classified as spam e-mails according Table 1 and Az equal 0.941.

Spam           Non-spam                 Rate%

2602.32           185.68                      93.34%

185.11             1627.89                    89.79%

                     Average rate %         92.76%

Table 1. Confusion matrix – J48

The RBF neural network was set as follow: 57 input attributes, an intermediate, an output layer with 1 neuron, 2 classes. After the
RBF data mining was finished, it was possible to obtain 84, 30% rate of correctly classified instances where 89,99% rate of
correctly classified non-spam e-mails and 78, 60% rate of correctly classified spam e-mails showing Table 2, Az equal 0.92.

Spam           Non-spam            Rate%

2509                   279                   89.99%

388                     1425                 78.60%

                     Average rate %    84.30%

Table 2. Confusion matrix – RBF

The MLP neural network was set as follows: 57 input attributes, an intermediate layer with 68 neurons, an output layer with 1
neuron, 0.3 learning rate and 0.2 momentum. After the MLP data mining was finished, it was possible to obtain 93.89/% rate of
correctly classified instances where 93.93% rate of correctly classified non-spam e-mails and 93.87% rate of correctly classified
spam e-mails showing Table 3, Az 0.98.

Notice that we used the ROC curve (Receiver Operating Characteristics), which is a technique for analyzing the performance of
classifiers. The results are promising and we are encouraged to open further studies using the pilot results and outcome.
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4. Conclusion

Thus spam detection databases have potential in studying the spam attack. We have used this large dataset SPAMBASE, which
presents a collection of spam and non-spam e-mails and applied in this research. In this research, it was proposed to use all the
attributes of the data set. After using the Discretize filter and three data mining techniques – J48 decision tree, RBF and MLP
Neural Network. It was possible to obtain 92.76% rate of correctly classified instances with the J48 algorithm, 89,99% rate of
correctly classified instances with the RBF Neural Network and 93.89% rate of correctly classified instances with the MLP
Neural Network. Thus we have presented  the benefits of using these techniques to detect spam e-mails in computer networks.
It is important to highlight that the MLP Neural Network presented a greater rate of correctly classified instances due to its
generalization characteristics, concluding that it is currently the best data mining technique in detecting spam e-mails in this
moment.
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