
Journal of Information Security Research Volume 6 Number 1 March 2015 1

Kullback-Leibler Divergence Based Detection of Repackaged Android Malware

ABSTRACT: Android applications are widely used by millions of users to perform many activities. Unfortunately, legitimate
and popular applications are targeted by malware authors and they repackage the existing applications by injecting
additional code intended to perform malicious activities without the knowledge of end users. Thus, it is important to validate
applications for possible repackaging before their installation to safeguard end users. This paper presents the detection of
repackaged malware application based on Kullback-Leibler Divergence (KLD) metric. Our approach builds the population
distribution of a legitimate and suspected repackaged malware application based on a set of Smali opcode. A high KLD
value indicates that an application is dissimilar compared to an original application, hence likely a repackaged application.
The approach has been validated based on real-world malware samples and repackaging them to a legitimate application.
The results indicate that KLD values remain high for all the malware when repackaged within a legitimate application, and
hence can be used as a suitable metric for detection of new malware.

Keywords: Android Malware, Repackaging, Decompliler, Kullback-leibler Divergence, Smali Opcode, Information Theory

Received: 10 November 2014, Revised 13 December 2014, Accepted 18 December 2014

© 2015 DLINE. All Rights Reserved

1. Introduction

Android is an open source operating system for mobile devices. Currently Android occupies close to 80% of mobile device
market share [1]. We now highly dependent on Android devices as well as the applications that run on the platform. In particular,
many useful activities such as phone call, message sending, and game playing are performed with applications. End users rely
on Android market to obtain legitimate applications and install in their devices.

Unfortunately, popular Android applications are becoming the target of malware authors. In particular, there exists available
open source tools that can be used to download legitimate applications, disassemble these applications, insert with additional
malicious code intended to perform unauthorized activities, repackage the modified applications, and finally lure or distribute to
potential victims to download the applications and install in their devices. The modified and repackaged application if installed
by a victim in his/her phone, unwanted malicious activities take place without his/her knowledge.

A detailed study of a large set of malware applications and characteristics revealed that most of the well-known malware samples
belong to few popular legitimate applications available in the market [2]. In particular, three common types of malicious

Hossain Shahriar, Victor Clincy
Kennesaw State University
United States
hshahria@kennesaw.edu, vclincy@kennesaw.edu

 2 Journal of Information Security Research Volume 6 Number 1 March 2015

functionalities are added during repackaging (i) leveraging root level exploits to compromise Android security such as changing
device password, (ii) communicating with external servers controlled by attackers (in botnet) through SMS messages sent to
premium numbers, and (iii) making phone calls without user awareness. Given this, it is very important to check the possibility
of a repackaged application before an application is installed. This paper proposes an offline analysis for detecting repackaged
application given that we have an access to a legitimate application.

A large number of literature works have recently addressed Android malware from the perspective of classification [6, 7, 8] and
detection [9-19] based on anomalous activities or permission sets present in suspected applications. However, very few
research works [22, 23, 24] have addressed the issue of detecting repackaged Android malware applications considering the
availability of legitimate applications. Existing approaches statically analyzes the assembly code. These approaches suffer from
false positive warnings or generating numerous hashes based on opcode sets resulting in significant computation time. In this
paper, we propose metric-based detection of repackaged malware. In particular, we apply a popular measurement brought from
information theory called Kullback-Leibler Divergence (KLD) [25].

A repackaged application when compared to its original version of the application is different compared to the set of available
functionalities. We capture the difference by proposing a set of opcode (Smali) to compute needed population sets as part of
KLD. Our proposed opcodes consider the existing knowledge from malware detection domain such as method call invocation
that may send a message sneakingly as part of malware application functionality. To perform computation for missing elements
of a population set, we rely on back-off smoothing algorithms.

The approach has been performed for a number of malicious and repackaged android applications and compared with the known
legitimate version of the applications. The results seem promising, KDL values between malware and known good application
differs significantly.

The paper is organized as follows. Section II provides an overview of Android application packaging and related work. In
Section III, the proposed approach is discussed in details. Section IV discusses the experimental evaluation. Section V draws the
conclusions and discusses future work.

2. Overview and Related Work

2.1 Android Application Repackaging
Android application developer can package an application during release time by signing with a chosen private key that may
include a developers or organization identity [3]. The signature file stored in the package can be extracted to view the finger
prints such as MD5 and SHA1 hashes using toolsets (keytool, Jarsigner). An Android application is distributed as an apk file,
which can be later unzipped.

The zipped APK file includes the application code in DEX format (Dalvik Executable) which is similar to an assembly language
called Smali [30]. There exists open source tools (e.g., dex2jar[5], java decompiler [20], apktool [21]) that enables anyone to
disassemble an apk file and retrieve the opcode or Java source code from DEX to inspect, modify, and repackage with additional
code. Below we describe the steps to repackage an application using the apktool.

Step 1: Create a malicious application that implements an intended functionality. The attacker (malware author) then attempts to
invoke the functionality either due to system level event (e.g., receiving a phone call) or user level event (e.g., initiate a phone
call). The malicious application is converted to an apk file format.

Step 2: Use the apktool to disassemble the malicious applications and extract the directory containing classes implementing
malicious functionalities (all class files are present in the smali folder). The classes are represented as opcode format [30].

Step 3: Identify a suitable legitimate application to inject malicious activities. The legitimate application is disassembled using
the same tool, and the classes that perform malicious activities are inserted in appropriate directories. If additional permission
or library support is needed, the manifest file (AndroidManifest.xml) is modified appropriately. The modified application is
assembled again with the apktool and signed with a new key.

Step 4: The repackaged application is distributed over the network and potential victims are lured to install the malware on their
devices.

Journal of Information Security Research Volume 6 Number 1 March 2015 3

2.2 Related Works on Android Malware Detection
Crusselle et al. [22] detect repackaged applications by computing the data dependency graph (DDG) statically for each of the
methods statically. The graphs are compared for similarity for a known application to identify possible deviation due to
additional methods part of a repackaging malware application.

Li et al. [23] propose feature hashing-based technique. They first identify k-grams of various opcode sequence patterns within
each basic block and consider them as features. The presence or absence of each features in dex files are encoded in a vector.
All vectors obtained from files are merged to obtain the fingerprint of each application.

Zhou et al. [24] computes hash values for each local unit of opcode sequence of the classes (dex files). The long opcode is
handled by splitting into small units and computing hashes for each split unit. Finally, all individual hashes are combined into
one hash values. This way any additional inserted code is detected not only for the overall application, but locating the files or
specific instruction sets that are inserted by malware authors. The approach suffers from false positive if inserted dummy
opcode does not have any negative impact.

In contrast to these efforts, our proposed technique relies on metrics and computes them at application runtime in sandbox.

We are aware of several works that classify malware applications and their detection technique. Amamra et al. [7] perform a
survey on malware detection approaches highlighting two broader classes of malware detection: signature and anomaly-based.
Porter et al. [6] performed a survey on malicious characteristics for mobile device malware in 2011. Cooper et al. [8] classify
android malware detection techniques and comparatively identify the advantages and disadvantages including static analysis,
sandboxing, and machine learning approaches. Tanh et al. [29] characterize malware and demonstrate what end users can do to
check the presence of malware and prevent them.

Enck et al. [9] analyzed a large set of android applications and identified dataflow, structure, and semantic patterns. The dataflow
patterns identify whether any sensitive data information piece should not be sent to outside (e.g., IMEI, IMSI, ICC-ID). Enck et
al. [10] proposed a rule-based certification technique to check the presence of undesirable properties in applications suspected
as malware. The approach starts from general functionality requirements and then analyze whether required permissions can
create conflicting operations that are used in malware operations. Batyuk et al. [11] perform static analysis on binary code of
android applications (after decompressing APK and decoding Java bytecode into Smali assembly language. They look for the
presence of APIs that may be relevant of reading sensitive information (e.g., IMEI or device identifier, IMSI or subscriber
identifier, phone number, writing information to output stream). Yang et al. [16] detect money stealing malware by examining the
manifest file of android applications to see if billing permission is present. They look for specific method calls or APIs that
perform SMS messaging or calls to premium phone numbers. Permission files are analyzed in some approaches as part of
malware mitigation. Barrera et al. [12] apply selforganizing map-based learning to cluster permission sets. The study and
findings cannot be suitably applied for detecting malware as both malicious and benign applications may have similar type of
permissions. Similarly, Felt et al. [13] compared the permission system between Google Chrome and Google Android, and
performed a subjective analysis for improving permission model in general for security and user level awareness.

Nevertheless, detection technique of repackaged malware is still needed to identify malicious behaviors of malware, and our
approach is complementary to these earlier efforts.

Several works rely on live analysis of applications running in a sandbox environment. Enck et al. [14] analyze the dataflow of
Android application to detect privacy leak (whether sensitive data are being transferred to third parties related to advertisement
services). Blasing et al. [15] also develop a sandbox to perform dynamic analysis of suspected applications in an isolated
environment. They first perform static analysis to identify suspected APIs such as loading of a library method and class,
retrieving a list of directory, issuing a system level command like file deletion. The sandbox environment is used to launch
necessary activity to confirm those behaviors as part of malware detection. All these earlier efforts are complementary to our
proposed approach intended to build defense in-depth against repackaged malware.

3. Proposed Detection Approach

3.1 Kullback-Leibler Divergence (KLD) Computation
The Kullback-Leibler Distance (KLD) computes the divergence or distance between two given probability distributions. Let us

 4 Journal of Information Security Research Volume 6 Number 1 March 2015

KLD (P, Q) = ∑i pi* log2 (pi / qi) … (i)

Here, the following two constraints (Equations (ii) and (iii)) are satisfied:

∑i pi = 1 ... (ii)
∑i qi = 1 … (iii)

The KLD can be viewed as the additional message-length required when using a code based on the target distribution (Q)
compared to using a code based on the true distribution (P). Therefore, KLD is also denoted as the relative entropy between P
and Q in information theory. Note that KLD is not symmetric (i.e., KLD (P, Q) ≠ KLD (Q, P)). Also, KLD (P, Q) = 0, iff P = Q.

We start with a hypothesis that the Kullback-Leibler Divergence (KLD) between an original and repackaged malware application
should be a high number. On the other hand, the KLD among 2 legitimate applications from the same source, KLD value should
be very low.

To compute the KLD between two population sets (or probability distributions) need to be defined at the beginning. We focus
on a set of well-known opcode that may be common in both legitimate and repackaged malware applications. A set of opcode
elements are extracted from a known legitimate application to build P set. Now, given that we have a new application (Q), we
extract the similar opcode occurrence probability distribution and compute the divergence to detect possible repackaged
application.

The challenge of computing KLD (P, Q) is the term pi * log2 (pi / qi). It can be rewritten as subtraction of two terms: pi * log2(pi)
– pi * log2(qi). If pi or qi is zero (no occurrence of a specific opcode is observed), then the term becomes infinite, which results
in KLD (P, Q) to be infinite as well.

assume that P and Q represent two probability distributions, where P = {p1, ... , pn} and Q = {q1, ..., qn}. Then, the KLD is defined
as follows [25]:

Name Smalie opcode Description

f1 invoke-super Invokes the virtual method of
{parameter},methodtocall the immediate parent class

f2 invoke-static {parameters}, Invokes a static method with
methodtocall parameters.

f3 invoke-direct Invokes a method with
{parameter},methodtocall parameters without the virtual

 method resolution

f4 invoke-virtual Invokes a virtual method with
{parameter},methodtocall parameters.

f5 const-string vx,string_id Puts reference to a string
 constant identified by
 string_id into vx.

f6 new-instance vx, type Instantiates an object type and
 puts the reference of the
 newly created instance into vx

Table 1. Description of opcode for population set

Journal of Information Security Research Volume 6 Number 1 March 2015 5

To address this issue, we propose to apply a well-known smoothing technique known as constant back-off [26]. Here, all zero
probability values in both P and Q are replaced with a very negligible constant probability value and all the nonzero values are
equally subtracted with the same constant value proportionally so that Equations (ii) and (iii) are still satisfied. This simple step
results in two smoothed probability distributions that we denote as P′ (derived from P) and Q′ (derived from Q). So, we
essentially compute KLD (P′, Q′) to avoid infinity problem instead of KLD (P, Q).

3.2 Elements of Population Set for KLD Computation
Table 1 shows a set of Smali opcode that we propose to build population elements (f1 − f6). We consider six opcode: invokesuper,
invoke-static, invoke-direct, invoke-virtual, conststring, and new-instance. A description of the opcode is provided in Table 1.

For example, invoke-direct opcode invokes a method specified in the second argument while supplying a set of parameter
specified in the first argument. We choose these opcodes based on the literature knowledge that injected code by malware
authors are mostly doing a set of operations such as sending of SMS messages to premium numbers, probing device id and

public class HelloWorldActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

TextView text = new TextView(this);

text.setText(“Hello World, Android”);

setContentView(text);

}

}

Figure 1. Example Java code for legitimate application (P)

…

virtual methods

.method public onCreate(Landroid/os/Bundle;)V

…

invoke-super {p0, p1}, Landroid/app/Activity;-

>onCreate(Landroid/os/Bundle;)V

new-instance v0, Landroid/widget/TextView;

invoke-direct {v0, p0}, Landroid/widget/TextView;-

>(Landroid/content/Context;)V

.local v0, text:Landroid/widget/TextView;

const-string v1, “Hello World, Android”

invoke-virtual {v0, v1}, Landroid/widget/TextView;-

>setText(Ljava/lang/CharSequence;)V

invoke-virtual {p0, v0},

Lcom/test/helloworld/HelloWorldActivity;-

>setContentView(Landroid/view/View;)V

…

.end method

Figure 2. Example opcode for the legitimate application (P)

 6 Journal of Information Security Research Volume 6 Number 1 March 2015

sending the information over the network. All these operations require method call invocation as well as often defining constant
string values (const-string opcode) that may store attacker supplied information such as phone number.

3.3 Example of repackaged Malware Detection
We consider a legitimate example of Android application that is intended to display a simple message “hello world” in an
Activity class as shown in Figure 1. In this example, the onCreate() method displays the message by accessing the TextView
object and invoking the setText() method call.

public class HelloWorldActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

TextView text = new TextView(this);

text.setText(“Hello World, Android”);

setContentView(text);

SmsManager smsManager =

SmsManager.getDefault();

String phone = “1-900-222-3333”;

smsManager.sendTextMessage (phone, null, “sms”,

null, null);

}

}

Figure 2 shows a snapshot the Smali opcode that can be obtained based on a suitable reverse engineering tool such as apktool
[21]. We display and highlight the relevant opcode as part of population set (e.g., invoke-super) for the onCreate() method call
only due to space limitation.

Figure 3. Example Java code for a legitimate Android application (P)

Opcode Occurrence (pi) Smoothed (pi’)
invoke-super (f1) 1/4 1/4 - e/5
invoke-static (f2) 0/4 2e/4
invoke-direct (f3) 1/4 1/4 - e/5
invoke-virtual (f4) 2/4 2/4 - 2e/5
const-string (f5) 1/4 1/4 - e/5
new-instance (f6) 0/4 2e/4

Opcode Occurrence (qi) Smoothed (qi’)
invoke-super (f1) 1/8 1/8 - e/8
invoke-static (f2) 1/8 1/8 – e/8
invoke-direct (f3) 1/8 1/8 - e/8
invoke-virtual (f4) 2/8 2/8 - 2e/8
const-string (f5) 3/8 3/8 - 3e/8
new-instance (f6) 0/8 e

Table 2. Occurrence of population element from legitimate application (P)

Table 3. Occurrence of population element from repackaged malware application (Q)

Journal of Information Security Research Volume 6 Number 1 March 2015 7

…

virtual methods

.method public onCreate(Landroid/os/Bundle;)V

…

invoke-super {p0, p1}, Landroid/app/Activity;-

>onCreate(Landroid/os/Bundle;)V

…

new-instance v0, Landroid/widget/TextView;

…

invoke-direct {v0, p0}, Landroid/widget/TextView;-

>(Landroid/content/Context;)V

.local v0, text:Landroid/widget/TextView;

…

const-string v1, “Hello World, Android”

…

invoke-virtual {v0, v1}, Landroid/widget/TextView;-

>setText(Ljava/lang/CharSequence;)V

…

invoke-virtual {p0, v0},

Lcom/test/helloworld/HelloWorldActivity;-

>setContentView(Landroid/view/View;)V

…

invoke-virtual {p0}, Lcom/android/telephony/SmsManager;-

>getDefault () Landroid/content/Context;

const-string v1, “1-900-222-3333”

const/4 v2, 0x0

const-string v3, “sms”

const/4 v4, 0x0

const/4 v5, 0x0

invoke-static {v1, v2, v3, v4, v5},

Landroid/telephony/SmsManager;->sendTextMessage();

…

.end method

Figure 4. Example opcode of repackaged Android malware (Q)

Let us assume that a malware author injects an SMS message sending operation to a premium number right after the hello world
message display operation. The added Java code is shown and highlighted in Figure 3. Here, the SmsManager object is first
retrieved followed by invocation of the sendTextMessage() method call having five arguments including a premium phone
number (1-900-222- 3333) and a message (sms). Figure 4 shows the Smali opcode for the malware activity of sending a SMS
message to a premium number with the population elements highlighted (e.g., const-string, invoke-virtual).

 8 Journal of Information Security Research Volume 6 Number 1 March 2015

Element (i) p’i q’i log2(p’i) log2(q’i) p’i*log2(p’i/ q’i)

invoke-super (f1) 0.25000 0.12500 -2.00001 -3.00001 0.25000

invoke-static (f2) 0.00001 0.12500 -17.60964 -3.00001 -0.00007

invoke-direct (f3) 0.25000 0.12500 -2.00001 -3.00001 0.25000

invoke-virtual (f4) 0.50000 0.25000 -1.00001 -2.00001 0.50000

const-string (f5) 0.25000 0.37500 -2.00001 -1.41505 -0.14624

new-instance (f6) 0.00001 0.00001 -17.60964 -16.60964 -0.00001

Sum (p’i* log2(p’i /q’i)) 0.85367

Table 4. Computation of KLD (P’, Q’)
Based on Figure 2, we develop the occurrence probability of the population element to build P set as follows in Table 2. We also
show the smoothed probability values due to missing elements (f2, f4). Here, we assume e is a very small number having the value
of 0.00001. Similarly Table 3 computes Q set based on the repackaged application opcode with necessary smoothing.

Now, Table 4 shows the detailed steps of computing KLD (P’, Q’). The last row shows the value of KLD as 0.85367, which we can
consider high.

4. Evaluation
We evaluated our approach by using a set of malware samples obtained from the authors of [28] (Malgenomre project dataset).
The same benchmark has been widely used for related research work as well. From the benchmark, we randomly choose samples
from three malware families: DroidDream, Gone60, and Plankton. Table 5 shows brief characteristics of the malware family
along with number of samples we evaluate from each of the families. For example, DroidDram malware attempts to obtain
product ID, device type, language, country, and send them to a remote server via text message.

Malware Characteristics # of
family samples

DroidDream • Steal IMEI, IMSI, and phone 16
number
• Send information to remote
server via SMS messages

Gone60 • Steal IMEI, IMSI and phone 9
number
• Steal phone’s state: calls log,
SMS, contacts, account
• Send information to remote
server via SMS messages

Plankton • Change or copy file in external 11
storage
• Download and install apps
• Stolen location information:
GPS, Google, Country code
• Send information to remote
server via SMS messages

Table 5. Occurrence of population element from repackaged malware application (Q)

Journal of Information Security Research Volume 6 Number 1 March 2015 9

We first use the apktool to disassemble the obtained samples. Figure 5 shows an example snapshot of deassembling using the
apktool. We then search if original application for a given malware family is available in the Google market place or any sources
or not. Since all the legitimate applications infected with the three malware malware have been removed already from market
place, we build a small benign Android application (tip calculator that computes tip amount based on user supplied inputs). We
disssemble it and compute the P set. We then use the same apktool and inject the malware classes and add needed opcode to
trigger the classes, and then compute Q set from the new application package. We implement a Java class to automate the
computing of population set occurrence probability along with KLD computation.

Figure 5. Example run of apktool for decompling malware

Figure 6 shows an example of Smali code from a sample of Plankton malware application. Here, the opcode invokevirtual
(highlighted) are used to read information from an input stream and send it to an output file stream, which was part of download-
ing application from network stream to a local storage of the Android device.

line 163

.local v0, “b”:[B

invoke-virtual {v3, v0}, Ljava/io/InputStream;->read([B)I

.line 164

invoke-virtual {v2, v0}, Ljava/io/FileOutputStream;-

>write([B)V

Figure 6. An example of Smali code from a Plankton sample

We now discuss the obtained results. Figure 7 shows the histogram representing the population element set occurrence for P.

Figure 7. Population element distribution for P

 10 Journal of Information Security Research Volume 6 Number 1 March 2015

Figure 8 shows the population element distribution (f1 − f6) for all 16 samples of the DreamDroid family after they are injected into
P. For each of the repackaged applications, the occurrence of population elements (f1 − f6) increases significantly compared to
the legitimate application.

Figure 8. Population element distribution of DreamDroid samples (Q)

Figure 9. KLD values for various DreamDroid samples

Figure 10. KLD values for Plankton family samples

Journal of Information Security Research Volume 6 Number 1 March 2015 11

Figure 9 shows KLD (P, Q) values as part of detecting repackaged applications having DreamDroid malware. We rename 16
different malware samples from da-dp for reader’s convenience. Note that the highest KLD we observed was for the dc sample
(5.3382) and the lowest value was for the dd sample (0.1003). Similarly, Figures 10 and 11 display the obtained KLD values as we
detect the repackaged malware from Plankton and Gone60 family. The highest and lowest KLD values for Plankton family were
0.01968 and 6.1368, respectively. The highest and lowest KLD values for Gone60 family were 0.01484 and 4.1396, respectively.

Figure 11. KLD values for malware samples of Gone60
From the obtained data, a KDL threshold value can be chosen to detect new repackaged application. We suggest choosing KLD
values above zero.

5. Conclusions and Future Work

Repackaging tools are now highly available in today’s application development market and malware authors are taking full
advantages by downloading legitimate Android applications, injecting additional code, repackaging and luring potential victims
to install the modified applications in their devices. This paper proposes a metric-based approach using Kullback-Leibler
Distance (KLD) to identify altered legitimate applications and warn users for possible repackaging. We propose a set of
population element features to compute the occurrence probability of specific Smali opcode that may indicate likely malicious
activities such as method call invocation performing a message sending operation. The approach has been evaluated with a
set of sample malware applications from a real-world benchmark suite and the initial obtained results look promising. For all the
repackaging cases, we find that the KLD value exceeds zero and a higher number frequently appears. Our approach can provide
the footstep for developing more metric-based solution to combat against repackaged malware detection.

Our future works remains to include more elements for population building set as well as validating with more sample malwares.
We also plan to develop a network-based online detection approach to validate whether an application is repackaged or not for
a given legitimate application based on other suitable metrics from information theoretic and data compression domains.

References

[1] Lomas, N. (2014). Android Still Growing Market Share By Winning First Time Smartphone Users, May 2014, Accessed from
from http://techcrunch.com/2014/05/06/android-still-growingmarket- share-by-winning-first-time-smartphone-users/

[2] Zhou, Y., Jiang, X. (2012). Dissecting Android Malware: Characterization and Evolution, In: Proceeding of IEEE Symposium
on Security and Privacy, Oakland, CA, USA, May, p. 95-109.

[3] Signing Android Applications, Accessed from http://developer.android.com/tools/publishing/appsigning. html

[4] Repackaged Applications, Blog report from University of Lousiana at Lafayette, Accessed from http://ulsrl.org/repackaged-
applications/

[5] Dex2jar, Accessed from https://code.google.com/p/dex2jar/

[6] Felt, A., Finifter, M., Chin, E., Hanna, S., Wagner, D. (2011). A Survey of Mobile Malware in the Wild, Proc. of the ACM
Workshop Security and Privacy in Mobile Devices (SPMD), 2011, p. 3-14.

[7] Amamra, A., Talhi, C., Robert, J. (2012). Smartphone Malware Detection: From a Survey Towards Taxonomy, Proc. of 7th
International Conference on Malicious and Unwanted Software (MALWARE), October 2012, Puerto Rico, USA, p. 79-86.

 12 Journal of Information Security Research Volume 6 Number 1 March 2015

[8] Cooper, V., Shahriar, H., Haddad, H. (2014). A Survey of Android Malware Characteristics and Mitigation Techniques,” Proc.
of the 11th International Conference on Information Technology: New Generations (ITNG), IEEE CPS, Las Vegas, USA, April
2014, p. 327-332.

[9] Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.(2011). A Study of Android Application Security, Proc. of USENIX Security
Symposium, August.

[10] Enck, W., Ongtang, M., McDaniel, P., On Lightweight Mobile Phone Application Certification, Proc. 16th ACM Conf.
Computer and Communications Security (CCS 09), ACM, 2009, p. 235-245.

[11] Batyuk, L., Herpich, M., Camtepe, S., Raddatz, K., Schmidt, A., Albayrak, S. (2011). Using Static Analysis for Automatic
Assessment and Mitigation of Unwanted and Malicious Activities within Android Applications, In:Proceedings of 6th

International Conference on Malicious and Unwanted Software (MALWARE), October, p. 66-72.

[12] Barrera, D., Kayacik, H., Oorchot, P., Somayaji, A. (2010). A Methodology for Empirical Analysis of Permission-Based
Security Models and Its Application to Android, In: Proceeding 17th ACM Conf. Computer and Communications Security
(CCS), p. 73-84.

[13] Felt, A., Greenwood, K., Wagner, D. (2011). The Effectiveness of Application Permissions, In:Proceedings of the 2nd

USENIX Conference on Web Application Development (WebApps).

[14] Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A. (2010). TaintDroid: An Information-Flow Tracking
System for Real-Time Privacy Monitoring on Smartphones, Proc. 9th USENIX Symposium Operating Systems Design and
Implementation (OSDI).

[15] Blasing, T., Batyuk, L., Schmidt, A., Camtepe, S., Albayrak, S. (2010). An Android Application Sandbox System for Suspicious
Software Detection, In: Proceedings of 5th IEEE Malicious and Unwanted Software, p. 55-62.

[16] C. Yang, V. Yegneswaran, P. Porras, and G. Gu, “Detecting Money-Stealing Apps in Alternative Android Markets, In:
Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS), October 2012, Raleigh, North
Carolina, USA, p. 1034-1036.

[17] Zhou, Y., Jian, X. (2013). Detecting Passive Content Leaks and Pollution in Android Applications, In: Proceedings of 20th

Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013.

[18] Grace, M., Zhou, Y., Wang, Z., Jiang, X. (2012). Systematic Detection of Capability Leaks in Stock Android Smartphones, In:
Proceedings of the 19th Annual Symposium on Network and Distributed System Security, NDSS.

[19] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B. (2012). Towards Taming Privilege-Escalation
Attacks on Android, In: Proceedings of the 19th Annual Symposium on Network and Distributed System Security, NDSS.

[20] Java decompiler, Accessed from http://jd.benow.ca/

[21] Android-apktool, https://code.google.com/p/android-apktool/

[22] Crussell, J., Gibler, C., Chen, H. (2012). Attack of the clones: Detecting cloned applications on android markets. In: Proceedings
of ESORICS, p 37–54.

[23] Li, S. (2012). Juxtapp: A scalable system for detecting code reuse among android applications. Master’s thesis, EECS
Department, University of California, Berkeley, May. http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS- 2012-111.html

[24] Zhou, W., Zhou, Y., Jiang, X., Ning, P. Detecting repackaged smartphone applications in third-party android marketplaces,
Proc. of the 2nd ACM conference on Data and Application Security and Privacy (CODASPY), p. 317–326.

[25] Cover, T., Thomas, J. (2006). Elements of Information Theory, John Wiley and Sons.

[26] Brigitte Bigi, (2003). Using Kullback-Leibler Distance for TextCategorization, Lecture Notes in Computer Science (LNCS),
2633, p. 305-319.

[27] Huang, H., Zhu, S., Liu, P., Wu, D. (2013). A Framework for Evaluating Mobile App Repackaging Detection Algorithms, Trust
and Trustworthy Computing, Lecture Notes in Computer Science, 7904, 2013, p 169-186.

Journal of Information Security Research Volume 6 Number 1 March 2015 13

[28] Zhou, Y., Jiang, X. (2012). Dissecting android malware: Characterization and evolution, In: Proceedings of IEEE Symposium
on Security and Privacy (SP), Oakland, CA, USA, May, p. 95–109.

[29] Thanh, H. (2013). Analysis of Malware Families on Android Mobiles: Detection Characteristics Recognizable by Ordinary
Phone Users and How to Fix It, Journal of Information Security, 4, p. 213-224.

[30] Smali opcode, Acessed from http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

