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ABSTRACT: Accelerated Particle Swarm Optimization has potential i n many applications and the business sector is one in
such wider scope. Coupled with the support vector machine and metaheuristics the particle swarm optimization is now
widely used in solving tough optimization problems. By considering the potential features of these two, we have developed
an integrated framework for solving business optimization problems. Basically the proposed APSO-SVM to production
optimization is used followed by the income prediction and project scheduling. Finally we tested the framework both by
parametric studies as well as discussing the advantages of the proposed metaheuristic SVM.
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1. Introduction

Databases are the central to many information technology applications. This fact is highlighted in the studies that address the
data processing and other similar issues. This is partly driven by information technology, especially the Internet, and partly
driven by the need to extract meaningful knowledge by data mining. To extract useful information among a huge amount of data
requires efficient tools for processing vast data sets. This is equivalent to trying to find an optimal solution to a highly nonlinear
problem with multiple, complex constraints, which is a challenging task. Various techniques for such data mining and optimization
have been developed over the past few decades. Among these techniques, support vector machine is one of the best techniques
for regression, classification and data mining [5, 9, 16, 19, 20, 24].

Besides, the metaheuristic algorithms also become powerful for solving tough nonlinear optimization problems [1, 7]. This is
evident through a microscopic analysis of many of the recent studies.
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[8,27,32]. Modern metaheuristic algorithms have been developed with an aim to carry out global search, typical examples are
genetic algorithms [6], particle swarm optimisation (PSO) [7], and Cuckoo Search [29, 30]. The efficiency of metaheuristic
algorithms can be attributed to the fact that they imitate the best features in nature, especially the selection of the fittest in
biological systems which have evolved by natural selection over millions of years. Since most data have noise or associated
randomness, most these algorithms cannot be used directly. In this case, some form of averaging or reformulation of the problem
often helps. Even so, most algorithms become difficult to implement for such type of optimization.

In addition to the above challenges, business optimization often concerns with a large amount but often incomplete data,
evolving dynamically over time. Certain tasks cannot start before other required tasks are completed, such complex scheduling
is often NP-hard and no universally efficient tool exists. Recent trends indicate that metaheuristics can be very promising, in
combination with other tools such as neural networks and support vector machines [5, 9, 15, 21].

In this paper, we intend to present a simple framework of business optimization using a combination of support vector machine
with accelerated PSO. The paper is organized as follows: We first will briefly review particle swarm optimization and accelerated
PSO, and then introduce the basics of support vector machines (SVM). We then use three case studies to test the proposed
framework. Finally, we discussion its implications and possible extension for further research.

2. Accelerated Particle Swarm Optimization

2.1 PSO

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995 [7, 8], based on the swarm behaviour such
as fish and bird schooling in nature. Since then, PSO has generated much wider interests, and forms an exciting, ever expanding
research subject, called swarm intelligence. PSO has been applied to almost every area in optimization, computational intelligence,
and design/scheduling applications. There are at least two dozens of PSO variants, and hybrid algorithms by combining PSO
with other existing algorithms are also increasingly popular.

PSO searches the space of an objective function by adjusting the trajectories of individual agents, called particles, as the
piecewise paths formed by positional vectors in a quasi-stochastic manner. The movement of a swarming particle consists of
two major components: a stochastic component and a deterministic component. Each particle is attracted toward the position of

the current global best g* and its own best location X[* in history, while at the same time it has a tendency to move randomly.

Let x; and v, be the position vector and velocity for particle 7, respectively. The new velocity vector is determined by the
following formula

Vv e [g ot B e [x0 -x!] @

where = and <, are two random vectors, and each entry taking the values between 0 and 1. The parameters o and 3 are the
learning parameters or acceleration constants, which can typically be taken as, say, a0 = § = 2.

There are many variants which extend the standard PSO algorithm, and themost noticeable improvement is probably to use an
inertia function 6(¢) so that v/is replaced by 6(#)v!

V;”= Bv+os [g*-x] e [xE x] )

where 6 = (0, 1) [2, 3]. In the simplest case, the inertia function can be taken as a constant, typically 8 = 0.5 ~ 0.9. This is
equivalent to introducing a virtual mass to stabilize the motion of the particles, and thus the algorithm is expected to converge
more quickly.

2.2 Accelerated PSO

The standard particle swarm optimization uses both the current global best g* and the individual best x* . The reason of using
the individual best is primarily to increase the diversity in the quality solutions, however, this diversity can be simulated using
some randomness. Subsequently, there is no compelling reason for using the individual best, unless the optimization problem
of interest is highly nonlinear and multimodal.
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A simplified version which could accelerate the convergence of the algorithm is to use the global best only. Thus, in the
accelerated particle swarm optimization (APSO) [27, 32], the velocity vector is generated by a simpler formula

V;H =vitae, +B[g*_xﬂ 3
where = " is drawn from N(0, 1) to replace the second term. The update of the position is simply

xﬁﬂ =xt+ Vfﬂ )

In order to increase the convergence even further, we can also write the update of the location in a single step

X =(1-p)xf +Bg" +ae, ©)

This simpler version will give the same order of convergence. Typically, o= 0.1L~0.5L where L is the scale of each variable, while
B=0.1~0.7 is sufficient for most applications. It is worth pointing out that velocity does not appear in equation (5), and there
is no need to deal with initialization of velocity vectors. Therefore, APSO is much simpler. Comparing with many PSO variants,
APSO uses only two parameters, and the mechanism is simple to understand.

A further improvement to the accelerated PSO is to reduce the randomness as iterations proceed. This means that we can use
a monotonically decreasing function such as

= e !
o OLOG (6)
or
a=ay’, (0<y<1), ™
where 04= 0.5~ 1 is the initial value of the randomness parameter. Here ¢ is the number of iterations or time steps. 0 <y < lisa
control parameter [32]. For example, in our implementation, we will use

0.=0.7', ®)

where #=[0, ¢ ]and¢__ isthe maximum ofiterations.
max: max
3. Support Vector Machine

Support vector machine (SVM) is an efficient tool for data mining and classification [25, 26]. Due to the vast volumes of data in
business, especially e-commerce, efficient use of data mining techniques becomes a necessity. In fact, SVM can also be
considered as an optimization tool, as its objective is to maximize the separation margins between data sets. The proper
combination of SVM with metaheuristics could be advantageous.

3.1 Support Vector Machine

A support vector machine essentially transforms a set of data into a significantly higher-dimensional space by nonlinear
transformations so that regression and data fitting can be carried out in this high-dimensional space. This methodology can be
used for data classification, pattern recognition, and regression, and its theory was based on statistical machine learning theory
[21,24,25].

For classifications with the learning examples or data (x,, y,) wherei=1,2, ..., nand y, {1, +1}, the aim of the learning is to find

a function ¢ (x) from allowable functions{¢ :0 < Q}suchthat ¢ (x,) iy, for (i=1,2, ..., n) and that the expected risk E(¢r) is
minimal. That is the minimization of the risk

o)== 110, - 71d0(x,») )

where Q(x , y) is an unknown probability distribution, which makes it impossible to calculate £(x) directly. A simple approach is
to use the so-called empirical risk

n
1
E (o)~ Z}m (x) -y (10)
pm
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However, the main flaw of this approach is that a small risk or error on the training set does not necessarily guarantee a small
error on prediction if the number # of training data is small [26].

For a given probability of at least 1-p, the Vapnik bound for the errors can be written as

E(a)SRp(a)w(%,k’g_(P)), (11)

n

\v(%@) _ \/%[h(logz—;-i-l)—log(%)} (12)

Here & is a parameter, often referred to as the Vapnik-Chervonenskis dimension or simply VC-dimension [24], which describes
the capacity for prediction of the function set ¢ .

In essence, a linear support vector machine is to construct two hyperplanes as far away as possible and no samples should be
between these two planes. Mathematically, this is equivalent to two equations

w.x+b=11, (13)
and a main objective of constructing these two hyperplanes is to maximize the distance (between the two planes)
2
d=— 14
v 9

Such maximization of d is equivalent to the minimization of ||w]| or more conveniently ||w||>. From the optimization point of view,
the maximization of margins can be written as

minimize L [[wiP == (w . w). (15)
2 2
This essentially becomes an optimization problem
n

minimizey= —é W22 3, (16)

i=l1
subjecttoy (w.x +b)>1-n., (17)
n,>0, (i=1.2,..,n), (18)

n
where A >0 is a parameter to be chosen appropriately. Here, the term Zi:ini is essentially a measure of the upper bound of the
number of misclassifications on the training data.

3.2 Nonlinear SVM and Kernel Tricks
The so-called kernel trick is an important technique, transforming data dimensions while simplifying computation. By using

Lagrange multipliers 0., > 0, we can rewrite the above constrained optimization into an unconstrained version, and we have

1 2 z 1
L= S Bl b)) 09
=1 =

From this, we can write the Karush-Kuhn-Tucker conditions

n
& —w-So,y =0, (20)
=1
aL i“ _
il iyiio’ @D
T
YW b)- (1) 20, @)
o[y (w.x+b)-(1-)]=0,  (i=12,..,n), 23)
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>0,  M>0, (i=1,2..n). 4)

1

From the first KKT condition, we get
n
W=D VX, (25)
=1

It is worth pointing out here that only the nonzero o, contribute to overall solution. This comes from the KKT condition (23),
which implies that when o # 0, the inequality (17) must be satisfied exactly, whilea = 0 means the inequality is automatically met.
In this latter case .= 0. Therefore, only the corresponding training data (x,, y,) with o, > 0 can contribute to the solution, and
thus such x. form the support vectors (hence, the name support vector machine). All the other data with o= 0 become irrelevant.

It has been shown that the solution for o can be found by solving the following quadratic programming [24, 26]

n n
maxirrﬂzsgai-—;Zociocjyiyj (xl..xj), (26)
subject to =l b=l
n
Zlocl. y=0, 0<o < A (i=1,2,.....n). @7)
is

From the coefficients o, we can write the final classification or decision function as

n
fi) = sen [ 2,y,(x,.x,) + bl (28)
=

where sgn is the classic sign function.

As most problems are nonlinear in business applications, and the above linear SVM cannot be used. Ideally, we should find
some nonlinear transformation ¢ so that the data can be mapped onto a high-dimensional space where the classification
becomes linear. The transformation should be chosen in a certain way so that their dot product leads to a kernel-style function
K(x,x,)=¢(x). ¢(x,). In fact, we do not need to know such transformations, we can directly use the kernel functions K(x ,x,) to
complete this task. This is the so-called kernel function trick. Now the main task is to chose a suitable kernel function for a given,
specific problem.

For most problems in nonlinear support vector machines, we can use K(x ,x,) = (x . xi)d for polynomial classifiers, K(x ,x;) =
tanh[k(x . x)) + ©)] for neural networks, and by far the most widely used kernel is the Gaussian radial basis function (RBF)

I X-X1

K(x,x;,)=exp[- ——]=exp Fy || X-X P, (29)
209

for the nonlinear classifiers. This kernel can easily be extended to any high dimensions. Here o is the variance and y= 120>
is a constant. In general, a simple bound of 0 < y < Cis used, and here C is a constant.

n
. 1
maximize —
l-z::](xi 2 ooy, Y, Kix, X ). (30)
It is worth pointing out under Mercer’s conditions for the kernel function, the matrix A=y, Y, K{(x, X; )is a symmetric positive
definite matrix [26], which implies that the above maximization is a quadratic programming problem, and can thus be solved
efficiently by standard QP techniques [21].

4. Metaheuristic Support Vector Machine with APSO

4.1 Metaheuristics
There are many metaheuristic algorithms for optimization and most these algorithms are inspired by nature [27].Metaheuristic
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algorithms such as genetic algorithms and simulated annealing are widely used, almost routinely, in many applications, while
relatively new algorithms such as particle swarm optimization [7], firefly algorithm and cuckoo search are becoming more and
more popular [27, 32]. Hybridization of these algorithms with existing algorithms are also emerging.

The advantage of such a combination is to use a balanced tradeoff between global search which is often slow and a fast local
search. Such a balance is important, as highlighted by the analysis by Blum and Roli [1]. Another advantage of this method is
that we can use any algorithms we like at different stages of the search or even at different stage of iterations. This makes it easy
to combine the advantages of various algorithms so as to produce better results.

Others have attempted to carry out parameter optimization associated with neural networks and SVM. For example, Liu et al.
have used SVM optimized by PSO for tax forecasting [13]. Lu et al. proposed a model for finding optimal parameters in SVM by
PSO optimization [ 14]. However, here we intend to propose a generic framework for combining efficient APSO with SVM, which
can be extended to other algorithms such as firefly algorithm [28, 31].

4.2 APSO-SVM

Support vector machine has a major advantage, that is, it is less likely to overfit,compared with other methods such as regression
and neural networks. In addition, efficient quadratic programming can be used for training support vector machines. However,
when there is noise in the data, such algorithms are not quite suitable. In this case, the learning or training to estimate the
parameters in the SVM becomes difficult or inefficient.

Another issue is that the choice of the values of kernel parameters C and o2 in the kernel functions; however, there is no agreed
guideline on how to choose them, though the choice of their values should make the SVM as efficiently as possible. This itself
is essentially an optimization problem.

Taking this idea further, we first use an educated guess set of values and use the metaheuristic algorithms such as accelerated
PSO or cuckoo search to find the best kernel parameters such as C and 62[27, 29]. Then, we used these parameters to construct
the support vector machines which are then used for solving the problem of interest. During the iterations and optimization, we
can also modify kernel parameters and evolve the SVM accordingly. This framework can be called a metaheuristic support vector
machine. Schematically, this Accelerated PSO-SVM can be represented as shown in Figure 1.

begin

Define the objective;

Choose kernel functions;

Initialize various parameters;

while (criterion)
Find optimal kernel parameters by APSO;
Construct the support vector machine;
Search for the optimal solution by APSO-SVM;
Increase the iteration counter;

end

Post-processing the results;

end

Figure 1. Metaheuristic APSO-SVM

For the optimization of parameters and business applications discussed below, APSO is used for both local and global search
[27,32].

5. Business Optimization Benchmarks

Using the framework discussed earlier, we can easily implement it in any programming language, though we have implemented
using Matlab. We have validated our implementation using the standard test functions, which confirms the correctness of the
implementation. Now we apply it to carry out case studies with known analytical solution which can be used for comparison,
while the second case is a standard benchmark in resource-constrained project scheduling [11].
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5.1 Production Optimization
Let us first use the proposed approach to study the classical Cobb-Douglas production optimization. For a production of a
series of products and the labour costs, the utility function can be written

oo o
q:Hu_/ =u IuOC?..AuOC", (€1
j=1 J 12 "
where all exponents o are non-negative, satisfying
n
o=l 32)
j=1
The optimization is the minimization of the utility
minimize ¢ (33)
n
bject t =
subjec Oj-z::leuj K, (34)

where wj(/ =1, 2,....,n) are known weights.
This problem can be solved using the Lagrange multiplier method as an unconstrained problem

n n
1|1=I__Ilu‘0.‘/ + A (Qwu, - K), (3%
whose optimality conditions are S J=1
ay an g
Fu %% Tlu7+Aw =0, (j=1,2,..n), (36)
J ]:1 J J
n
ﬂ: wu. -K=0 37
al —~ JJ
The solutions are
K w0
;= T e (38)
Dol g X ey Y

where (j=2, 3,...,n). For example, in a special case of n =2, a,= 2/3, a,= 1/3, w,=5,w,=2 and K =300, we have

Kozz

= Tt aTa)~ 40, = =5,
U ow(l+o,/a,) Uy wa(1+a,/a,)

As most real-world problem has some uncertainty, we can now add some noise to the above problem. For simplicity, we just
modify the constraint as

n
ijuj:K(lJr,Be), (39)
j=1

where = is arandom number drawn from a Gaussian distribution with a zero mean and a unity variance, and 0 < << is a small
positive number.

We now solve this problem as an optimization problem by the proposed APSO-SVM. In the case of § =0.01, the results have
been summarized in Table 1 where the values are provided with different problem size n with different num- bers of iterations. We
can see that the results converge at the optimal solution very quickly.

6. Income Prediction

Studies to improve the accuracy of classifications are extensive. For example,Kohavi proposed a decision-tree hybrid in 1996
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size n Iterations deviations

10 1000 0.014
20 5000 0.037
50 5000 0.040
50 15000 0.009

Table 1. Mean deviations from the optimal solutions

[10]. Furthermore, an efficient training algorithm for support vector machines was proposed by Plattin 1998 [17, 18], and it has
some significant impact on machine learning, regression and data mining.

A well-known benchmark for classification and regression is the income prediction using the data sets from a selected 14
attributes of a household from a sensus form [10, 17].We use the same data sets at ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/adult for this case study. There are 32561 samples in the training set with 16281 for testing. The aim is to predict if an
individual’s income is above or below 50K ?

Among the 14 attributes, a subset can be selected, and a subset such as age,education level, occupation, gender and working
hours are commonly used.

Using the proposed APSO-SVM and choosing the limit value of C as 1.25,the best error of 17.23% is obtained (see Table 2),
which is comparable with most accurate predictions reported in [ 10, 17].

Train set (size) Prediction set Errors (%)
512 256 24:9
1024 256 20:4
16400 8200 17.23

Table 2. Income prediction using APSO-SVM

6.1 Project Scheduling

Scheduling is an important class of discrete optimization with a wider range of applications in business intelligence. For
resource-constrained project scheduling problems, there exists a standard benchmark library by Kolisch and Sprecher [11,12].
The basic model consists of J activities/tasks, and some activities cannot start before all its predecessors 4 are completed. In

addition, each activity j = 1,2,...,J can be carried out, without interruption, in one of the Mj modes, and performing any activity
j in any chosen mode m takes d]m periods, which is supported by a set of renewable resource R and non-renewable resources
N. The project’s makespan or upper bound is T, and the overall capacity of non- renewable resources is K lr’ where = N. For an

activity j scheduled in mode m, it uses kj’; - units of renewable resources and k;;nr units of non-renewable resources in period
t=12..T.

For activity j, the shortest duration is fit into the time windows [EFj ,LF} ] where EF] is the earliest finish times, and LFj is the
latest finish times. Mathematically, this model can be written as [11].

v, 17,
Minimize ‘P(X)Z Z Lox,, (40)
m=1 t=EF
subject to J
Mh LF} jwj LF}
4 tht = Z Z (t' d]m) xjmt’ (] = 2,,J)
m=1 t=EFj m=1 t:EFj

min {t+d. -1, LF}
jm j

J M.
> ka[;,, > x < kAreR) (1)
J=1 m=1 q:max{t,EFj} Jmd
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J M, LF,
'21 Zk/l:nr ' X, < kO(r€N) 41)
= =1 - —
J=lm tEFj
and M/
- LF.
=EF. 42
= 2 =EF, ‘=1, =12 (42)

Number of iterations | SVM kernel parameters

1000 C=149.2, >=67:9

5000 C=127.9, >=64:0

Table 3. Kernel parameters used in SVM

where X S {0,1}and ¢r=1,...,T. As Xt only takes two values 0 or 1, this problem can be considered as a classification problem,
and metaheuristic support vector machine can be applied naturally.

Using the online benchmark library [12], we have solved this type of problem with J= 30 activities (the standard test set j30). The
run time on a modern desktop computer is about 2.2 seconds for N= 1000 iterations to 15.4 seconds for N= 5000 iterations. We
have run the simulations for 50 times so as to obtain meaningful statistics.

The optimal kernel parameters found for the support vector machines are listed in Table 3, while the deviations from the known
best solution are given in Table 4 where the results by other methods are also compared.

Algorithm Authors N=1000 5000
PSO[22] Kemmoe et al. (2007) 0.26 0.21
hybribd GA [23] Valls eta al. (2007) 0.27 0.06
Tabu search [15] Nonobe & Ibaraki (2002) 0.46 0.16
Adapting GA [4]  Hartmann (2002) 0.38 0.22
Meta APSO-SVM  this paper 0.19 0.025

Table 4. Mean deviations from the optimal solution (J=30)

From these tables, we can see that the proposed metaheuristic support vector machine starts very well, and results are comparable
with those by other methods such as hybrid genetic algorithm. In addition, it converges more quickly, as the number of iterations
increases. With the same amount of function evaluations involved, much better results are obtained, which implies that APSO
is very efficient, and subsequently the APSO-SVM is also efficient in this context. In addition, this also suggests that this
proposed framework is appropriate for automatically choosing the right parameters for SVM and solving nonlinear optimization
problems.

7. Conclusions

Both PSO and support vector machines are now widely used as optimization techniques in business intelligence. They can also
be used for data mining to extract useful information efficiently. SVM can also be considered as an optimization technique in
many applications including business optimization. When there is noise in data, some averaging or reformulation may lead to
better performance. In addition, metaheuristic algorithms can be used to find the optimal kernel parameters for a support vector
machine and also to search for the optimal solutions. We have used three very different case studies to demonstrate such a
metaheuristic SVM framework works.

Automatic parameter tuning and efficiency improvement will be an important topic for further research. It can be expected that
this framework can be used for other applications. Furthermore, APSO can also be used to combine with other algorithms such
as neutral networks to produce more efficient algorithms [13, 14]. More studies in this area are highly needed.
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