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ABSTRACT:  Distributed multimedia applications have emerged at an increasing rate during the last decade in several
domains (video conferencing, e-health, virtual meeting rooms, etc). This has created several new challenging problems
related to data integration and fragmentation, user-oriented and adaptive interfaces, real time and network performances,
etc. In this article, we focus on the problem of data(base) fragmentation, initially consisting of reducing irrelevant data
accesses by grouping data frequently accessed together in dedicated segments, in a multimedia context. We mainly
address the issue of query and predicate implication required in current fragmentation algorithms, and provide a formal
approach to identify such implications, in order to partition multimedia data efficiently. It is worthy to note that our
approach is capable of considering multimedia-based as well as semantic comparisons, based on a generalized notion of
functional dependencies, which are called multimedia functional dependencies.
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1. Introduction

In the past few years, distributed multimedia applications and data have become available at an increasing rate ranging from
video-on-demand and video conferencing, to medical imaging, cartography, meteorology, surveillance, etc. This has created
several new challenging problems related to data integration and fragmentation, user-oriented and adaptive interfaces, real
time and network performances, etc.

While several studies aim at building distributed MultiMedia DataBase Management Systems (MMDBMS) [Braunmuller et
al. 2000], most of existing systems lack an appropriate framework to adequately provide full-fledge multimedia operations.
Particularly, data fragmentation (or partitioning) techniques need to be adapted in a multimedia context so to properly achieve
high resource utilization and increased concurrency and parallelism.

We recall that fragmentation consists of dividing the database objects and/or entities into fragments, on the basis of common
query accesses, in order to distribute them over several distant sites [Chinchwadkar and Goh 1999] so to:

—     Reduce the amount of irrelevant data accessed by applications, because applications usually access portions of entities
       and objects.
—    Allow parallel execution of a single query, dividing it into a set of sub-queries that operate on segments of an entity/class.
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—   Reduce the quantity of data transferred when migration is required.
—   Decrease data update cost and storage space.

Though fragmentation of traditional (relational or object oriented) databases has been thoroughly studied in the literature
[Özsu and Valduriez 1999; Baiao and Mattoso 1998; Ezeife and Barker 1998; Navathe et al. 1995; Bellatreche et al. 1997],
fragmentation of multimedia data has not yet received strong attention [Saad et al. 2006; Getahun et al. 2007a; 2007b], mainly
because of the following two issues:

—    Multimedia data structure: while current fragmentation algorithms require as input the database conceptual schema
[Chinchwadkar and Goh 1999], this requirement is not always fulfilled in multimedia databases due to the unstructured and
complex nature of multimedia data.
—   Multimedia features: the wide variety of features used to describe multimedia data is out of the scope of traditional
partitioning techniques. These features can be mainly categorized as low-level features (such as color, texture, shape, layout,
etc.) and semantic-based or meta-data features (such as event, main topic, place, time, etc).

In this article, we provide a formal approach dedicated to multimedia query and predicate implication, required in current
fragmentation algorithms. To do so, we consider both multimedia and semantic features, and we define a pre-ordering
between queries, making an explicit use of a generalization of functional dependencies, which we call multimedia functional
dependencies. Based on this preordering, given a set of frequently asked queries (FQ), we characterize the set of queries
whose answers constitute a minimal data set that has to be stored so as to optimize the computation of the answers to queries
that are comparable to some queries in FQ.

The rest of the article is organized as follows. The next section is dedicated to provide a motivating scenario explaining the
requirements to be considered when fragmenting multimedia data. In Section 3, we review related work concerning multimedia
data fragmentation. In Section 4, we recall the main concepts and formalism necessary to understand our approach and we
define a new type of multimedia data dependencies, called multimedia functional dependencies. Then, in Section 5, we define
the type of multimedia queries considered in our approach, which are basically projection-selection queries taking into
account the specific features of multimedia data, and then, we study the problem of implication of selections. In Section 6, we
define a pre-ordering for multimedia queries, and the induced equivalence relation. In Section 7, we introduce our data
fragmentation strategy and discuss its main implementation issues. Section 8 concludes the article and draws some of our
future work.

2. Motivating Scenario

To illustrate and motivate our study throughout the article, we consider the following scenario of a simple multimedia
database used to manage singer records in a production company.

Example 1. We consider a table named Albums defined over the attribute set U = {name, birth, place, genre, picture, song,
clip}, where each tuple describes information about a specific song by a singer.

More precisely, attributes name, birth, place and picture refer respectively to the name, birth date, birth place and pictures of
a specific singer, genre refers to the type of songs of this singer, whereas song and clip stand respectively for the title and the
associated clip of a given song.

In this context, let us consider the following queries:
— Q1 : find all songs of hiphop singers
— Q2 : find all songs of popular singers
— Q3 : find the singer pictures appearing in Figure 1
— Q4 : find all singer pictures of singers appearing in Figure 2
— Q5 : find all clips and pictures of singers from Paris
— Q6 : find all clips and pictures of all French singers

With current fragmentation approaches, these queries are considered different and analyzed separately. However, they
embed several implications:
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Figure 1. Sample photo of M. Jackson Figure 2. Sample photo of M. Jackson and P. McCartney

—The result of Q1 is included in that of Q2 (since hiphop music is popular).
—The result of Q3 is included in that of Q4 (since M. Jackson in Figure 1 appears also with P. McCartney in Figure 2).
—The result of Q5 is included in that of Q6 (since singers from Paris are also French).

This means that answering queries Q1-Q6 without accessing the whole table Albums, can be done using only the answers to
Q2, Q4 and Q6.

Ignoring such implications between queries (and consequently predicates) would lead, in multimedia applications, to:

(1) High computation cost when creating fragments
(2) Creation of large fragments, which is very restrictive for multimedia storage, migration, and retrieval
(3) Data duplication on several sites, when the storage is distributed. In essence, there are two types of dependencies or
implications that need to be considered when multimedia data come to play:

In essence, there are two types of dependencies or implications that need to be considered when
multimedia data come to play:

—  Multimedia inter-attributes (or functional) dependency: To illustrate the traditional inter-attribute dependency in our
motivating example, let us consider the functional dependencies name birth (meaning that a given singer has a unique
birth date) and name song clip (stating that a song has a single clip for each of its singers). However, although carrying
useful semantics, such dependencies are not enough in our context, since several attributes can be complex/multimedia and
be the source of dependency. For instance, name picture cannot be expected to hold in the table Albums since singer’s
pictures may differ from one song to another. However, it is likely that two pictures, associated with two distinct songs by the
same singer, have strong similarities. Such a constraint on pictures is not taken into account by traditional functional
dependencies.
—  Intra-attribute dependency: Intra-attribute dependency can be illustrated here through the attribute genre where a
hierarchy over song types is used, stating for instance that hiphop music is a particular type of popular music, or that parisian
albums are also french, etc.

3. Related Work

As mentioned earlier, fragmentation (or partition) techniques used in distributed database systems aim at removing irrelevant
data access and reducing data exchange among related sites [Baiao and Mattoso 1998]. The accuracy of existing fragmentation
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algorithms is closely related to their query/predicate implication policy since most of them use the set of predicates to
determine the minterm fragments.

We recall that a minterm is a conjunction of simple predicates [Bellatreche et al. 1997] associated to a fragment and that three
fundamental fragmentation strategies have been defined so far:

—  Horizontal Fragmentation (HF): This technique underlines the partitioning of an entity/class in segments of tuples/
objects verifying certain criteria. The generated horizontal fragments have the same structure as the original entity/class. HF
can be of two types:
—  Primary or PHF: partitioning of an entity based on the values of its attributes [Özsu and Valduriez 1999].
—  Derived or DHF: partitioning of an entity based on inter-links with other entities [Baiao and Mattoso 1998].
— Vertical Fragmentation (VF): This technique breaks down the logical structure of an entity/class by distributing its
attributes/methods over vertical fragments, which would contain the same tuples/ objects with different attributes [Baiao and
Mattoso 1998] (except the unique tuple/object identifier kept in all vertical fragments [Ezeife and Barker 1998] so as to link
related segments).
—  Mixed Fragmentation (MF): This technique is a hybrid partitioning technique where horizontal and vertical fragmentations
are simultaneously applied on an entity/class [Navathe et al. 1995].

In the literature, two main PHF algorithms have been provided for relational DBMS:

—  Com-Min algorithm [Özsu and Valduriez 1999]: This algorithm generates, from a set of simple predicates applied to a
certain entity, a complete and minimal set of predicates used to determine the minterm fragments corresponding to that entity.
—  Make-Partition graphical algorithm [Navathe and Ra 1989]: This algorithm generates minterm fragments by grouping
predicates having high affinity towards one another.

It is worthy to note that the number of minterm fragments generated by Make-Partition is relatively smaller than the number
of Com-Min minterm fragments [Navathe et al. 1995], due to the fact that the number of minterm fragments generated by Com-
Min is exponential to the number of simple predicates considered.

For object oriented DBMS also, two main PHF algorithms have been studied in the literature: one developed by Ezeife and
Barker using Com-Min [Özsu and Valduriez 1999], and the other developed by Bellatreche et al. [Bellatreche et al. 1997] on the
basis of Make-Partition [Navathe and Ra 1989]. The use of Com-Min or Make-Partition is the major difference between them.

In parallel, and as a consequence of the various XML-oriented formats available on the web, generally utilized for multimedia
data representation (such as SVG1, SMIL2, MPEG-73, etc.), several recent approaches have been provided for XML
fragmentation [Mahboubi and Darmont 2009], [Süß 2001].

As XML-based files are usually verbose (and can thus become extremely large in size), and have a huge number of users
accessing them, XML fragmentation becomes prominent. The usage of XPath and XML predicates forms the common basis
of all these studies. Nevertheless, XML fragmentation approaches are very specific and hardly applicable to multimedia
databases.

For multimedia data fragmentation, only two approaches have been recently provided in the literature where the authors
focus on the implication problem between predicates and try to improve and adapt existing algorithms:

—  One provided by Saad et al. in [Saad et al. 2006], where the authors discuss multimedia primary horizontal fragmentation.
Implications between low-level multimedia predicates are identified and utilized as input of the traditional fragmentation
algorithms (Com-Min [Özsu and Valduriez 1999] and Make-Partition [Navathe and Ra 1989]), in order to efficiently partition
the multimedia database.

1http://www.w3.org/Graphics/SVG/
2http://www.w3.org/TR/REC-smil/
3http://www.chiariglione.org/mpeg/standards/mpeg-7/
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—  One provided by Getahun et al. in [Getahun et al. 2007a; 2007b], where the authors discuss the issue of identifying
semantic implications between textual-based multimedia predicates, and propose to integrate knowledge bases as a framework
for assessing the semantic relatedness between predicate values and operators.

Although these two approaches are interesting, they do not fully consider characteristics related to multimedia attributes
when computing implication between predicates, and more precisely they do not address multimedia inter-attributes (or
functional) dependencies. In addition, they only consider the primary horizontal fragmentation type. It is to be noted that
several dedicated studies have been provided in the literature aiming at studying the functional dependency problem in a
multimedia context [Chang et al. 2007; Polese and Chang 2001] (without addressing specifically the fragmentation problem).
However, these approaches did not address the issues of predicate implication and query pre-ordering, as we do in this
article.

4. Back Ground

4.1 Preliminaries
In this work, we consider that the data are stored in a table  defined over two kinds of attributes, namely atomic attributes and
multimedia attributes. More precisely, we assume a fixed attribute set U = A U M where:

—  A = {A1,...,Ap} and each Ai (i = 1,...,p) is an atomic attribute associated with a set of atomic values (such as strings,
numbers, etc.) called the domain of Ai and denoted by dom (Ai).
—  M = {M1,...,Mq} and each Mj (j = 1,...,q) is a multimedia attribute, associated with a set of complex values (usually
represented as sets of values or vectors) commonly called multimedia features (such as color, texture, shape, loudness, pitch,
brightness, etc.). The domain of Mj is denoted by dom (Mj).

Thus, given a table defined over U, tuples t in∆ are denoted as                         where ai is in dom (Ai) (1  i p) and mj

4.2 Distance and Similarity
Since we consider two kinds of attributes, comparing subtuples of tuples in comes down to comparing atomic values,
multimedia values, or both.

On one hand, when multimedia objects come to play, comparing two atomic attribute values using standard operators (<, >,
Like, =, etc.) can be inefficient and inaccurate. More particularly, when multimedia objects are associated with textual or
spatial attributes (e.g. genre and place attributes in our running example, respectively), the use of such operators becomes
inappropriate since they do not take into account the related semantics (e.g., comparing the strings hiphop to popular music,
Paris to France, etc. would not provide any usable result in the context of our running example).

In essence, associating semantics to multimedia objects (for description and retrieval purposes for instance) is a complex
task, because (i) the description of a multimedia object is subjective and depends on each user, and (ii) the content of a
multimedia object cannot always be defined by a set of terms (words and/or expressions).

To overcome these limitations and to consider the semantics behind terms and values, semanticbased operators (and
distances) need to be defined and used. This has been done so far in the literature using knowledge bases (KB).We recall that
knowledge bases (thesauri, taxonomies, semantic networks, and/or ontologies) are utilized in the fields of Natural Language
Processing (NLP) and Information Retrieval (IR) to compare/match the considered entities (words or expressions [Smeaton
and Quigley 1996; Lin 1998], generic concepts [Rodriguez and Egenhofer 2003; Ehrig and Sure 2004], web pages [Maguitman
et al. 2005], etc.) with respect to their corresponding relevance degrees with one another. This comes down to a hierarchical
structure with a set of concepts (representing or subsuming groups of words, expressions or terms), and a set of relations
connecting them. Several relations are commonly used in the literature to measure similarity such as Synonymy, Hyponymy
(or IsA), Hypernymy (or HasA), Meronymy (or ParOf), and Holonymy (or HasPart). Figure 3 shows an extract of a sample KB
used in Geographical Information Systems in France.

 is in dom (Mj)(1  i q). Moreover, every ai is denoted by t.Ai and every mj is denoted by t.Mj .

Current techniques for computing semantic-based distance between words/expressions can be classified as edge-based and
node-based. Methods of the former group are straightforward and generally estimate similarity as the shortest path (in edges,
edge weights, or nodes)  between the two concepts being compared [Rada et al. 1989]. With node-based approaches, the
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definition of similarity is more sophisticated and is estimated as the maximum amount of information content they share in
common. With the help of KB, this common information carrier can be identified as the most specific common ancestor (also
known as Lowest Common Ancestor or LCA) that subsumes both concepts being compared [Resnik 1995]. It is important to
note that although for every A in A, dom(A) can have its own knowledge base, it is commonly assumed that one global KB is
shared among all atomic attribute domains (with if needed one virtual root being the ancestor of all the roots of each specific
domain KB).

On the other hand, similarly of atomic attributes, comparing two values from the domain of a given multimedia attribute
cannot be done using traditional operators. For example, in Figure 4, we can hardly guess which operator would best
correspond with the comparison status of the two images.

Consequently, similarity-based operators (and distances) have been explored in the literature sincethe last two decades to
provide more adaptable multimedia comparison [Atnafu et al. ; Adali et al. 1998]. The similarity between two values over a
multimedia attribute in M can be computed using various distance measures defined on feature spaces (color, texture, etc.)
[Androutsos et al. 1999; Jeong et al. ].

In our approach, we take into account these important features of atomic and multimedia attributes by assuming that, given
an attribute A in U, either atomic or multimedia, several distances can be defined over dom(A). Consequently, the similarity
of two values a and a’ in dom(A) is defined according to a function that aggregates the results of distances defined over
dom(A).

Figure 3. A sample KB with one relationship belongs

Figure 4. How to compare these two images?
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Definition 1. Let A be an attribute in U (atomic or multimedia) over which n distance functions d1
A,...,dn

A are used. We
associate A with a global distance function, denoted by wa such that for all a1 and a2 in dom(A) ωA(a1 , a2) = gA(d1
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We note that if n = 1, then gA is the identity function and so, ωA(a1 , a2) = d1
A(a1 , a2), for all a1 and a2 in dom(A).

When a distance comes to play, two main similarity operators can be commonly employed: range and k-nearest neighbor. The
Similarity Range query retrieves the objects in the database that are dissimilar from a given reference up to a given threshold;
and the k-Nearest Neighbor query (also known as a top-k query) retrieves the k objects most similar to a given reference. A
formal definition for each one of these query types can be found in [Böhm et al. 2001; Chávez et al. 2001]. In what follows,
given an attribute A in U and a real number , when writing expressions such as ωΑ(a1 , a2) , refers to the radius of the
range operator or to the number of k neighbors to be returned, depending on the similarity operator being considered.

Based on the previous definition, when considering an attribute A, either atomic or multimedia, we define a similarity measure
between two values in dom(A) as follows.

Definition 2. Let A be an attribute in U (atomic or multimedia) and a positive real number. For all a1 and a2 in dom(A), a1 and
a2 are said to be similar within , denoted by a1 ε a2 , if

To illustrate this, let us consider again our motivating scenario of Example 1. We assume that the multimedia attributes Picture
and Clip are associated to global distance functions, respectively denoted byωpictureandωclip. Using these measures, the
distance between two pictures or two clips can then be computed in order to assess their similarities. Similarly for name, birth
and song attributes, we assume that they are compared according to the trivial distance where the distance from an element
to itself is 0 and the distance between two distinct elements is . In this way, for every , a1 εa2 holds if and only if a1  = a2.
Thus, assuming such a distance over dom(name), dom(birth) and dom(song) means that two names, two birth dates, or two
song titles are similar within any  if and only if they are equal. Regarding the other attributes (e.g., place and genre), they
include some semantics. Since their related domains can be defined with respect to a predefined knowledge base, the
distances between attribute values can be easily computed.

For instance, the distance between two places p1 and p2, denoted as ωplace (p1, p2), can be computed as follows, according to
the predefined KB shown in Figure 4.2: ωplace (p1, p2) is the height of the minimal subtree of KB whose leaves are p1 and p2.
In this case, it is easy to see that ωplace is a distance for which ωplace (Dijon , Beaune) =ωplace(Cergy , Roissy) = 1 and ωplace (Pari
,Bourgogne) = 2. Therefore, Dijon Beaune and Cergy Roissy both hold, whereas Paris Bourgogne does not.

4.3 Multimedia Functional Dependencies
In order to provide relevant data fragmentation approach, we extend the standard notion of functional dependency to the
multimedia context. To this end, we assume that for every A in U,ωΑ is associated to a given threshold A. Two elements a
and a’ are said to be similar if ωΑ(a ,a’) Aholds. More generally, the notion of similarity over an attribute set X is defined
as follows.

Definition 3. Let X be an attribute set and t and t’ two tuples over U. t and t’ are said to be similar over X, denoted t X t’, if
for every A in X , t.A εΑt’.A holds.

A multimedia functional dependency is an expression of the form X Y where X and Y are two nonempty sets of attributes
(atomic or multimedia). The notion of multimedia functional dependency satisfaction is defined as follows.
A multimedia functional dependency is an expression of the form X Y where X and Y are two nonempty sets of attributes
(atomic or multimedia). The notion of multimedia functional dependency satisfaction is defined as follows.
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Definition 4. Let X and Y be two nonempty subsets of U. The table is said to satisfy the multimedia functional dependency
from X to Y , denoted by  X Y , if for all t and t’ in , ( t X t’ ) ( t y  t’).

We point out that multimedia functional dependencies are a generalization of standard functional dependencies, in the sense
that for every table over U, if  X Y , then  X Y . Roughly speaking, a standard functional dependency X Y
can be seen as a multimedia functional dependency X Y in which all distance thresholds of attributes in XUY have been
set to 0.

Example 2. In the context of our motivating scenario of Example 1, we assume the following set MD of multimedia functional
dependencies:

—  nam;birth place picture
—  song ; genre
—  name song ; clip.

where the attributes are associated with the following similarity thresholds:
— name = birth = song = 0.

As the trivial distance has been assumed on attributes name, birth and song, we recall that names, birth dates and song titles
are similar if and only if they are equal, whatever the similarity threshold.

— place = clip = 0.
Contrary to the previous item, the considered distances over dom(place) and dom(clip) are not the trivial distance. Choosing
such similarity thresholds means that, in the table Albums:
—using the first multimedia functional dependency shown above, two tuples with the same singer name cannot be associated
with two distinct birth places, and
—using the third multimedia functional dependency shown above, two tuples with the same singer name and song title
cannot be associated with two distinct clips (even if these clips are close to each other according toωclip).

— genre = 1.
In this case, according to the definition of ωgenre, two genres whose distance is at most 1 are considered similar. Based on the
second multimedia functional dependency shown above, this implies that tuples with the same song but with distinct genres
can be in Albums. For example, assuming thatωgenre(hiphop; popular) = 1, tuples t and t’ such that t.song = t’.song, t.genre =
hiphop and t.genre = popular can be in Albums.
— picture is chosen so as two pictures p1 and p2 such thatωpicture(p1 , p2) picture concern the same singer. By doing so,
considering the first multimedia functional dependency shown above, we allow the table Albums to contain distinct tuples
with the same singer name associated with different but similar pictures, as stated in our motivating scenario. As a consequence,
we assume that:
(1) picture ,because in Example 1, Q3 is assumed to retrieve all singer pictures representing M. Jackson, that is, all pictures
similar to Figure 1.
(2)ωpicture(Figure 1; Figure 2) ω > picture since Figure 2 represents not only M. Jackson, but also P. McCartney. By doing so,
we consider that Figure 1 and Figure 2 are not similar.

Now, similarly to standard functional dependencies ([Ullman 1988]), it can be shown that Armstrong axioms are sound and
complete for multimedia functional dependencies. To see this, we introduce the following notation: given a set MD of
multimedia functional dependencies and two nonempty subsets of U, X and Y , we denote by MD  X Y the fact that, for
every table over U, if  MD then  X Y .

We show that, as for standard functional dependencies, MD  X Y if and only if X Y can be deduced from MD by
applying repeatedly the following three inference rules:

A1- Pseudo-refexivity: If Y X then infer X Y

A2- Augmentation: If X Y then, for every Z U, infer XZ Y Z
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A3- Transitivity: If X Y and Y Z then infer X Z

Denoting by MD X Y the fact that X Y can be inferred from MD using axioms A1-A3 above, the following theorem
states that these axioms are sound and complete.

Theorem 1. Let MD be a set of multimedia functional dependencies over U. Then for every relation over U satisfying MD

and for every X Y over U, we have X Y if and only if MD X Y .

Proof. Soundness: It is easy to see that every axiom is sound in the sense that, for every axiom, every  satisfying the
premisses also satisfies the inferred dependency.

Completeness: Let us assume that X Y cannot be inferred from MD using the axioms. Denoting by X+ the set of all
attributes A in U such that X A is inferred from MD using the axioms, let Z = U \ X+. Consider now the relation = {u1 , u2}
over U such that, for every A X+,ωA(u1.A , u2. A) = Α, and for every B in Z,ωΒ (u1.B , u2.B) > Β.

We first prove by contraposition that  satisfies MD. Let X’ Y’ in MD not satisfied by . Then, for every A X’,ωA(u1.A , u2.
A) Α, and there exists B in Y’, ωΒ ((u1.B , u2.B) > Β. Thus,

X’ X+, which, by definition of X+, shows that for every A X’, X A can be inferred. Thus, using A2 and A3, X X’ can
be inferred, which, using A3, implies that X Y’ can be inferred from the axioms. Consequently, Y’ X+, which is a
contradiction with the fact that there exists B in Y 0 such that ωB(u1.B , u2.B) > Β. Therefore,  satisfies MD.

We now prove that  does not satisfy X Y . Indeed, if we assume that  satisfies X Y then, either X X’, or Y X+.
However, axiom A1 shows that X X+ holds for every X, therefore, Y X+ holds. By definition of X+ , this implies that, for
every A X+, X ; A can be inferred from MD using the axioms. Thus, it can be seen that X Y can be inferred from MD using
the axioms, which is a contradiction. Therefore, the proof is complete.

In what follows, we assume that  satisfies a given set of multimedia functional dependencies. As in [Ullman 1988], we denote
by MD+ the set of all multimedia functional dependencies that can be derived from MD based on the Armstrong’s axioms.
Moreover, as specified in the proof just above, given an attribute set X , X+ denotes the set of all attributes A such that X A
is in MD+. Then, X+ is called the closure of X (with respect to MD).

To illustrate this, let us recall from Example 2 that the set of considered multimedia functional dependencies in our motivating
scenario of Example 1 contains name birth place picture, song genre and name song clip.

Using axioms A1-A3 and Theorem 1, it can be seen that the first dependency can be equivalently replaced by the set of the
following three multimedia functional dependencies: name birth, name place and name picture. Using this
“decomposed” form, it can be seen, based on the similarity thresholds given here, that name birth, name place and name
song clip are standard functional dependencies, whereas name picture and song genre are not.

It is easy to see that name+ = name birth place picture, song+ = song genre, and (name song)+ =name birth place picture song
genre cilp.

To end the section, we notice that, as in [Jen et al. 2010], multimedia functional dependencies can be extended to the empty
attribute set as follows: for every attribute set X, X 0 always holds, whereas dependencies of the form  0 X are not
considered. Consequently, this implies that+ 0 =0, for every set of multimedia functional dependencies MD.

5. Multimedia Queries

5.1 Basic Definitions
The multimedia queries considered in our approach are conjunctive projection-selection queries over, that is queries of the
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form x C( ) such that X is a non empty subset of U and C is a conjunction of atomic selection predicates, defined as
follows.

Definition 5. An atomic selection predicate P is an expression of the form (A ε a), where A U, a dom(A) and  is a positive
real number. The attribute A is called the schema of P, and is denoted by sch(P).

Given an atomic selection predicate P : (A ε a), sat(P) is the set of all  in dom(A) such that . A tuple t over U is said to
satisfy an atomic selection predicate P, denoted by t P, if t:sch(P) sat(P).

If C is a conjunction of atomic selection predicates, C : P1 ... Pp , then a tuple t over U is said to satisfy C, denoted by t C,
if t Pi for every i = 1,...,p. The schema of C, denoted by sch(C), is the set of all attributes sch(Pi), for i = 1,...,p.

A query of the form x C( ) where X is a subset of U and C is a conjunction of atomic selection predicates over pairwise
distinct attributes, is referred to as a multimedia query over . The set of all these queries is denoted by MQ( ).

Now given a multimedia query q, the answer to q in is defined as follows.

Definition 6. Let q = x C( ) be in MQ( ). The answer to q in , denoted by q( ), is the set of all X-values of all tuples
t in  such that t C, that is, q( ) = {t.X t t  C}.

Example 3. Referring back to Example 1, the queries Q1-Q6 can be written according to Definition 5 as follows:

Example 3. Referring back to Example 1, the queries Q1-Q6 can be written according to Definition 5
as follows:

—Q1 : song C1 (Albums), where C1 : genre 0 hiphop

—Q2 : song C2 (Albums), where C2 : genre popular

—Q3 : picture C3 (Albums), where C3 : picture ε Figure 1

—Q4 : picture C4 (Albums), where C4 : picture ε
’ Figure 2

—Q5 : clip picture C5 (Albums), where C5 : place 0 Paris

—Q6 : clip picture C6 (Albums), where C6 : place France

It should be noticed that the  values in every Ci (i = 1 ,..., 6) are chosen so as to fit the comments made in the introductory
section. That is:

—  Choosing 0 in C1 means that the queries are meant to select respectively song titles by hiphop singers, only. Similarly,
choosing 0 in C5 means that only the clips and pictures of singers born in Paris are selected.

—  Assuming that the genre-values in the table Albums are only leaf values of the adopted KB, choosing 0 in C2 would lead
to an empty answer. On the other hand, choosing 1 in C2, allows to return all song titles whose genre g is such that ωgenre(g
, popular) = 1, which includes hiphop.
A similar remark holds for C6 , and thus, choosing 1 in C6 , allows to return all clips and pictures of singers whose birth place
p is such that ωplace(p , Paris) = 1, which includes Paris.

—The value of in C3 is such that all pictures in Album of the singer in Figure 1 can be retrieved.

The value of in C4 must be chosen so as all singers appearing in Figure 2 can be matched. Thus, it is likely that has to be
chosen greater than .
On the other hand, making sure that the pictures returned by Q3 are among those returned by Q4 depends on the contents of
Figure 1 and Figure 2, that is on the value of ωpicture (Figure 1 , Figure 2). This point is discussed in the next section.
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5.2 Predicate Entailment
We define the notion of selection predicate entailment as follows.

Definition 7. Let C and  C’ be two selection predicates. Then, C is said to entail  C’, denoted by C  C’, if for every tuple t over
U, (t  C) ) (t  C’) holds.

Clearly, for all selection predicates C and C’ , if C  C’ then C( ) C’( ).  Selection predicate entailment is characterized
in our approach according to the following proposition.

Proposition 1. Let C : P1  ... Pp and C’ : P’1  ... P’p’ be two selection predicates such that for every i in {1 ,..., p},
sat(Pi) and sat(Pi) dom(sch(Pi)), and for every i’ in {1,..., p’}, sat(P’i’ ) and sat(P’i’ ) dom(sch(P’i’ )).

Then, C  C’ holds if and only if, for every i’ in {1 ,..., p’}, there exists i in {1,...,p} such that sch(Pi) = sch(P’i’ ) and sat(Pi)
sat(P’i’).

Proof. Let us first assume that for every i’ {1,..., p’}, there exists i {1,..., p} such that sch(Pi) = sch(P’i’ ) and sat(Pi) sat(P’i’

). Let t be such that t  C, and P’i’ in C’ such that sch(P’i’ ) = A’. Denoting by Pi’ one of the atomic selection predicates in C such
that sat(Pi’ )  sat(P’i’ ), we have sch(Pi’ ) = sch(P’i’) = A’. Since t  C, t.A’ is in sat(Pi’ ) and thus, t.A’ is in sat(P’i’). Consequently,
for every i’ {1,..., p’}, t:sch(P’i’ ) sat(P’i’), which shows that t  C’ and thus that C  C’.

Conversely, let i’ {1 ,...., p’} be such that for every i {1,...,  p}, either sch(Pi) sch(Pi’  ) or sat(Pi) sat(Pi’ ). Denoting by
A’ the attribute sch(Pi’ ), given i in {1,...,p}, we separately consider the cases where (i) A’ = sch(Pi) and (ii) A’ sch(Pi).

(i) If A’ = sch(Pi), then sat(Pi) sat(Pi’ ), and so, there exists dom(A) such that sat(Pi) and sat(Pi’ ). Thus, the
hypotheses on C show that there exists a tuple t over U such that for every i {1,..., n}, t.sch(Pi) sat(Pi) and t.A’ = . Then,
t  C and t 6  C’, which implies that C  C’ does not hold.

(ii) If sch(Pi) sch(Pi’), based on case (i) above, we assume that for every i {1,...,  p}, A’ sch(Pi). Then, the hypotheses on
C and C’ imply that there exists a tuple t over U such that t C and t.A’  Pi’ . Indeed, t can be built up as follows: for every
i {1,...,  p} choose t.Ai so as t.Ai sat(Pi), then choose t.A’ so as t.A’ sat(Pi’ ) and for every remaining attribute A, choose
any value in dom(A) for t.A. Thus, in this case again, t C’, and so, C  C’ does not hold. Therefore, the proof is complete.

As will be seen next in this section, predicate entailment is a basic issue for query comparison, which in turn, is used
extensively in our fragmentation strategy. We notice in this respect that the hypotheses on C and C’ in Proposition 1 simply
state that the selection predicates under consideration are satisfiable by at least one tuple over U, and that every atomic
selection predicate in these selection predicates do not cover the whole domain of the correspondent attribute. As in
practice, these hypotheses are generally satisfied by selection predicates, we assume in the remainder of the article that they
hold.

Then, it is important to note that Proposition 1 shows that, given two selection predicates C and C’, checking whether C  C’
comes down to check atomic predicate entailment, which is the subject of the next proposition.

Proposition 2. For all atomic selection predicates P : (A ε a) and P’ : (A ε a’) such that sch(P) = sch(P’) = A, let (P,P’) be
defined by: (P,P’) = max ({ωA(a’, )  ωA(a’, ) }). Then sat(P) sat(P’) holds if and only if (P,P’) .

Proof. For every in sat(P), we have ωA(a’, ) and  is in sat(P’) if and only if ωA(a’, ) . Thus, if sat(P)  sat(P’) holds

then (P,P’) . Conversely, assuming that (P,P’) , implies that for every in sat(P),ωA(a’, ) , and thus that
sat(P) sat(P’). Therefore, the proof is complete.
Proposition 2 shows that, in order to efficiently test whether P  P’ holds for atomic selection predicates over the same
attribute A, (P, P’) must be efficiently computed, which depends of the definition of the distance ωA. We discuss below this
important point for various distances.

First, if ωA is the trivial distance, then we clearly have (P,P’) = 0 if and only if a = a’ and (P,P’) = otherwise. Thus, in
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this case P  P’ can be easily checked.

If we assume now thatωAis a distance operating on Rn for some positive integer n (such as any Minkowski distance or the
cosine distance), then dom(A) contains an element such that (P, P’) = ωA(a’, ) + ωA(a’, ) and ωA(a’, ) = . Thus
in this case, which generally happens for multimedia attributes, Proposition 2 shows that P  P’ holds if and only if ωA(a’, a)
+ . We emphasize that, as this inequality depends on the expressions of P and P’ only, P  P’ is efficiently
checked in this case.

As an example, let Q3 and Q4 be the queries given in Example 3, in which C3 : picture ε Figure 1 and C4 : picture ε figure 2.
Proposition 2 along with the previous remark show that choosing and so as ωpicture(Figure 1, Figure 2) + implies
that C3  C4 holds. Thus, in this case, as expected in Example 1, Q3(Albums) is a subset of Q4(Albums).

Unfortunately, as shown in the following example, in the case of discrete attribute domains, such an easy computation of
(P, P’) does not always hold.

Example 4. Recalling from Example 3 that the selection predicates C1 and C2 in the queries Q1 : song C1 (Albums) and Q2 :

song C2 (Albums) are defined by  C1 : genre 0 hiphop and  C2 : genre  popular, let C’1 be defined by genre  hiphop
where 1= 0:5.

Since ωgenre(hiphop , popular) = 1, ωgenre(hiphop , popular) + 1 >  (because ωgenre (hiphop , popular) + 1= 1:5 and 2 = 1).
But, as for all genre-values g and g’, ωgenre(g ,g’) is an integer, sat(C’1 ) = sat(C1) = fhiphopg, and so, C’1  C2. We note that, in
this case, (C’1 ,C2) = 1, and so, that (C’1 , C2)  .

On the other hand, considering C1 instead of C’1 , we have ωgenre(hiphop ,popular) = 1, 1 = 0 and 2 = 1. Since sat(C1)
contains the single value hiphop, (C1;C2) = ωgenre(hiphop ,popular) + 1, and so, (C1,C2) , which, by Proposition 2,
entails that C1  C2. Therefore, as expected in Example 1, Q1(Albums) is a subset of Q2(Albums).

We note that, regarding the queries Q5 and Q6 of Example 3, as for Q1 and Q2, we have C5  C6. Thus, in this case again and as
expected in Example 1, Q5(Albums) is a subset of Q6(Albums).

To sum up our discussion on the computation of (P, P’), a general and efficient approach to this computation is currently
unknown to the authors. However, we notice that for standard distances, such as the trivial distance and all standard
distances operating on Rn for some positive integer n, (P; P0) is computed without any access to the data. Of course, the case
of discrete distances has to be investigated further, because these distances, among which are those based on a hierarchy,
play an important role in our approach.

6. Query Comparison

In this section, we introduce a pre-ordering relation over the set of multimedia queries of MQ( ) and we show this pre-
ordering allows for a definition of query equivalence that plays a key role in our data fragmentation approach.

6.1 Query Pre-ordering
In order to define our way of comparing queries, we associate every query with a set of attributes for which selection
predicate satisfaction implies similarity.

Definition 8. Let q = x C( ) be in MQ( ). The attribute set SIM(q) is the set of all attributes A in sch(C) such that
(A a) occurs in C and A.

Example 5. Referring to the queries of Exemple 3, we have Q1 : song C1 (Albums), where C1 : genre 0 hiphop. Since genre

= 1 (see Example 2), we have SIM(Q1) = genre. Similarly, as Q2 : song C2 (Albums), where C2 : genre popular , we also have
SIM(Q2) = genre.
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On the other hand, since Q5 : clip picture C5 (Albums), where C5 : place 0 Paris and Q6 : clip picture C6 (Albums), where C6 :
place France, we have SIM (Q5) = place and SIM(Q6) = 0/   because genre = 0 (see Example 2).

Regarding now the queries Q3 : picture C3 (Albums), where C3 : picture Figure 1 and Q4 : picture C4 (Albums), where C4
: picture ’Figure 2, we recall that:

(1) In Example 2, it is assumed that picture and that picture(Figure 1, Figure 2) > picture.

(2) In Example 4, it is assumed that picture(Figure 1, Figure 2) +  so as C3  C4 holds.

Thus, by item 1, we have picture < picture(Figure 1, Figure 2). As item 2 implies that picture(Figure 1, Figure 2) , we
obtain picture < 0. Therefore, we have SIM(Q3) = picture and SIM(Q4) = .

Based on Definition 8, predicate entailment and multimedia functional dependencies, queries are compared according to the
following relation, borrowed from [Jen et al. 2010].

(1) C2  C1,
(2) SIM(q1)  SIM(q2), and
(3) X1 SIM(q2) X2 is in MD+.

Example 6. We recall from Example 2 that the set MD of multimedia functional dependencies of interest in our motivating
scenario of Example 1 is
                               MD ={name birth place picture, song genre,name song clip}

Considering the queries Q1 : song C1 (Albums) and Q2 : song C2 (Albums), where C1 : genre 0 hiphop and C2 :

genre popular, we have Q2 Q1, because:

(1) By Example 4, we have C2  C1.
(2) By Example 5, we have SIM(Q1) = SIM(Q2) = genre.
(3) song genre song is a trivial multimedia dependency that can be inferred from MD.

It can be seen in a similar way that we also have Q4 Q3, Q6 Q5. As a more sophisticated example
of query comparison, let q1 and q2 be the following queries:

—  q1 = name birth C1 (Albums), where C1 is defined by C1 : genre popular. This query asks for all names and birth dates
of all singers of popular songs.
—  q2 =  clip picture C2 (Albums), where C2 is defined by C2 : (genre 0 hiphop) (song 0mysong). This query asks for the
clips and pictures of hiphop singers singing the song entitled mysong.

We haveq1 q2since it is easy to see that C2  C1, SIM(q1) SIM(q2) (because SIM(q1) = genre and  SIM(q2)  = genre song),
and that name birth genre song clip picture can be inferred from MD, using axioms A1-A3.

As in [Jen et al. 2010], the relation is shown to be a pre-ordering over MQ( ), that is  is reflexive and transitive.

Proposition 3. The relation  is a pre-ordering over the set of all queries in MQ( ).

Proof. As reflexivity is trivial, we only prove the transitivity of the  relation. Let q1= x1 C1( ), q2 = x2 C2( ), q3 =

x3 C3( ) be in MQ such that q1 q2 and q1 q2  hold.

• As by Definition 9(1), we have C2   C1and C3   C2, this implies by Proposition 1 that, for every Pi : (A ai) in C3, there exists
Pj : (A aj) in C2 such that sat(Pi) sat(Pj), and that there exists Pk : (A  ak) in C1 such that sat(Pj) sat(Pk). Thus, we have
sat(Pi) sat(Pk), which shows that C3  C1.

Definition 9. Let q1= x1 C1( )and q2 = x2 C2( ) be in MQ( ). Then, q2 is said to be more specific than q1,
denotedbyq1 q2, if:
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• By Definition 9(2), we have SIM(q1) SIM(q2) and SIM(q2) SIM(q3), and thus, SIM(q1) SIM(q3) holds.

• Definition 9(3) shows that X1SIM(q2) X2 andX2 SIM(q3) X3 are inMD+. In order to prove that X1 SIM(q3) X3 is also in
MD+, we first note that since SIM(q1) SIM(q2), SIM(q2) SIM(q3) and SIM(q1) SIM(q3) hold, by axiom A1, SIM(q2)
SIM(q1), SIM(q3) SIM(q2) and SIM(q3) SIM(q1) are in MD+. Moreover, as SIM(q3) SIM(q2) is in MD+, axiom A2
implies that X1 SIM(q3) X1SIM(q2) is in MD+. As X1 SIM(q2) X2 is assumed to be in MD+, by axioms A2 and A3, we obtain
that X1 SIM(q3) X2 SIM(q3) is also in MD+. Using the fact that X2 SIM(q3) X3 is inMD+, by axiom A3, X1 SIM(q3) X3 is
in MD+, and the proof is complete.

6.2 Query Equivalence

that q1 q2  and q1 q2  hold.

Example 7. In the context of our motivating scenario of Example 1, let us consider the queries q1 of Example 6 defined by q1 =

name birth C1 (Albums), where C1 is defined by C1 : genre popular, along with q’1 = name birth C’1(Albums), where C’1=C1

Since C’1 = C1, C1  C’1 and C’1  C1 trivially hold. Furthermore, as SIM(q1) = genre, we have SIM(q1)  = SIM(q’1)  = genre.
Using now the multimedia functional dependencies of MD given in Example 2, it is easy to see that name birth genre name
place genre and name place genre ; name birth genre can be inferred from MD. Hence, q1 and q’1 are distinct queries such that

q1 q’1 and q’1 q1 both hold.

Queries q1 and q2 in MQ( ) such that q1 q2  and q2 q1 are said to be equivalent, which we denote by q1 q2. It should be
clear that the relation  is an equivalence relation over MQ( ). The following proposition characterizes equivalent queries.

Proposition 4. For all queries q1= x1 C1( ), q2 = x2 C2( )in MQ( ), q1 q2 if and only if

(1 ) C1   C2and C2   C1 hold.
(2 ) SIM(q1) = SIM(q2).
(3 ) (X1 SIM(q1))+ = (X2 SIM(q2))+.

Proof. Let us first assume that q1 q2. Thus, we have q1 q2  and q2 q1, which, by Definition 9, entails that C1   C2and C2
C1, and that  SIM(q1) = SIM(q2). Moreover, we also havem that X1 SIM(q2) X2 and X2 SIM(q1) X1 are in MD+, which
combined with  SIM(q1) = SIM(q2), entails that Xi SIM(qi) Xj SIM(qj) are in MD+ for i,j = 1,2. Thus, we obtain (X1 SIM(q1))+
= (X2 SIM(q2))+.

Conversely, if we assume that  C1   C2 , C2   C1, SIM(q1) = SIM(q2), and  (X1 SIM(q1))+ = (X2 SIM(q2))+, it is easy to see that

also shows that these queries are equivalent to the query q*
1 = X

*
1 C1( ) (Albums) where X*

1 = name birth place picture
genre. This is so because:

— C1  C’1 and C’1  C1 hold,
— SIM(q1) = SIM(q’1) =SIM(q*

1) = genre, and
— (name birth genre)+ = (name place genre)+ =X*

1.

7. Multimedia Data Fragmentation

Based on the formalism introduced so far, we now explain how our approach can be used for multimedia data fragmentation.
We recall in this respect that we assume that we are given:

— A table satisfying a set MD of multimedia functional dependencies.
— A set of frequently asked queries, which we denote by FQ.

We notice that is not an ordering, because, as shown in the following example, there exist distinct queries q1 and q2 such

q1 q2  and q2 q1  both hold, which completes the proof.

Example 8. Referring back to the queries q1 and q’1 in Example 7, Proposition 4 implies that q1 q’1 . Moreover, Proposition 4
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7.1 Fragment Definition and Properties
Our goal is to define a fragmentation of allowing for efficiently answering the queries in FQ, and possibly other queries that
are characterized below. Roughly, our fragmentation approach works as follows:

(1) Every query q in FQ is replaced with an equivalent query q* which allows to answer efficiently all queries equivalent to q.
We denote by FQ* the obtained set of queries.

(2) The set  FQ*
min  of all queries in FQ* that are minimal with respect to is identified.

(3) For every query q* in FQ*
min, a fragment, denoted by (q* ) is created as a set of tables containing

(a) The answer q*( ) to q*

(b) An auxiliary table associated to every q*
i of FQ* such that  q* q*

i , so as to efficiently answer every query equivalent to
q*

i  ,without accessing .

In order to formalize our fragmentation approach, we first define the queries of FQ* as follows: Given q = X C ( ) in
MQ( ), the query q* is defined asq*= X

*
C( )where X = (X SIM(q))+.

Therefore, we have FQ*  = {q*  q FQ}. We note that the size of FQ* is smaller than or equal to that of FQ. In particular, if FQ
contains two equivalent queries q1 and q2 , then q*

1 = q*
2 and thus, only one query is considered in our fragmentation

approach.
Moreover, the following proposition shows that the answers to all queries equivalent to q* are simply projections of q*( ).

Proposition 5. For all queries q = X C ( )and q’= X
*

C( ) in MQ( ) such that q q’, q’( ) = X’ (q
*( )).

Proof. By Proposition 4, we have  q q’ q* and (X SIM(q)) = (X’ SIM(q’)) = X. Thus, X’ X, showing that the expression

X’ (q
*( )) makes sense. Moreover, if t’ is in q’( ), then there exists t in  such that t  C’ and t’ = t.X’. As C’  C, t  C, and

thus, t.X* q*( ). Since X’ X, t.X’ = (t.X* ).X’, and so, t’  X’ (q
*( )). Hence, q*( ) X’ (q

*( )).

Conversely, let t’ be in X’ (q
*( )). Then, there exists t* q*( ) such that t’ =t*.X’, which implies that there exists t such

that t  C and t.X*  = t*. Thus, t’ = ( t.X* ):X0 = t . X’=t.X’. Moreover, as C   C’, t C’, and thus, t’ q*( ). Hence, X’

(q*( )) q’( ), which implies that q’( ) = X’ (q
*( )).

Example 9. Let us assume that, in the context of our motivating scenario of Example 1, FQ is the set of queries Q1-Q6. Since it

has been seen in Example 6 that Q2 Q1, Q4 Q3 and Q6 Q5, we obtain  FQ*
min, = {Q*

2 , Q
*

4 , Q
*
6}.

Considering that (song genre)+ = song genre, (picture)+ = picture and (clip picture place)+ = clip picture place, the different
answers to store are

— Q*
2 (Albums) = song genre C2 (Albums), where C2 : genre popular,

— Q*
4 (Albums) = picture C4 (Albums), where C4 : picture  Figure 2, and

— Q*
6 (Albums) = clip picture place C6 (Albums), where C6 : place  France.

It should be clear that, instead of storing all six answers to Q1-Q6, we only store three answers, which avoids storing
redundancies, because as will be seen later, based on these three answers, those of Q1, Q3 and Q5 can be efficiently computed.

Notice that, although Q4 = Q4 , storing Q4(Albums) allows to answer Q3 because, intuitively, all pictures returned by Q3 are
among those returned by Q4. In the case of  Q6, storing Q*

6 (Albums) allows to answer all queries q = X C (Albums) such
that X clip picture place, C  C6 and sch(C)  sch(C6). We emphasize that Q5 and, for instance, clip place 0Dijon  (Albums)
are such queries. It should be clear that similar remarks hold for Q2, and thus, storing Q2 (Albums) allows to efficiently answer
to Q1, as well as to other queries, such as the query song genre 0rock’n roll (Albums).

In order to show that the general case is more sophisticated than the previous examples, let us now assume that FQ = {q1 ,q2},
where are the two queries given in Example 6, that is:
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— q1 = q*
1 (Albums) with C1 : genre popular and

— q2 = clip picture C2 (Albums) with C2 : (genre 0 hiphop) (song 0 mysong).

Since it has been shown that q1 q2, we have FQ*
min = {q*

1}, and thus q*
1(Albums) is stored according to our approach.

However, recalling from Example 8 that  q*
1 is defined by X

*
1 C1 (Albums) where X*

1 = name birth place picture genre, no
song-values and no clip-values are stored in the corresponding fragment, and thus, q*

1(Albums) does not allow to compute
the answer to q2.

In order to cope with the problem mentioned just above, given q*
0 = X

*
0 C

*
0 ( ) in  FQ*

min , for every q* = X
*

C
*

 ( )
in FQ* such that q*

0      q
* an additional table, denoted by (q*

0 ,q
*), is built up as follows:

— We associate every tuple v of q*
0 with a unique identifier, denoted by Id(v), and stored in q*

0( ) as an extra column called
Id.
— (q*

0 ,q
*) is a table defined over {Id}U (X* \ X*

0), containing the following tuples:
For every tuple v in q*

0( ), if contains a tuple t such that t.X*
0= v and t  C*, then the tuple w defined by w:Id = Id(v) and

w.(X* \ X*
0) = t.(X* \ X*

0)belongs to (q*
0 ,q

*).

Referring back to Example 9, in the case of the fragment corresponding to Q6, i.e., (Q*
6 ), as Q6 Q5, the table Albums (Q*

6Q
*
5

) is defined over the single attribute Id (since Q*
6 and Q*

5 are defined over the same schema clip picture place) and contains
all tuple identifiers of tuples inQ*

6 (Albums) associated in Albums with a singer born in Paris.

On the other hand, in the case of the fragment (q*
1), additionally to the table q1(Albums), we consider the table Albums (q*

1,
q*

2) over Id clip song, because in this case, X*
2\

 X*
1 = clip song. Moreover, this table contains the triples (Id(v),c, s), where v

is in q1(Albums) and is associated in Albums with the song whose clip is c and whose title s is such that s 0mysong (that
is, such that s = mysong).

The following proposition states that every query in FQ* \ FQ*
min can be answered through a projection-join of the tables

stored in one segment.

Proposition 6. Let q* = X
*

C
*
 ( ) be a query in FQ* \ FQ*

min. Denoting byq*
0 a query in  FQ*

min such that q*
0 q*, then q*( )

= X
* (q*

0( ) (q*
0 ,q

*)).

Proof. We first note that, by definition of (q*
0 ,q

*), the join is preformed on tuple identifiers and the join is defined over   X*
0

U X* which contains X*. Moreover, for every tuple in the join, there exists v q*
0( )and w (q*

0 ,q
*)such that there

exists t in  satisfying the following: t.X*
0 = v, t.X* = w and t  C. Thus, .X* q*

0( ).

Conversely, for every in q*( ), there exits t such that t.X*= and t  C*. As q*
0 q*, t  C*

0, and thus t.X*
0 q*

0( ).
Since t. (X* \ X*

0) appears in (q*
0 ,q

*) associated with the identifier of some v = t.X*
0 in q*( ) , t.(X*

 UX*
0) q*

0( )  (q*
0

,q*). Hence, X
* (q*

0( ) (q*
0 ,q

*)), because = t.(X*
 UX*

0). Therefore, the proof is complete.

Combining Proposition 5 and Proposition 6, we obtain the following basic corollary showing that all queries equivalent to a
query in FQ are answered, based on the tables stored in the fragments only.

Corollary 1. Let q = X C( ) be in MQ( ) and FQ be a set of frequently asked queries. Then, if there exists q0 in FQ such
that q q0, q( ) can be computed through a projection or a projection-join of the tables stored in one of the fragments built
up from FQ.

Proof. If q*
0  is in FQ*

min, then Proposition 5 shows that q( ) is a projection of q*
0( ). Otherwise, FQmin contains a query q1

such that q*
1      q

*
0. Thus, Proposition 6 shows that q*

0( ) is obtained by a projection of q*
0( )  (q*

0 ,q
*). Thus, applying

Proposition 5 to q*
0( ) completes the proof.

It is important to note that, based on Corollary 1, additional queries can be answered using the tables stored in the fragments.
Namely, every query q = X C( ) for which there exists q*

0 = X
*
0 C

*
0 ( ) in FQ such that q q*

0 and (X Usch(C)) X*
0,
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can be answered using the tables stored in the fragment corresponding to q*
0. This so because Corollary 1 shows that q*

0( )
can be computed using its corresponding fragment and, moreover, our assumption about schema inclusion implies that all
attributes for computing the projection and the selection in q( ) are available.

As an example of such query, let us consider again the query q = song genre 0 rock’n roll (Albums) (mentioned in Example
9). Although, q is not equivalent to any query in FQ, we have Q2 q (because genre 0 rock’n roll is assumed to entail genre

popular), and all attributes occurring in q are among those occurring in Q2 . In particular the attribute genre appears in Q2
, and thus, it is possible to know whether a tuple in Q2 (Albums) satisfies or not the selection predicate genre 0 rock’n roll.

To sum up our fragmentation approach, we emphasize that, contrary to standard approaches, the semantics of the data, in
terms of multimedia functional dependencies, allows to compare queries and to characterize query equivalence. Based on this
basic feature of our work, it turns out that our fragmentation approach offers a trade off between redundancy avoidance and
extra storage in order to answer any many queries as possible. Indeed:

—Redundancies are avoided by fully storing the answers of minimal queries, while the answers to non minimal queries are
only partially stored (but can be fully recovered).

—On the other hand, considering the queries in FQ* requires to store more attributes than if queries in FQ were considered.
However, this is the price to pay for answering queries other than those in FQ, based on the information stored in the
fragments.

In this section, we argue that our approach does not raise computational difficulties, although providing an appropriate
technique for storing the answers to given queries (namely, the queries in FQ), while allowing to answer further queries.

Indeed, regarding firstly query answering, it has been seen previously that all answers to queries under consideration are
obtained through a projection or a projection-join (see Corollary 1), or a selection-projection-join (see the remark following
Corollary 1) of the tables stored in one fragment. Moreover, since joins are performed according to tuple identifiers, standard
indexing techniques can be used to optimize join computations.

Regarding now the computation of fragments, we notice that determining whether two queries are comparable according to
      only requires to know the similarity thresholds associated to every attribute (so as to compute the set SIM(q) associated
to a query q) and to perform predicate entailments and inferences based on axioms A1-A3. Apart from predicate entailment
that has to be investigated further, such computations can be efficiently implemented and, in any case, we point out that they
do not require to access the table .

Consequently, the computation of the sets FQ* and FQ*
min does not raise computational difficulties, and consequently, for

every fragment (q*
0), the schemas of all additional tables (q*

0 ,q
*)in (q*

0) are also easily computed.

The last issue to be investigated is the computation of the content of all tables in the fragments. Algorithm 1 shows that all
tables of one given fragment are computed through only one scan of the underlying table . Therefore, the complexity of the
computation of all fragments can be said to be linear in the number of scans of the table .

8. Conclusion

In this article, we have proposed a novel approach to multimedia data mixed fragmentation, based on query comparison and
query equivalence. We emphasize that the main feature of our approach, is that the way queries are compared makes explicit
use of the semantics of the data to be fragmented.

This semantics is defined through the novel notion multimedia functional dependencies, which is a generalization of standard
functional dependencies. It has been argued that multimedia functional dependencies take into account the specific features
of multimedia data, and an important point in this respect is that we have shown that multimedia functional dependencies are
axiomatized in the same way as standard functional dependencies.

Given a set of frequently asked queries FD, an important feature of our fragmentation strategy is to store the answers to
particular queries in FD, and that these answers not only allow for efficiently computing the answers of all queries in FD, but
also of additional queries that have been characterize using the notion of query equivalence.
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Based on this work, several issues have to be further investigated. First, we plan to implement our fragmentation method, in
order to assess its efficiency and compare it to existing approaches. Second, the problem of testing atomic predicate
entailment is a key issue of our approach that has to be studied more deeply. More specifically, a condition on distances
allowing to fully characterize atomic predicate entailment is a theoretical issue that will be addressed in the near future. Third,
the computation of the answers to queries in which atomic selection predicates are distributed in several queries whose
answers are stored, is an important issue that will be addressed in the near future.
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