## An Extension of PROMETHEE with Evidential Evaluations

Hammadi Abdennadher ${ }^{1}$, Mohamed Aymen Boujelben², Sarah Ben Amor ${ }^{3}$<br>${ }^{1}$ FSEG,Sfax, University of Sfax<br>Sfax, Tunisia<br>${ }^{2}$ IHEC, Sfax, University of Sfax<br>Sfax, Tunisia<br>${ }^{3}$ Telfer School of Management<br>University of Ottawa<br>Ottawa, Canada<br>abdennader.hammadi@hotmail.fr, ayman_boujelben@yahoo.fr, benamor@telfer.uottawa.ca


#### Abstract

We consider ranking problems where the actions are evaluated on a set of ordinal criteria and where the evaluations are imperfect and represented by basic belief assignments (BBAs). In this paper, a model inspired by PROMETHEE is proposed within this context. The notions of ascending and descending belief functions are used in order to compare the alternatives on each criterion. The proposed approach is also illustrated by a pedagogical example.


Keywords: Multicriteria Ranking Problem, Evidence Theory, PROMETHEE
Received: 12 May 2013, Revised 29 June 2013, Accepted 3 July 2013
© 2013 DLINE. All rights reserved

## 1. Introduction

Multicriteria decision aid (MCDA) [1] is a field that deals with problems involving multiple conflicting criteria. Generally, authors distinguish three problems: the choice, the ranking and the classification. A ranking problem consists in ordering a set of actions from the best to the worst by building partial or total preorders. Several methods have been developed to tackle this problem. Among others, one can cite: PROMETHEE [2], ELECTRE III [3], AHP [4], etc.

Within MCDA, the modeling phase requires the identification of different kinds of data such as the evaluations of the actions, the criteria weights, etc. In most cases, this assessment step cannot be perfectly achieved and therefore imperfect data should be considered. Evidence theory [5], also called belief functions theory or Dempster-Shafer theory, is one of the several mathematical models that have been used to tackle such problem. In this paper, we will be interested to PROMETHEE method where the actions are evaluated on a set of ordinal criteria and where the evaluations can be uncertain and imprecise. The concept of basic belief assignment (BBA) [5], which is the basic function representing imperfect data in evidence theory, will be used to represent imperfect evaluations. We will call them "evidential evaluations".

PROMETHEE method is an outranking approach which is based on pairwise comparisons between the actions. The comparison of the BBAs expressing the evaluations of the actions can be performed using the First Belief Dominance (FBD) [6] (a generalization of the first stochastic dominance [7]) or the RBBD approach (RBBD I and RBBD II) [8]. However, the FBD and RBBD I concepts
can lead to incomparable BBAs. On the contrary, the RBBD II approach leads to comparisons without incomparabilities, but the results induced by this concept can be viewed as excessive. Both approaches are based on the notions of ascending and descending belief functions [6]. In this work, we will propose a model inspired by PROMETHEE which is based on these notions.

This paper is organized as follows: in Section II we introduce some concepts of belief functions theory. The proposed model is presented in Section III. Finally, an illustrative example is described in Section IV.

## 2. Evidence Theory: Some Concepts

Evidence theory, introduced by Arthur Dempster [9] and developed later by Glenn Shafer [5], is a generalization of the subjective probability theory. This model is a convenient framework for modeling imperfect information and for combining it.

### 2.1 Basic Functions

Let $X$ be a finite set of mutually exclusive and exhaustive elements called the frame of discernment and let $2 X$ be the powerset of $X$. A Basic Belief Assignment (BBA) [5], is a function $m$ defined from $2^{X}$ to [0,1] such as $m(\varnothing)=0$ and $\sum_{A \subseteq X} m(A)=1 m(A)$ represents the belief mass committed exactly to proposition $A$. When $m(A) \neq 0, A$ is called a focal element. When all the focal elements are singletons, $m$ is a probability function. Moreover, a BBA can be represented equivalently by its related belief and plausibility functions [5] defined from $2^{X}$ to [0,1] respectively as follows:

$$
\begin{align*}
& \operatorname{Bel}(A)=\sum_{\substack{B \subseteq A \\
A \neq \phi}} m(B)  \tag{1}\\
& \operatorname{Pl}(A)=\sum_{A \cap B \neq \phi} m(B) \tag{2}
\end{align*}
$$

$\operatorname{Bel}(A)$ is interpreted as the total belief associated to $A$ whereas $P l(A)$ is viewed as the amount of belief that could potentially be placed in $A$. These two functions are connected by the equation $\operatorname{Pl}(A)=1-\operatorname{Bel}(\bar{A})$ where $\bar{A}$ is the complement of $A$.

### 2.2 Ascending and descending belief functions

The ascending and descending belief functions are two notions that have been developed in the context of MCDA and which constitute the basis of FBD and RBBD concepts [6] [8]. These functions suppose that the frame of discernment $X=\left\{x_{1}, x_{2}, \ldots\right.$, $\left.x_{r}\right\}$ is composed by ordered elements defined such as $x_{1} \prec x_{2} \prec \ldots \prec x_{r}$. For all $k \in\{0,1, \ldots, r\}$ let:

$$
A_{k}=\left\{\begin{array}{cl}
\emptyset & \text { if } k=0  \tag{3}\\
\left\{x_{1}, \ldots, x_{r}\right\} & \text { Otherwise }
\end{array}\right.
$$

And let $\vec{S}(X)$ denotes the set $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$. Similarly, for all $l \in\{0,1, \ldots, r\}$ such as $l=r-k$ let:

$$
B_{l}=\left\{\begin{array}{c}
\emptyset \quad \text { if } l=0 \\
\left\{x_{r-l+1}, \ldots, x_{r}\right\} \quad \text { Otherwise }
\end{array}\right.
$$

And let $\overleftarrow{S}(X)$ denotes the set $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\} . k$ and $l$ represent respectively the number of elements of the sets $A_{k}$ and $B_{l}$.
Definition 1. [6] The ascending belief function, $\overrightarrow{\mathrm{Bel}}$ induced by a BBA $m$, is a function $\overrightarrow{\mathrm{Bel}}: \vec{S}(X) \rightarrow[0,1]$ defined such as $\overrightarrow{\mathrm{Bel}}$ : $\left(A_{k}\right)=\sum_{C \subseteq A_{k}} m(C)$ for all $A_{k} \in \vec{S}(X)$.
Definition 2. [6] The descending belief function, $\overleftarrow{B e l}$, induced by a BBA $m$ is a function $\overleftarrow{B e l}: \overleftarrow{S}(X) \rightarrow[0,1]$ defined such as $\overleftarrow{B e l}$ $:\left(B_{l}\right)=\sum_{C \subseteq B} m(C)$ for all $B_{l} \in \stackrel{\leftarrow}{S}(X)$.
$\overrightarrow{B e l}$ and $\overleftarrow{B e l}$ allow taking account implicitly the fact that $x_{1} \prec x_{2} \prec \ldots \prec x_{r}$. Indeed, the former represents the beliefs of the nested sets $A_{1}, A_{2}, \ldots, A_{r}$, i.e., $\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{1}, \ldots, x_{r}\right\}$. Similarly, the latter represents the beliefs of the nested sets $B_{1}, B_{2}, \ldots, B_{r}$, i.e., the sets , $\left\{x_{r}\right\},\left\{x_{r-1}, x_{r}\right\}, \ldots,\left\{x_{1}, \ldots, x_{r}\right\}$. Since $x_{1}$ and $x_{r}$ are respectively the worst and the best elements of $X$, the more the values of $\overrightarrow{B e l}$ decrease and those of $\overleftarrow{B e l}$ increase, the better is the BBA $m$.

## 3. Proposed Approach

We consider ranking problems that can be represented by three elements:

- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ : the set of actions;
- $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ : the set of ordinal criteria;
- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ : the assessment grades set used to evaluate the actions and defined such as $x_{1} \prec x_{2} \prec \ldots \prec x_{r}$ Without any loss of generality, we will consider that this set is the same for all the criteria.

In what follows, we will suppose that the evaluation of an action $a_{i}$ on a given criterion $g_{h}$ can be uncertain and imprecise and modeled by BBA denoted $m_{i}{ }^{h}$.

In order to rank the alternatives, the proposed approach inspired by PROMETHEE proceeds in the following steps: the comparison based on the ascending and descending belief functions, the determination of the preference degrees and the ascending and descending rankings related to each comparison and finally the aggregation of these rankings.

### 3.1 Comparison

This step consists in comparing each pair of BBAs $m_{i}^{h}$ and $m_{j}^{h}$ representing the evaluations of actions $a_{i}$ and $a_{j}$ on each criterion $g_{h}$. These comparisons are established based on the notions of the ascending and descending belief functions defined above.

### 3.1.1 Comparison using the ascending belief function

This comparison requires at first computing $\overrightarrow{B e l}_{i}^{h}$ and $\overrightarrow{B e l}_{j}^{h}$ related respectively to $m_{i}^{h}$ and $m_{j}^{h}$ and then their sums. It allows deducing the following preference situations on $g_{h}$ :

- $a_{i}$ is preferred to $a_{j}$ on $g_{h}\left(a_{i} P a_{j}\right)$ if and only if

$$
\sum_{A_{k} \in \vec{S}(X)} \overrightarrow{B e l}_{i}^{h}\left(A_{k}\right)<\sum_{A_{k} \in \vec{S}(X)}{\overrightarrow{B e l_{j}}}_{j}^{h}\left(A_{k}\right)
$$

- $a_{j}$ is preferred to $a_{i}$ on $g_{h}\left(a_{j} P a_{i}\right)$ if and only if

$$
\sum_{A_{k} \in \vec{S}(X)} \overrightarrow{\operatorname{Bel}}_{i}^{h}\left(A_{k}\right)<\sum_{A_{k} \in \vec{S}(X)} \overrightarrow{\operatorname{Bel}}_{j}^{h}\left(A_{k}\right)
$$

- $a_{i}$ and $a_{j}$ are indifferent on $g_{h}\left(a_{i} I a_{j}\right)$ if and only if

$$
\sum_{A_{k} \in \vec{S}(X)} \overrightarrow{\operatorname{Bel}}_{i}^{h}\left(A_{k}\right)<\sum_{A_{k} \in \vec{S}(X)} \overrightarrow{\operatorname{Bel}}_{j}^{h}\left(A_{k}\right)
$$

### 3.1.2 Comparison using the descending belief function

This comparison is based on $\overleftarrow{B e l}_{i}^{h}$ and $\overleftarrow{B e l}_{j}^{h}$ and their related sums. As in the ascending case, three preference situations on $g_{h}$ can be distinguished:

- $a_{i}$ is preferred to $a_{j}$ on $g_{h}\left(a_{i} P a_{j}\right)$ if and only if

$$
\sum_{B_{l} \in \bar{S}(X)} \overleftarrow{B e l}_{i}^{h}\left(B_{l}\right)<\sum_{B_{l} \in \tilde{S}(X)} \overleftarrow{B e l}_{j}^{h}\left(B_{l}\right)
$$

- $a_{j}$ is preferred to $a_{i}$ on $g_{h}\left(a_{j} P a_{i}\right)$ if and only if

$$
\sum_{B_{l} \in \bar{S}(X)} \overleftarrow{B e l}_{i}^{h}\left(B_{l}\right)<\sum_{B_{l} \in \tilde{S}(X)} \overleftarrow{B e l}_{j}^{h}\left(B_{l}\right)
$$

- $a_{i}$ and $a_{j}$ are indifferent on $g_{h}\left(a_{i} I a_{j}\right)$ if and only if

$$
\sum_{B_{l} \in \tilde{S}(X)} \overleftarrow{B e l}_{i}^{h}\left(B_{l}\right)=\sum_{B_{l} \in \tilde{S}(X)} \overleftarrow{\left.\operatorname{Bel}_{j}^{h}\left(B_{l}\right)\right)}
$$

### 3.2 Calculation of the preference degrees

The preference function [2] is the distinctive feature of PROMETHEE. This function, denoted $F_{h}\left(a_{i}, a_{j}\right)$, quantifies the preference intensity of $a_{i}$ to $a_{j}$ on $g_{h}$. It varies between 0 and 1: the closer to 1 , the greater the preference of $a_{i}$ to $a_{j}$ on $g_{h}$.
$F_{h}\left(a_{i}, a_{j}\right)$ can be one of the six types proposed by Brans and Vincke (usual, linear, Gaussian, etc) [2]. The usual type is the most used function when the criterion is ordinal. That is why we will consider it in our model. Formally, this type is defined as follows:

$$
F_{h}\left(a_{i}, a_{j}\right)= \begin{cases}1 & \text { if } a_{i} P a_{j} \text { on } g_{h}  \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

### 3.2.1 Calculation of the preference degrees based on the comparison of the ascending belief function

In this case, the preference function is defined as follows:

$$
F_{h}\left(a_{i}, a_{j}\right)= \begin{cases}1 & \text { if } \sum_{A_{k} \in \vec{S}(X)}{\overrightarrow{\operatorname{Bel}_{i}^{h}}}_{i}^{h}\left(A_{k}\right)<\sum_{A_{k} \in \vec{S}(X)}{\overrightarrow{\operatorname{Bel}_{j}}}_{h}^{h}\left(A_{k}\right)  \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

Once all $F_{h}\left(a_{i}, a_{j}\right)$ are deduced on all the criteria, the preference degree $\left(a_{i}, a_{j}\right)$ is computed. This degree represents the preference intensity of $a_{i}$ over $a_{j}$ on all the criteria. It is defined as follows:

$$
\begin{equation*}
\Pi\left(a_{i}, a_{j}\right)=\sum_{h=1}^{q} w_{h} F_{h}\left(a_{i}, a_{j}\right) \tag{7}
\end{equation*}
$$

Where $w_{h}$ is the weight of criterion $g_{h}$ defined such as $w_{h}>0$ and $\sum_{h} w_{h}=1 . \Pi\left(a_{i}, a_{j}\right)$ is a number between 0 and 1 : the closer to one, the greater the global preference of $a_{i}$ over $a_{j}$.

### 3.2.2 Calculation of the preference degrees based on the comparison of the descending belief function

In this case, the preference function is given by:

$$
F_{h}\left(a_{i}, a_{j}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{B_{l} \in \overleftarrow{S}(X)} \overleftarrow{\operatorname{Bel}_{i}^{h}\left(B_{l}\right)>} \sum_{B_{l} \in \tilde{S}(X)} \overleftarrow{\operatorname{Bel}}_{j}^{h}\left(B_{l}\right)  \tag{8}\\
0 \text { otherwise }
\end{array}\right.
$$

The preference degree is determined as above using formula (7).
Finally, it is worth mentioning that Ben Amor and Mareschal [10] have proposed an extension of PROMETHEE where the evaluations are imperfect and modeled by probability functions, BBAs, possibility distributions, etc.

They have developed a general framework in order to integrate these different types of imperfect information. The concept of stochastic dominance [11] has been used to compare the evaluations. However, this approach can lead to incomparable evaluations. To tackle this problem, the preference function has been defined as follows: $F_{h}\left(a_{i}, a_{j}\right)=0.5$. This can solve the problem of incomparability but it is not well justified.

### 3.2.3 Ascending and descending PROMETHEE I and II rankings

PROMETHEE I is a partial ranking of the actions that is obtained on the basis of the following flows:

- The leaving flow $\phi^{+}\left(a_{i}\right)$ :

$$
\begin{equation*}
\phi^{+}\left(a_{i}\right)=\frac{1}{n-1} \sum_{\substack{j=1 \\ j \neq i}}^{n} \prod\left(a_{i}, a_{j}\right) \tag{9}
\end{equation*}
$$

- The entering flow $\phi^{-}\left(a_{i}\right)$ :

$$
\begin{equation*}
\phi^{-}\left(a_{i}\right)=\frac{1}{n-1} \sum_{\substack{j=1 \\ j \neq i}}^{n} \prod\left(a_{i}, a_{j}\right) \tag{10}
\end{equation*}
$$

$\phi^{+}\left(a_{i}\right)$ expresses the outranking character of $a_{i}$ over the other alternatives whereas $\phi^{-}\left(a_{i}\right)$ represents its outranked character: the higher $\phi^{+}\left(a_{i}\right)$ and the lower $\phi^{-}\left(a_{i}\right)$ the better $a_{i}$. Both flows do not usually induce the same ranking. PROMETHEE I is their intersection.

It is also possible de deduce a total preorder of the actions. This ranking is called PROMETHEE II. For that purpose, we should compute for each alternative its net flow $\phi\left(a_{i}\right)$ given by:

$$
\begin{equation*}
\phi\left(a_{i}\right)=\phi^{+}\left(a_{i}\right)-\phi^{-}\left(a_{i}\right) \tag{11}
\end{equation*}
$$

$\phi\left(a_{i}\right)$ is the balance between $\phi^{+}\left(a_{i}\right)$ and $\phi^{-}\left(a_{i}\right)$ the higher its value, the better $a_{i}$. Finally, let us note that since the preference degrees can be determined based on the ascending (descending, resp.) belief function, we can deduce therefore ascending (descending, resp.) PROMETHEE I ranking and ascending (descending, resp.) PROMETHEE II ranking.

### 3.2.4 Aggregated PROMETHEE I and II rankings

In this step, the ascending and descending PROMETHEE I (PROMETHEE II, resp.) rankings are aggregated in order to obtain a global PROMETHEE I (PROMETHEE II, resp.) ranking. Four preference situations can be distinguished: the preference $P$ of $a_{i}$ to $a_{j}$ or of $a_{j}$ to $a_{i}$, the indifference $I$ and the incomparability $J$. These situations are defined formally as follows ( $R_{1}$ and $R_{2}$ refer respectively to the ascending and descending rankings):

$$
\left\{\begin{array}{l}
a_{i} P a_{j} \Leftrightarrow\left\{\begin{array}{l}
a_{i} P_{R_{1}} a_{j} \text { and } a_{i} P_{R_{2}} a_{j} \\
a_{i} P_{R_{1}} a_{j} \text { and } a_{i} I_{R_{2}} a_{j} \\
a_{i} I_{R_{1}} a_{j} \text { and } a_{i} P_{R_{2}} a_{j}
\end{array}\right.  \tag{12}\\
a_{j} P a_{i} \Leftrightarrow\left\{\begin{array}{l}
a_{j} P_{R_{1}} a_{i} \text { and } a_{j} P_{R_{2}} a_{i} \\
a_{j} P_{R_{1}} a_{i} \text { and } a_{j} I_{R_{2}} a_{i} \\
a_{j} I_{R_{1}} a_{i} \text { and } a_{j} P_{R_{2}} a_{i}
\end{array}\right. \\
a_{i} I a_{j} \Leftrightarrow a_{i} I_{R_{1}} a_{j} \text { and } a_{i} P_{R_{2}} a_{j} \\
a_{i} J a_{j} \Leftrightarrow \text { otherwise }
\end{array}\right.
$$

Finally, let us note that the aggregated PROMETHEE II ranking is a partial preorder since the ascending and descending PROMETHEE II rankings are not usually the same. Moreover, let us mention that the aggregated PROMETHEE I and II rankings can induce the same preorder.

## 4. Illustrative Example

In order to illustrate our approach, let us consider the following ranking problem. A company wants to recruit a new collaborator for the marketing department. Five candidates are considered. A decision for selecting a candidate $c_{i}$ (with ) $i=1,2, \ldots, 5$ has to be made based on three qualitative criteria to be maximized: the learning capacities, the past experience and the communication skills. The criteria weights are respectively $0.5,0.3$ and 0.2 . The candidates are evaluated by the director of human resources department. For each criterion, five assessment grades are considered: $x_{2}$ "very bad ", $x_{2}$ "bad ", $x_{3}$ "average", $x_{4}$ "good" and $x_{5}$ "excellent". The set of these grades is denoted by $X$.

|  | $g_{1}$ | $g_{2}$ | $g_{3}$ |
| :--- | :--- | :--- | :--- |
| $c_{1}$ | $m_{1}\left(\left\{x_{3}\right\}\right)=0.94$ <br> $m_{1}\left(\left\{x_{3}, x_{4}\right\}\right)=0.06$ | $m_{1}\left(\left\{x_{4}\right\}\right)=1$ | $m_{1}\left(\left\{x_{3}\right\}\right)=0.84$ <br> $m_{1}\left(\left\{x_{3}, x_{4}\right\}\right)=0.16$ |
| $c_{2}$ | $m_{2}\left(\left\{x_{3}\right\}\right)=0.6$ <br> $m_{2}\left(\left\{x_{2}, x_{3}\right\}\right)=0.4$ | $m_{2}\left(\left\{x_{3}\right\}\right)=1$ | $m_{2}\left(\left\{x_{4}\right\}\right)=0.6$ <br> $m_{2}\left(\left\{x_{4}, x_{5}\right\}\right)=0.4$ |
| $c_{3}$ | $m_{3}\left(\left\{x_{2}\right\}\right)=1$ | $m_{3}\left(\left\{x_{3}\right\}\right)=0.28$ <br> $m_{3}\left(\left\{x_{4}\right\}\right)=0.44$ <br> $m_{3}\left(\left\{x_{3}, x_{4}\right\}\right)=0.28$ | $m_{3}\left(\left\{x_{2}\right\}\right)=0.33$ <br> $m_{3}\left(\left\{x_{3}\right\}\right)=0.67$ |
| $c_{4}$ | $m_{4}\left(\left\{x_{1}\right\}\right)=0.67$ <br> $m_{4}(\{X\})=0.33$ | $m_{4}\left(\left\{x_{4}\right\}\right)=0.67$ <br> $m_{4}\left(\left\{x_{3}, x_{4}\right\}\right)=0.33$ | $m_{4}\left(\left\{x_{2}\right\}\right)=0.9$ <br> $m_{4}\left(\left\{x_{3}\right\}\right)=0.05$ <br> $m_{4}\left(\left\{x_{2}, x_{3}\right\}\right)=0.05$ |
| $c_{5}$ | $m_{5}\left(\left\{x_{2}\right\}\right)=1$ | $m_{5}\left(\left\{x_{4}\right\}\right)=1$ | $m_{5}\left(\left\{x_{3}\right\}\right)=0.6$ <br> $m_{5}\left(\left\{x_{3}, x_{4}\right\}\right)=0.4$ |

Table 1. Candidate's Performances

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $\phi^{+}$ | $\phi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | - | 0.8 | 1 | 0.7 | 0.5 | 0.75 | 0.650 |
| $c_{2}$ | 0.2 | - | 0.7 | 0.7 | 0.7 | 0.575 | 0.150 |
| $c_{3}$ | 0 | 0.3 | - | 0.2 | 0 | 0.125 | -0.625 |
| $c_{4}$ | 0 | 0.3 | 0.8 | - | 0.5 | 0.4 | -0.05 |
| $c_{5}$ | 0.2 | 0.3 | 0.5 | 0.2 | - | 0.3 | -0.125 |
| $\phi^{-}$ | 0.1 | 0.425 | 0.75 | 0.450 | 0.425 |  |  |

Table 2. Preference Degrees And Flows Related To the Ascending Belief Function


Figure 1. Ascending PROMETHEE I ranking


Figure 2. Ascending PROMETHEE II ranking

The candidates' performances on each criterion are given by BBAs and are presented in Table 1. For instance, the evaluation of candidate $c_{1}$ on criterion $g_{3}$ is established as follows: the director of human resources department hesitates between the third and the fourth assessment grades. He is sure that the candidate has either average or good communication skills without being able to refine his judgment.

As described above, the proposed approach allows us to deduce two types of rankings: the ascending ranking related to the acceding belief function and the descending ranking related to the descending belief function.

### 4.1 Ascending PROMETHEE I and II rankings

The first step of our model consists in comparing each pair of actions on each criterion. For that purpose, we compute the ascending belief function of each alternative on each criterion. Then, we determine the sum of this function and we compare the values of each pair of sums. Tables 4 give the values of these sums and Tables 6,7 and 8 present the induced preference situations between each pair of alternatives on each criterion.

In the second step, the values of preference functions are at first deduced using formula (6). The preference degrees between each pair of actions are then computed. Finally, the entering, leaving and net flows are determined. The results are presented in Table 2. Figures 1 and 2 give the ascending PROMETHEE I and II rankings.

As one can remark, $c_{1}$ is the best candidate. $c_{4}$ and $c_{5}$ are incomparable according to the second ranking.

### 4.2 Descending PROMETHEE I and II rankings

This ranking is based on the descending belief function. We should compute at first for each alternative on each criterion this function, determine its sum, compare each pair of sums and deduce the preference situations between the actions on each criterion (see Tables 9, 10 and 11). Then, the values of preference functions are determined using formula (8). The preference degrees, the entering, leaving and net flows are computed. The results are described in Tables 3. The descending PROMETHEE I and II rankings are illustrated in Figures 3 and 4.

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ | $\phi^{+}$ | $\phi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | - | 0.8 | 1 | 1 | 0 | 0.7 | 0.650 |
| $c_{2}$ | 0.2 | - | 0.2 | 0.2 | 0.2 | 0.2 | -0.225 |
| $c_{3}$ | 0 | 0.3 | - | 0.7 | 0 | 0.25 | -0.25 |
| $c_{4}$ | 0 | 0.3 | 0.3 | - | 0 | 0.15 | -0.575 |
| $c_{5}$ | 0 | 0.3 | 0.5 | 1 | - | 0.45 | 0.4 |
| $\phi^{-}$ | 0.05 | 0.425 | 0.5 | 0.725 | 0.05 |  |  |

Table 3. Preference Degrees And Flows Related To the Descending Belief Function


Figure 3. Descending PROMETHEE I ranking


Figure 4. Descending PROMETHEE II ranking


Figure 5. Agregated PROMETHEE I ranking


Figure 6. Agregation PROMETHEE II ranking

| $\sum_{A_{k} \in \vec{S}(X)} \overrightarrow{B e l}_{j}^{h}\left(A_{k}\right)$ | $g_{1}$ | $g_{2}$ | $g_{3}$ |
| :---: | :---: | :---: | :---: |
| $c_{1}$ | 2.94 | 2 | 2.84 |
| $c_{2}$ | 3.6 | 3 | 1.6 |
| $c_{3}$ | 4 | 0.3 | 3.33 |
| $c_{4}$ | 3.68 | 2.28 | 3.9 |
| $c_{5}$ | 4 | 2 | 2.6 |

Table 4. The Sum of the Ascending Belief Function

| $\sum_{B_{l} \in \tilde{S}(X)} \overleftarrow{B e l}_{j}^{h}\left(B_{l}\right)$ | $g_{1}$ | $g_{2}$ | $g_{3}$ |
| :---: | :---: | :---: | :---: |
| $c_{1}$ | 3 | 4 | 3 |
| $c_{2}$ | 2 | 3 | 4 |
| $c_{3}$ | 2 | 3.44 | 2.05 |
| $c_{4}$ | 1 | 3.67 | 2.67 |
| $c_{5}$ | 2 | 4 | 3 |

Table 5. The Sum Of The Descending Belief Function

As can be seen, $c_{1}$ is the best candidate. $c_{2}$ and $c_{3}$ are incomparable according to the second ranking.

### 4.3 Aggregated PROMETHEE I and II rankings

It is also possible to deduce two aggregated rankings related respectively to the ascending and descending PROMETHEE I

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | - | $P$ | $P$ | $P$ | $P$ |
| $c_{2}$ | $P^{-1}$ | - | $P$ | $P$ | $P$ |
| $c_{3}$ | $P^{-1}$ | $P^{-1}$ | - | $P^{-1}$ | $I$ |
| $c_{4}$ | $P^{-1}$ | $P^{-1}$ | $P$ | - | $P$ |
| $c_{5}$ | $P^{-1}$ | $P^{-1}$ | $P$ | $P^{-1}$ | - |

Table 6. Preference Relations On Criterion $g_{1}$

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | - | $P$ | $P$ | $I$ | $I$ |
| $c_{2}$ | $P^{-1}$ | - | $P^{-1}$ | $P^{-1}$ | $P^{-1}$ |
| $c_{3}$ | $P^{-1}$ | $P^{-1}$ | - | $P^{-1}$ | $I$ |
| $c_{4}$ | $P^{-1}$ | $P^{-1}$ | $P$ | - | $P$ |
| $c_{5}$ | $P^{-1}$ | $P^{-1}$ | $P$ | $P^{-1}$ | - |

Table 7. Preference Relations On Criterion $g_{2}$

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $c_{1}$ | - | $P^{-1}$ | $P$ | $P$ | $P^{-1}$ |
| $c_{2}$ | $P$ | - | $P$ | $P$ | $P$ |
| $c_{3}$ | $P^{-1}$ | $P^{-1}$ | - | $P$ | $P^{-1}$ |
| $c_{4}$ | $P^{-1}$ | $P^{-1}$ | $P^{-1}$ | - | $P$ |
| $c_{5}$ | $P$ | $P^{-1}$ | $P$ | $P$ | - |

Table 8. Preference Relations On Criterion $g_{3}$
rankings and to the ascending and descending PROMETHEE II rankings. The results are given in Figures 5 and 6.
As can be noticed, $c_{1}$ is the best candidate in both rankings. In the aggregated PROMETHEE I ranking, $c_{2}$ is incomparable to $c_{3}$ since $c_{2}$ is preferred to $c_{3}$ in the ascending ranking and $c_{2}$ and $c_{3}$ are incomparable in the descending ranking. Moreover, $c_{2}$ is incomparable to $c_{5}$ since $c_{2}$ is preferred to $c_{5}$ in the ascending ranking and $c_{5}$ in preferred to $c_{2}$ in the descending ranking. $c_{4}$ and $c_{3}$ are also incomparable since $c_{4}$ is preferred to $c_{3}$ in the ascending ranking and $c_{3}$ is preferred to $c_{4}$ in the descending ranking.

In the aggregated PROMETHEE II ranking, $c_{5}$ is incomparable to $c_{2}$ and $c_{4}$ since $c_{2}$ and $c_{4}$ are preferred to $c_{5}$ in the ascending ranking and $c_{5}$ is preferred to $c_{2}$ and $c_{4}$ in the descending ranking. $c_{4}$ and $c_{3}$ are also incomparable since $c_{4}$ is preferred to $c_{3}$ in the ascending ranking and $c_{3}$ is preferred to $c_{4}$ in the descending ranking.

## 5. Conclusion

In this paper, we have addressed the multicriteria ranking problems where the actions are evaluated on ordinal criteria and where the evaluations are given imperfectly. Evidence theory has been used to tackle this problem. At first, the concept of BBA allows to represent imperfect evaluations. Then, the ascending and descending belief functions have been applied in order to compare the evaluations

Further research is needed to determine an aggregated total ranking. Another possible line of research is in extending this method in the context of group decision making.

Appendix A. The sum of the ascending and descending belief functions. Tables 4-5.

Appendix B. Tables 6-7: The established preference relations between the candidates on each criterion based on the ascending belief function.

Appendix C. Tables 9-11: The established preference relations between the candidates on each criterion based on the descending belief function

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | - | $P$ | $P$ | $P$ | $P$ |
| $c_{2}$ | $P^{-1}$ | - | $I$ | $I$ | $I$ |
| $c_{3}$ | $P^{-1}$ | $I$ | - | $P$ | $I$ |
| $c_{4}$ | $P^{-1}$ | $P^{-1}$ | $P^{-1}$ | - | $P^{-1}$ |
| $c_{5}$ | $P^{-1}$ | $I$ | $I$ | $P$ | - |

Table 9. Preference Relations On Criterion $g_{1}$

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | - | $P$ | $P$ | $P$ | $P$ |
| $c_{2}$ | $P^{-1}$ | - | $I$ | $I$ | $I$ |
| $c_{3}$ | $P^{-1}$ | $I$ | - | $P$ | $I$ |
| $c_{4}$ | $P^{-1}$ | $P^{-1}$ | $P^{-1}$ | - | $P^{-1}$ |
| $c_{5}$ | $P^{-1}$ | $I$ | $I$ | $P$ | - |

Table 10. Preference Relations On Criterion $g_{2}$

|  | $c_{1}$ | $c_{2}$ | $c_{3}$ | $c_{4}$ | $c_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{1}$ | - | $P^{-1}$ | $P$ | $P$ | $P$ |
| $c_{2}$ | $P$ | - | $P$ | $I$ | $I$ |
| $c_{3}$ | $P^{-1}$ | $I$ | - | $P$ | $P^{-1}$ |
| $c_{4}$ | $P^{-1}$ | $P^{-1}$ | $P^{-1}$ | - | $P^{-1}$ |
| $c_{5}$ | $P^{-1}$ | $I$ | $I$ | $P$ | - |

Table 11. Preference Relations On Criterion $g_{3}$

## References

[1] Vincke, P. (1992). Multicriteria decision-aid. John Wiley and Sons, New York.
[2] Brans, J. P., Vinke, P. (1985). PROMETHEE. A preference ranking organisation method: the PROMETHEE method for MCDM. Management Science, 31, p. 647-656.
[3] Roy, B. (1978). ELECTRE III: un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du CERO, 20, p. 3-24.
[4] Saaty, T. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill Inc, New York.
[5] Shafer, G. (1976). A Mathematical theory of evidence, Princeton University Press, Princeton.
[6] Boujelben, M. A., De Smet, Y., Frikha, A., Chabchoub, H. (2009). Building a binary outranking relation in uncertain, imprecise and multi-experts contexts: The application of evidence theory, International Journal of Approximate Reasoning, 50 (8)1259127, September.
[7] Hadar, J., Russell, W. R. (1969). Rules for ordering uncertain prospects, American Economic Review, 59, p. 25-34.
[8] Boujelben, M. A., De Smet, Y., Frikha, A., Chabchoub, H. A ranking model in uncertain, imprecise and multi-experts contexts: The application of evidence theory, International Journal of Approximate Reasoning, 52 (8)1171-1194, November.
[9] Dempster, A. P. (1976). Upper and Lower Probabilities Induced by a Multivalued Mapping, Annual Mathematics and Statistics, 38, p. 325-339.
[10] Bne Amor, S., Mareschal, B. (2012). Integrating imperfection of information into the PROMETHEE multicriteria decision aid methods: a general framework, Foundations of Computing and Decision Sciences, 37 (1) 3-56.
[11] Bawa, V. S. (1982). Stochastic dominance: a research bibliography, Management Science, 28, p. 698-712.

