EPlag: A Two Layer Source Code Plagiarism Detection System

Omer Ajmal, M. M. Saad Missen, Tazeen Hashmat, M. Moosa, Tenvir Ali (Q"
Dept. of Computer Science & 1T

ThelslamiaUniversity of Bahawal pur

Pakistan

{ omer.ajmal, saad.missen, muhammad.moosa, tenvir.ali} @iub.edu.pk, tazeen _hashmat@yahoo.com

ABSTRACT: In academic environments where students are partly evaluated on the assignments, it is necessary to discourage
the practice of copying assignments of other students. The detection of plagiarismin code fromlarge source code repositories,
manual detectionisfairly complex, if not impossible. Therefore, for fair evaluation there must be a fast, efficient and automated/
semi-automated way to detect the assignments copied. Source Code metrics can be used to detect the source code plagiarism
in programming assignments submitted by university students. In this paper we have developed a source code plagiarism
detection system and tried to improve the existing techniques by separating the suspected files and the non-plagiarized files,
thus reducing the dataset for further comparison. A number of source code metrics have been calculated, combined using
similarity detection formula to give an aggregate view of the source code metrics. After that the suspected files are separated
and then performed string-matching to detect the level of similarity.

Keywor ds: Plagirism Detection, Information Retrieval, Java, Greedy String Tiling
Received: 29 May 2014, Revised 8 July 2014, Accepted 18 July 2014

© 2014 DLINE. All Rights Reserved.

1. Introduction

Fair Evaluationisakey factor for the success of any educational system. Itisvital at al levels especially at higher educational
levels. If Fair Evaluationisto be done, the originality of thework must be determined. Students, worldwide, at higher education
are found to be involved in some forms of academic dishonesty [6, 7]. Programming courses are no exception. Students
plagiarize the programming assignments. They copy code segments from all sources available (internet, books, their class
fellowsand their seniors), thereby the dataset from which the plagiarism isto be detected increases. In this paper, we will restrict
to the two sources: assignments already submitted by the seniors and peers. Manual detection of such plagiarism at large scale
isfairly complex rather impossible. Thereisaneed for an efficient technique that detects the source code plagiarism and does
it with great performance.

A lot of work has been done on detecting plagiarism in programs. Some techniquesinvolved finding similarity based on source
code metrics (code lines, variables declared, total number of statements, total no. of variables, subprograms, input statements,
conditional statements, loop statements etc). The systems built on this technique are termed as attribute-counting systems.
Other methods include structured metrics techniques and some very successful systems (like JPlag, MOSS, and YAP series)
have been built using this technique. The underlying technique in such systems includes string matching, which is a costly
process. However, both of the techniques suffer from some disadvantages when used in isolation. The attribute-counting

Journal of Information Security Research Volume 5 Number 3 September 2014 107

systems are easy to implement but have low performance in detecting plagiarism as compared to the structure metric systems.
The structured metric systems which use string matching do not make up efficient systems when the data set islarge.

In this paper, we have combined the two techniques so that it radically improves the performance of such systems.

Our work isprimarily based on thework done by Andrew Granvillein hisreport submitted at University of Sheffieldin May 2002
[14].

Our system worksin two stages. In the first step we start with selecting source code file which we call seed file (or the original
file) from the dataset and rank the Top K “suspected” codefilesfrom the dataset by using source code metricstechniques. Inthe
second step, we compare the suspected file contents with the seed file through agreedy string tiling algorithm. Thefiles, whose
contents match to the seed file with similarity more than the threshold value (in our case we set it to 50%), arefinally said to be
plagiarized. The threshold valueis set by carefully analyzing the dataset. We will explain the selection of threshold in Section V,
Experimentation.

Theremaining part of the paper isorganized asfollows: Section Il presentsthe previouswork donein the same domain, Section
I11 describes our approach in detail, Section 1V explainsthe Prototype of the system, Section V presentsthe experiments, dataset
and the results, and Section VI describes the conclusion.

2. Related Work

There has been lot of work on plagiarism detection done by several researchers working in this domain. In this section, we
describe some major approaches proposed already.

Most of the approaches involve use of one of the very basic techniques called attribute-counting. In attribute counting a
program P may be considered as a sequence of tokens classified as either operators or operands: N1 is the number of operator
occurrences, N2 the number of operand occurrences, nl1 the number of distinct operators and n2 the number of distinct
operands. In[3] afour-tuple of (n1, n2, N1, N2) is assigned to each program such that programs with the same four-tuples are
considered suspicious[1]. In later [2]-[5] approaches, the attributes used were enhanced and were made to include code lines,
variables declared, total number of statements, total no. of variables, subprograms, input statements, conditional statements,
loop statements, call to sub programs and other more sophisticated approaches which includes information such as average
number of characters per line, the averageidentifier length, the number of reserved words, the conditional statement percentage
etc. While these attribute counting techniques are easy to implement, they do not make up high performance systemsin terms
of detecting source code plagiarism, especially when they are compared with the Structured Metric Systems. The structure
metric systemsrely on the structure of the program and some very successful systems like MOSS, YAP series and JPlag have
been built on thistechnique. A good review of web-based plagiarism detection methodsisgivenin[8][9]. In[10] the author uses
Latent Semantic Analysis, an information retrieval technique to extract semantic information and detects similar filesfrom the
data collection.

The systems which use attribute-counting or structure metrics suffer from two major limitations:

1) The system require one source/binary code file comparison with many (sometimesthousands or even more) files. Moreover,
to find the copied code segments most of the systems use string matching algorithms. The string-matching algorithms (like GST)
matches the contents of files; it can easily be imagined the performance of such systemswhich comparefiles’ contents having
thousands of lines of code and hundreds of files.

2) Thereisastrong need for having clusters of files rather than just having a* one-to-many” comparison.

Our system makes contribution to the first type of problems/limitations in the existing systems. We have tried to reduce the
dataset on which the string-matching algorithm works. We first reduce the dataset by separating the “suspected” files from
those which are not plagiarized. Next we apply the string matching algorithm to the reduced dataset. Our approach is presented
in the next section in detail.

108 Journal of Information Security Research Volume 5 Number 3 September 2014

3.Approach

Our system worksin two phases: 1) one-to-many comparison of source codefilesusing the code metrics calculated for eachfile.
This reduces the dataset and thus returns the “ suspected” files out of the hundreds or even thousands of source code files
submitted by the students as a solution to a programming assignment. 2) The contents of the files are compared using our own
implementation of the Greedy String Tiling algorithm.

1. Reducing the Dataset using Similarity detection through Source Code Metrics: In our system we cal culate source code
metricsfor each source codefilethat i s submitted as a solution to an assignment. The source code metrics we have used include:

1) McCabe' s Cyclomatic Complexity: Cyclomatic complexity (also called conditional complexity) isa software complexity
measure devel oped by Thomas J. McCabein 1976 [11], and it measuresthe no. of linearly independent paths of aprogram. The
two similar programswill have asimilar cyclomatic complexity value. We have used the CyVisimplementation to cal culate the
cyclomatic complexity of our programming assignments.

The remaining code metrics, although not very useful to detect plagiarism when used alone, can give someideaof copied files
when used with other metrics.

2) Count of L ogical lines: A logical line of codeistermed asalinewhich istermed asasingle statement in alanguage. In some
language (like Java, C++) astatement isterminated by asemi-colon. Somerelatively newer languageslike Python useline-break
and/or semi-colon to separate the statements from one another. We have cal cul ated the total number of logical linesin aprogram.

3) Count of Physical lines: A physical lineisalinein the source code. Two physical linesare separated by alinebreak in afile.
Onelogical line of code may be divided into two or more physical linesin aprogram and two or morelogical linesof code may
be combined into aphysical line.

4) Count of Comment lines: A comment lineisaline used for enhancing readability and doesNOT become part of thetrand ated
(compiled) output file. Different languages use different symbols (//, /**/, #) to separate source code statements from comment
lines.

5) Count of Blank lines: A blank/empty lineisalinewhich hasnotextinit.

6) Count of Keywor ds: In this paper wewill deal with the Java programs, so the keywordswe consider will berestricted to the
Javalanguage [12]. A keyword is areserved word and cannot be used as identifiersin a program.

7) Count of Fields(called instance/classvariablesin JAVA, datamembersin C++): In abject oriented programs, afieldisadata
member of aclass; it may be aninstance variable (existsin object’smemory) or astatic/classvariable (existsin shared memory
for all instances of aclass).

8) Count of M ethods (al so called member functionsin C++): A javamethod isamember function of aclass. Likeadatamember,
amethod may be instance method or a static/class method.

Note that for code metricsin 2-8 we have our own implementation of cal culating these code metrics.

Oncethe above code metrics are cal culated for each of the programsin our dataset, we find the similarity in thefileswithasimple
Euclidean Distance formula [13]. It is a distance between two points and is given by Pythagorean formula. It can be one-
dimensional, two-dimensional or N-dimensional. The dimensionswill be specified by the attributesyou are using for two points.
An object with two attributes can be thought of asa point in two-dimensional plane (onefor each attribute). Similarly, an object
with N-attributes can be thought of as apoint in N-dimensional space. The similarity between two pointsis calculated astheir
distancein an N-dimensional space. Theformulaisgiven by (1).

d(p,@)=d(@p=/3_ (. p)> @

Where p and g are two pointsin Euclidean n-space g, and p, are the axes of the two points (or the attributes of two objects) and
d (p, g) and d (q, p) are the distance from p to g and q to p respectively. Note that the two distances are equal. The two objects
which are more similar will have alow Euclidean distance value and the objects which are more different will have alarge

Journal of Information Security Research Volume 5 Number 3 September 2014 109

Euclidean distance value. In our system if p and g are two source filesand p, and g, represent the source-code metrics for the
two files respectively, the larger value of d means different files and lower values of d means similar files. If the attributes are
normalized (valuesareintherange 0—1), then similarity = (1 —distance). We define anumber “K” and select “ Top K” filesthat
are suspected to be plagiarized with a particular file (a one-to-many comparison). The larger the value of K the more chanceis
there to include all suspected files for further analysisi.e. string matching through GST. Now we have reduced our dataset to

only K files rather than hundreds or thousands of files being passed for string matching.

2. String matching through the Greedy Sring Tiling algorithm: The GST a gorithm [15] attemptsto compute the degree of
similarity between two files of the source code. These will be named the source and target files, where the target i s suspected of
being plagiarized from the source. The overall method worksin two stages. Thefirst one convertsthe source and target filesinto
token strings. The overall working of GST isgiven below:

1) Tokenization: The contents of the source and target files are divided into tokens. The Tokenizer ismade to do alot of tasks
that range from removing comments, strings constants, translating upper case lettersinto lower case to mapping of synonyms
toacommon form (e.g., double mapped to float) and like tasks. We limit our tokenizer to do the following:

a) Remove comments

b) Remove string constants

c¢) Translate upper case to lower case

d) Remove all tokensthat are not from the lexicon

2) Tiling: A Tileisaone-to-one pairing of asubstring from the sourcefile and asubstring from thetarget file[14]. Someimportant
definitionsrelated to GST algorithm are given below:

a) Minimum Match Length: It isanumber with potential tilesbelow thislength areignored. Analyzing our dataset we set it to
3

b) Maximum Match Length: ThisissimilartoaTile, butitisatemporary pairing of substrings between the source and target
files.

¢) TheDice ScoreFormula: The Dice Score Formulaisused to quantify the plagiarism scores. Theformulaisgiven by (2), where
sFile represents the Source File and tFile represents the Target File.

Our implementation of GST can deal with thefollowing level of changesin thetarget filethat is plagiarized from the sourcefile.
1. Changing comments or formatting

2. Changing identifiers

3. Changing the order of operandsin expressions

4. Changing data types

5. Replacing expressions by equivalents

6. Adding redundant statements or variables

7. Changing the structure of selection statements (nested IF and Switch — Case statements)

8. Changing the structure of iteration statements (for, while loops)

3) Quantifying the Similarity: The diceScore formulameasures the similarity by the fraction of tokens between the sourcefile
and target file that are covered by matches. It gives output between 0 and 1, where O represents no similarity and 1 represents
the equivalent files. Now we show with the following example [14] how it works. Consider the two files with minimum match
length=1.

Filel| inti; static doublej;

File2| staticdoublej; inti;

Table 1. SampleFilesfor Dice Score Formula

110 Journal of Information Security Research Volume 5 Number 3 September 2014

The two matching token sequences found between them are of int j, of length 3 and static double x, of length 4. Note that the
length of files 1 and 2is7 each. The diceScore formulacan beimplemented asfollows:

diceScore (sFile tFile)=2* (3+4)/7+7=1

The above equation showsthat thefiles areidentical although the sequence of tokensisdifferentin both files. The details of the
GST agorithm may beseenin[14] [15].

4.EPLAG Prototype

We have implemented the above mentioned approach by developing a prototype of the system. We have implemented it for two
types of users: Teachers and Students.

1. Teacher can do the following through his/her interface

a) Register into the system

b) Announces assignment for a course

¢) Views all submissions for an assignment that are submitted as solution for an assignment

d) Selectsaparticular solution submitted by astudent and viewsall Top K “suspected” filesthrough Step 1 (givenin Section 111-
1) of our approach.

€) Viewsthefinal resultsasfiles plagiarized from aparticular sourcefile. Thefinal resultsaredisplayed asalist of filessorted with
the percent similarity (1 means 100% and so on).

2. Student can do the following through his/her interface
a) Register into the system

b) Selects a particular course and submits solution for an assignment.
5. Experimentation

Our dataset consists of four assignments with 10 submissionsfor each assignment submitted for the course of Object Oriented
Programming using Javataught at The lslamiaUniversity of Bahawal pur during Spring 2010. Even our dataset was small but the
files on which we have tested were analyzed carefully to and they were found sufficient to uncover system performance. We
have selected the following from among many assignments that were given to the students during their course:

1. Binary Search

2. Merge Sort

3. Bubble Sort

4. A small Add and printing algorithm

Aswe have already mentioned that our system consists of two stages and we have discussed them in detail, now we will see
how our dataset works on the system.

Sep 1: Finding suspected fileswith similarity calculated through code-metrics: First of all we separated Top K (whereK =5)
submissions. These Top K submissions passed to Step 2, where we quantify the similarity using our implementation of GST
algorithm.

Sep 2: Findingthesimilarity of Top K fileswith theoriginal filebased on GST algorithm: We applied GST algorithm on the
Top K filesof the Step 1.Thefileswhose similarity isgreater than 50% (i.e. thethreshold valuein our case), we present them as
Plagiarized Filesto the user. The results of the system are given in Table 2. File 1, 2 and 3 represents the submissions against
which we calculated the similarity with original filefor each assignment. In binary search, the original file waswritten with all
logicinasingle method i.e. the main method. File 1 waswritten with the following logic:

Journal of Information Security Research Volume 5 Number 3 September 2014 111

1) Separate methods for getting data from user, displaying it and printing the results.
2) Therelational operatorswere also different from original file (instead of a<buseb > a).

3) All identifierswere different from original file.

4) The whole method works with making object of the same class and calling methodsfor adding datato an array, getting value
to search from user, searching value in the array and printing the result.

This reduces the I,
hundreds or thousands
of filestoonly K files
that will be submitted
for further analysis of
plagiarism detection
| from GST alogorithm

FindsTopK smilar files
based on Code metrics

l

AppliesGST Algorithm on
K files%age similarly
based on GST algorithm

(Select a Course)

/
Announces
assignment

Teacher viewsall
submissions/solutions
for acourse

Selects an Assignment,
Viewsall solutionsand
ects a particular solution

:viewsalist of filesin the order
of similarly with aparticular fil
that acts as source

Similarity %age with the Original/Seed File

Assignment File 1 [Non-Plagiarized File] File 2 [Plagiarized] File 3 [Plagiarized]
Binary Search 17.78 49.38 -

Merge Sort 67.95 57.62 -

Bubble Sort 30.25 82.81 65.30

Simple add and print 45.16 86.26 -

Table 2. Results of EPlag System
act framework
S) ST Teacher ™ ff Student -‘

[Select acourse

L

Submits.classand .java
file as solution to
assignment

L

e e o e e

T L L L L L L L L LT

Figure1. EPlag System Flow

112

Journal of Information Security Research Volume 5

Number 3

September 2014

It may be noticed that with such major differencesin asmall code like Binary Search, the similarity valueisonly 17%.

File2 for Binary Search was developed from File 1 but all the code placed in single method again. Thistimethe similarity value
approaches 50%.

An exception can be seenin Table 2 where anon-plagiarized file of Merge sort givesthe Similarity of 67.95%. We have found that
thisis dueto following reasons:

a. Complexity of the algorithmsimplemented in thefiles.

b. Our prototype was not developed to detect all of the levels/types of changes that can be made in target files that are
plagiarized from the sourcefile.

c. It is also noticed that two programs that (are NOT plagiarized, but) implement the same algorithm; the similarity for such
programsis high.

6. Conclusion

In this work we have proposed a strategy for detecting source code plagiarism. Our strategy works in two phases, at the first
phase it selects a seed file from the dataset, compares the seed file with the rest of the dataset based on code metrics and filters
the Top files. These files are then passed to the second phase where their similarity is quantified by the greedy string tiling
algorithm. We have shown that by combining code metrics and string-tiling and dividing the system in two stages, it works
efficiently as shown by the results. We have also observed that while reducing the dataset through similarity based on code
metrics, the Recall of the system can be increased by including more complex code metrics. Moreover, it was also noticed that
if the system parameter K isincreased there are morefilesfor the processing of the GST a gorithm. Our system has one-to-many
comparison at both stages/layersi.e. similarity through the code-metrics and the GST algorithm. As part of our future work, we
areworking on techniquesto make the clusters of assignments based on the degree of similarity between submissionsthat will
help identifying study groups in the class.

2% Zigites (1€NGMH)
| sourceFileSze | + | targetFileSze | @

diceScore (sFile, tFile) =

References

[1] Moussiades, L., Vakali, A. (2005). PDetect: A Clustering Approach for Detecting Plagiarism in Source Code Datasets, The
Computer Journal, 48 (6) 651-661.

[2] Grier, S. (1981). A Tool that detects plagiarism in Pascal Programs, In: Proceedings of the twelfth SIGCSE technical symposium
on Computer science education, p. 15-20, NY.

[3] Donadson, J. L., Lancaster, A. M., Sposato, P. H. (1981). A Plagiarism Detection System, In: Proceedings of the twelfth
SIGCSE technical symposium on Computer science education, p. 21-25, NY.

[4] Faidhi, JA.W., Robinson, S. K. (1987). An empirical approach for detecting program similarity and plagiarism within a
university programming environment, Computers & Education, 11, p. 11-19.

[5] Allen, F. E., Cocke, J. (1976). A program data flow analysis procedure, Communications of theACM, 19, p. 137.

[6] Burrows, S. M. M. Tahaghoghi and J. Zobel. (2006). Efficient plagiarism detection for large code repositories, Software
Practice and Experience, 37, p. 151-175.

[7] Noh, Seo-Young, Sangwoo Kim, Gaida, S. K. (2004). An XML plagiarism detection model for procedural programming
languages. In: Proceedings of the 2" International Conference on Computer Science and itsApplications.

[8] Lukashenko, R., Graudina, V., Grundspenkis, J. (2007). Computer-Based Plagiarism Detection Methodsand Tools: An Overview,
In: Proceedings of International Conference on Computer System and Technologies.

[9] Culwin, F., Lancaster, T. (2000). A Review of Electronic Services for Plagiarism Detection in Student submissions, In:
Proceedings 8" Annual Conference on Teaching of Computing, Edinburgh.

Journal of Information Security Research Volume 5 Number 3 September 2014 113

[10] Cosma, G. (2008). An Approach to Source-Code Plagiarism Detection and I nvestigation Using Latent Semantic Analysis.
PhD Thesis, University of Warwick.

[11] MCCABE, T. J. A Complexity Measure. | EEE Transactions on Software Engineering SE-2 (4) 308 - 320.
[12] Java Language Keywords. from http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html.
[13] Deza, E. D. M., Michel. (2009). Encyclopediaof Distances, Springer: 94.

[14] Granville, A. (2002). Detecting Plagiarism in Java Code. Bachel or of Engineering with Honoursin Software Engineering,
Thesis, The University of Sheffield.

[15] Wise, Michael J. (1993). String similarity viagreedy string tiling and running Karp-Rabin matching. Online Preprint, Dec.

114 Journal of Information Security Research Volume 5 Number 3 September 2014

