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ABSTRACT: For the ease of controlling of an unknown Hammerstein model, it is usually desired to cancel out the effects of
static nonlinearities. This requires the proper cancellation of all the nonlinearities or otherwise it may either create control
problems or can result in the optimization complexity. The paper discusses a novel approach towards the designing of fuzzy
inverse model controller that can effectively cancel out the effect of static nonlinearities in unknown Hammerstein models.
The controller is used in conjunction with Generalized Predictive controller for controlling an unknown Hammerstein
model. Simple single layer convex optimization is found sufficient to generate a converged optimized solution. Simulation
results are presented to show the effective performance of the proposed controller.
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1. Introduction

Hammerstein models are the famous structures to represent variety of practical systems such as water heater, distillation
column, and ball and beam system etc. Different approaches have been proposed for controlling these models. These aproaches
usually deal with the cancellation of static nonlinearity present within the Hammerstein model [6], [1], [13],[14] and [15]. In spite
of being a nice approach, it sometimes may lead to risky results, either in the form of bad control or the requirement of increasing
optimization layers [1]. Fuzzy models which are well known as universal approximators are, on the other hand, a nice approach
to identify the static nonlinearity. Babuska has proposed a simple approach to develop fuzzy inverse model using TS zeroth
order fuzzy models (as shown in Fig 1a) [12]. These inverse models can be used for nonlinearity cancellation, however
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for the unknown systems; the conventional implementation of fuzzy inverse model as proposed by Babuska [12] may not be
quite accurate. This is because the definition of output fuzzy sets on the basis of input fuzzy sets is based on Mamdanis
approach (as shown in Fig 1b) which incorporates interpolation to define the relation between two defined points. However for
an unknown system, the system behavior between two defined points cannot be ensured and interpolation may lead to false
results. Hence using these fuzzy models may lead to improper cancellation of static nonlinearity. Furthermore it is suggested

(a)

(b)

that for adaptive control, Takagi Sugeno (TS) fuzzy models are more favorable than Mamdani models because TS models are
mathematically less complex due to their crisp consequents rather than output fuzzy sets [3].

This paper introduces Fuzzy inverse model of TS structure rather than that of Mamdani structure as proposed by Babuska.
Moreover the problem of exact cancellation of static nonlinearity is resolved by implementing feedback error learning concept
in the fuzzy inverse model. This approach will ensure that if the crisp output generated by inverse fuzzy model is not exact then
feedback error learning implemented with the fuzzy inverse model will rectify the solution to be accurate. In section 2, conventional
approaches of static nonlinearity cancellation will be presented. Section 3 will then detail the proposed approach of fuzzy
inverse model controller. In section 4, the combination of fuzzy inverse model with the GPC will be presented, the simulation
results will then be shown in section 5. Finally Section 6 will conclude the work.

2. Conventional Approach of Fuzzy Inverse Model

Various approaches have been adopted for compensating the effect of nonlinearities. These include conven tional nonlinear
inverse strategy [Corradini and Orlando, 2002; Tao and Kokotovic, 1993; Nordin and Gutman, 2002; Chow and Clarke, 1994] and
the newly emerging Fuzzy Inverse Modeling. The detailed study of fuzzy inverse models is presented by Babuska [12]. They
have discussed the two types of Fuzzy model structure Mamdani and Takagi Sugeno and the corresponding inverse modeling.
In this section the inverse fuzzy model structure from 0th order TS fuzzy model will be described in detail.

The discussion is regarding the inverse fuzzy model that is developed from 0th order TS fuzzy model. The partially reduced
inverted model of singleton fuzzy model formulated as:

                                              Figure 1. (a): TS structure of Fuzzy Model b): Mamdani Structure of Fuzzy Model

(1)
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When the original fuzzy model is first order TS type, still the singleton fuzzy model results by using partial input reduction. This
can occur if zn = xi and xi is not an element of q

An interpolation method must be applied to obtain aj , the centers of the consequent fuzzy sets of inverse model because the
consequents for inverse model, p0

j , are singletons. This interpolation is carried out by the fuzzy sets Aj shown. If the desired
reference r(k + 1) is within the range of the reached states from the actual state x(k), i.e. p0

1 ≤ r(k+1) ≤ p0 NR then the serial
connection of the inverted and the forward fuzzy model produces an identity mapping. The whole method is shown in Figure 3.
It is clear that the inversion of reference r(k+1) is given by one and only one point. If desired output is unable to be reached from

                                                              Figure 2. Fuzzy sets developed from crisp outputs

the current state in one time step, i.e. r(k +1) < p0
1 or r(k +1) > p0 NR, the control action is still able to generate mapping with

minimal error. When r(k + 1) > p0 NR, μNR p0 (r(k + 1)) = 1, and the control input is a(k) = core(ANR). The degree of fulfillment of
control action is given by:

which yields the model output

As p0 Nr > p0
j , when 1 ≤  j  ≤ NR-1, the difference |r(k + 1) - y(k + 1)| is the minimum possible. Parallel for r < p0

1, the control action
a = core(A1) yields the output

This gives the best control action, since p0
1 < p0

j when 2jNR. The discussion shows that Mamdani inference is basically used to

The rules of the inverse fuzzy model have the following general form:

Where Aj represents the antecedent membership functions of the inverse model defined on the domain of the output of the
forward fuzzy model. These antecedent sets are shown in Figure 2 where Pj(y) = j(y) and pj = p0j f or1 ≤ j  ≤ NR.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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generate the inverse TS model using the fuzzy sets developed from the singleton consequents of forward model. These fuzzy
sets are used as the antecedents of Mamdani model and the fuzzy sets of the inputs of forward model are used as the
consequents of Mamdani model.

3. Proposed Structure of Inverse Fuzzy Model

Fuzzy model requires fuzzy input sets and fuzzy output sets in case of Mamdani structure or crisp output in case of TS structure.
So does the fuzzy inverse model. The concept of fuzzy inverse model is depicted in Figure 3. It is shown here that if the inverse
model is accurately designed then the input is retrieved back. Unfortunately this is impossible practically because of various
reasons. These include disturbances, noise, improper and inefficient designing of inverse model. Furthermore for unknown
systems we cannot be sure of the system behavior between two points. That is if the designer chose triangular membership
function. Input data is defined just before and after the core, then according to the designer selection, the system in between
these two inputs will behave corresponding to the core of fuzzy set however practically there may not be such a curve. On the
other hand, in case of TS structure, wrong crisp outputs may be defined which might be different from the actual plants behavior.
For nonlinearity cancellation, we therefore need some improvement in the conventional approach. If prediction error learning is
incorporated with the model, then we can easily train the inverse fuzzy model to depict the unknown nonlinearity accurately.
Here in this work we have used this concept with the fuzzy inverse model. The general structure of the scheme is presented in
Figure 5.

                                                         u = ú +ξ

where:
ú is the output of inverse model controller
ξ is the error gain
e is the error between virtual control action generated by GPC [11], [15] and the virtual control action to be applied to the linear
dynamics of Hammerstein model hence e = v -v’

In Figure 5 we see that there have to be three inputs for the adaptive inverse fuzzy model of the static nonlinearity of an unknown
Hammerstein model:

 The virtual control action (5), obtained from GPC (will be explained in section 4)

  Parameters of static nonlinearity identified using Fuzzy Hammerstein model of the system [1] and

  The desired actual action to be produced by the inverse fuzzy model.

The third signal is actually important. If there is no feedback then the designer has to actually estimate the output for the case
of unknown systems. For known systems, the task is much simpler because there the designer has only to specify the desired
input. However for unknown systems, there are many chances of error in estimation which may lead to inefficient cancellation
of nonlinearity. When feedback error learning is incorporated then the fuzzy inverse model actually learns from the unknown
systems dynamics about its required actual control action. This strategy helps to regenerate the actual control action efficiently.

4. Gpc Based on Fuzzy Inverse Model

Hammerstein models are nonlinear systems that contain static nonlinearities which are connected in series with the linear
dynamics. The basic structure of Hammerstein model is shown in Figure 6. These models represent different practical nonlinear
systems (as discussed in 1). The proposed controller is actually combined with linear GPC algorithm [2], [7]The overall scheme
is now discussed. The inverse fuzzy model inverts the virtual control action [7] produced by the GPC algorithm for unknown
Hammerstein model. Furthermore we have assumed that the parameters of the unknown model (nonlinear parameters
corresponding to static nonlinearity and linear parameters corresponding to linear dynamics) have been identified using Fuzzy
Hammerstein model [7]. The general block diagram of overall control scheme is presented in Figure 7.

GPC algorithm is provided with identified parameters of linear dynamics only. Therefore the algorithm will generate the control
action for linear dynamics (i.e. virtual control action). However the Hammerstein model comprises of the static nonlinearity as
well. To get rid of this nonlinearity efficiently and effectively, feedback error learning inverse model controller is used.

(10)
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                                                                                 Figure 3. Inversion of SISO Fuzzy inverse model

By using feedback, the inverse model controller is learnt effectively regarding the actual control action. This is done by
following the scheme in Figure 5. The incorporation of feedback error learning, fuzzy inverse model controller helps in reducing
the unknown Hammerstein model to an approximate linear dynamics which can easily be controlled by linear GPC algorithm.

5. Simulation Results

The inverse model controller is designed for three systems A, B and C.

 For system A: Hammerstein model is assumed to have logarithmic static nonlinearity

                                                                           Figure 4. The concept of Inverse Fuzzy Mode

 For system B: Hammerstein model is assumed to have exponential static nonlinearity

 For system C: Hammerstein model is assumed to have squared static nonlinearity

For all the three systems, delayed linear dynamics is associated with different time constants for the three systems. The
Hammerstein model is identified as Fuzzy Hammerstein model using constrained Recursive least squares algorithm. Generalized
Predictive controller is implemented to generate virtual control action to be applied to inverse model controller.

The inverse model controller is developed with six input fuzzy sets. All these sets have triangular shapes to define the dynamics.
The tuning parameters are:

 The supports and the core of input fuzzy sets.
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                                                          Figure 5. The general structure of inverse model controller

                                                                           Figure 6. Structure of Hammerstein model

                                           Figure 7. Placement of Proposed inverse model controller in overall control scheme

 The control horizon in GPC

 The prediction horizon in GPC

 The control weighting factor in GPC

 The error gain in feedback error learning
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However the scope of this paper is limited to the nonlinearity cancellation by the inverse fuzzy model, therefore the focused
tuning parameters here are just two. These are:

  Control weighting factor

 Feedback error gain

The performance of adaptive fuzzy inverse model controller with feedback error learning for the three systems is shown below
along with the overall control performance.

System A comprises of logarithmic static nonlinearity with delayed linear dynamics (with τ= 120s). System B contains exponen-
tial static nonlinearity with the linear dynamics (τ= 50s). Finally system C describes a Hammerstein model containing squared
static nonlinearity with the linear dynamics (with τ= 60s). The overall Hammerstein models of Systems A, B and C are shown in
(11), (12) and (13).

The control performance of Fuzzy adaptive inverse model controller for system A is shown in Figure 8, for system B is shown in
Figure 10 and for system C is shown in Figure 12. The virtual control action (shown in green color) is producedby GPC algorithm.
The actual control action (shown in blue color) is produced after the cancellation of static nonlinearity by the fuzzy inverse
model controller. It is observed that the actual control action is efficiently following the virtual control action which ensures that
the static nonlinearity of the Hammerstein model has been effectively cancelled out by the proposed inverse fuzzy model
controller. Figure 9, 11 and 13 show the root mean square errors in response following by fuzzy inverse model controller (i.e the
error between the corresponding virtual control actions, produced by GPC algorithm, and the actual control action) for different
values of feedback error gain (shown in Figure 8, 10 and 12). Table I shows the tuned parameter values for the three Hammerstein
models.

6. Conclusion

This paper discusses a novel approach of adaptive inverse fuzzy model with TS model structure and feed back error learning.
The controller adaptively and effectively cancels out the effect of static nonlinearities from Hammerstein model. The controller
has been tested with different Hammerstein models and performs well in all the cases.

                                                                                                  Table 1. Tuned Parameter Values For Hammerstein Models

(11)

(12)

(13)



92                 Journal of  Information Technology  Review   Volume  7  Number  3  August  2016

                                                                      Figure 8. Performance of Inverse controller for system A

                                                                 Figure 9. Root Mean Square Error plot against system A
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                                                                Figure 10. Performance of inverse model controller for system B

                                                                    Figure 11. Root Mean Square Error plot against system B
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                                                             Figure 12. Performance of inverse model controller for system C

                                                                    Figure 13. Root Mean Square Error plot against system C
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