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Abstract: Exploring the topology of a region object requires the mathematical study of its geometric properties that 
are preserved under deformations. A moving region whose location and extent change over time can undergo several topo-
logical changes such as the splitting of a region or the formation of a hole. The study of this kind of changes is important 
in many applications, e.g., for the topology control of wireless sensor networks and the processing of animation images 
in multimedia applications. Since we often lack the ability of capturing the location, extent, and shape changes of a mov-
ing region during its lifespan, it is challenging to detect these changes. Further, for a complex moving region containing 
multiple components, it is difficult to determine which component before a change corresponds to which component after 
the change. In this article, we propose a model pursuing a three-phase strategy to determine the topological changes of 
a complex moving region represented by a sequence of snapshots called observations. The first phase partitions the ob-
servations into several evaluation units. The second phase uniquely maps each unit before the change to exactly one unit 
after the change. The third phase interprets the topological changes by integrating all basic topological changes from the 
evaluation units. We also show the detailed algorithms of this three-phase strategy which turn out to be efficient. Finally, 
a case study illustrates our concepts. 
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1. Introduction 

Investigating the topology of a spatial object requires the mathematical study of its geometric properties that are preserved 
under deformations such as twisting and stretching. A deformation may or may not change the topology of a spatial object. 
For example, stretching a circle to an ellipse is a topologically equivalent deformation while splitting a circle into two half 
circles is considered as a topological change. The study of the topological changes of spatial objects over time, i.e., of time-
dependent geometries called moving objects, is important in many applications such as geographical information systems 
(GIS), spatiotemporal databases, the processing of animation images in multimedia applications, and the topology control of 
wireless sensor networks (WSN). In a forest fire control system, a forest fire can begin at different spots, grow independently 
in a few days, and finally merge into one fire. This merge leads to a topological change within a moving region. The knowledge 
of this event can help fire fighters prevent the spreading of the fire. In a WSN environment, two mobile networking devices 
could have been close to each other at the beginning and form a coverage area given by a single connected region. As they 
move to opposite directions, the coverage area becomes disconnected within a few minutes. The study of this topological 
change can help researchers perform topology control and improve the performance of the wireless sensor network. 
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Several models have been proposed to represent moving objects in computer and database systems. However, the focus has 
been mainly on trajectories modeled by moving points. Another and probably even more important but also more complex 
category describing the evolution of regions over time as moving regions has rarely attracted much attention. There are some 
major challenges in detecting topological changes in a moving region. First, we are not able to track the continuous defor-
mation of a moving region at all times due to the shortcomings of the tracking devices. A forest fire is detected through the 
changing images captured by satellites. However, the satellites can merely collect the needed data every few hours and give us 
snapshots. But this is insufficient in order to obtain the full picture of all topological changes. Second, for a complex moving 
region containing multiple components, we cannot tell precisely which component before the change corresponds to which 
component after the change. Therefore it is difficult to formally determine from two consecutive snapshots, without human 
intuition and/or background information, whether a spot of fire disappears, or whether it merges with another spot of fire. 
Third, even if we are able to keep track of all topological changes in a moving region, it is not easy to interpret these changes 
formally. In recent multimedia technologies such as computer-based animation and MPEG-4 video compression, although 
images can be captured as frequent as 24 frames per second and content-based coding is used to identify different moving 
objects, current approaches fail to give a formal interpretation of the topological changes between consecutive frames. 

The goal of this article is to provide a solution to the problem of detecting the topological changes in a complex moving region. 
The detection is based on snapshots capturing the static geometries of a moving region object at different time instances. We 
name such a snapshot as an observation. The snapshot based approach has been widely accepted by researchers in many fields. 
In computer-based animations, precise images are captured and named as I-frames, and interpolation is performed to fill the 
gap between two I-frames. Similarly, in our approach, we first give formal definitions of all possible topologies of a static 
region object. At different time instants we can, e.g., obtain the observations that a moving region object is a simple region, 
a multi-region without holes, or a simple region with holes. Our objective is to characterize the basic topological changes 
between two consecutive observations such as the splitting of a region or the formation of a hole. For the detection of the 
topological changes of a complex moving region, we introduce a three-phase strategy. The first phase partitions the observa-
tions before and after a change into evaluation units. The second phase uniquely maps a unit before the change to exactly 
one unit after the change. The third phase interprets the topological changes of the complex moving region by integrating the 
basic topological changes of all evaluation units. Topological changes that involve more observations can then be evaluated 
in the same way. Finally, we describe the detailed algorithms for this three-phase strategy and show their effciency. 

The remainder of this article is structured as follows: Section 2 presents available models for topological changes of moving 
regions. Section 3 formally discusses spatial region objects and their properties, and depicts the concept and the representa-
tion of moving region objects. Section 4 introduces our approach to detecting topological changes of a complex moving 
region. Section 5 presents the three-phase algorithms for evaluating the topological changes in a complex moving region and 
demonstrates their efficiency. Section 7 draws some conclusions and discusses future work. 

2. Related Work 

This section summarizes approaches to modeling and implementing complex regions (Section 2.1), topological relationships 
between complex regions (Section 2.2), moving regions (Section 2.3), as well as topological relationships and topological 
changes of moving regions (Section 2.4). 

2.1 Complex Region Objects 
In recent decades, spatial databases [Rigaux et al. 2002 [18]; Shekhar and Chawla 2003 [22]] have been used to store and 
query objects in space, such as points, lines, and regions. These spatial objects are modeled and represented by means of so-
called spatial data types [Schneider 1997 [19]]. We distinguish two generations of spatial data types. In the first generation, 
spatial objects are represented by simple structures like single points, single, continuous lines, and simple regions with a 
connected interior and a connected boundary. However, these structures are insufficient to represent the complex geographic 
phenomena in the real world. For example, the area affected by a forest fire at a particular time instant may not be a single 
spot; instead, it might be a complex area which is composed of several spots of fires. Moreover, a region object may have one 
or more holes inside it, but this aspect has not been captured by the first generation. To represent the geographic phenomenon 
more properly, the second generation of spatial database research introduces the concept of complex spatial objects where 
complex points, complex lines, and complex regions are defined to represent spatial objects with complex structures [Sch-
neider and Behr 2006 [21]]. Especially complex regions are involved in many applications. A complex region is represented 
by a union of several disjoint connected components called faces. Each face may have zero, one, or more holes [Schneider 
and Behr 2006 [21]]. The face representation can show the topological properties of complex regions properly. A similar 
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approach provides a unique hierarchical representation of a region object with multiple components [Worboys and Bofakos 
1993 [27]]. Complex regions will be the objects for which we explore topological changes. 

2.2 Topological Relationships between Region Objects 
Another topic related to the contents of this article is the study of topological relationships. Topological relationships such as 
disjoint, meet, and overlap characterize the relative positions between two or more spatial objects. Topological relationships 
between simple regions with holes, which area subclass of complex regions, are discussed in [Egenhofer et al. 1994 [4]].To-
pological relationships between complex regions have been studied formally in [Clementini and DiFelice 1996 [1]; Schneider 
and Behr 2006 [21]] and algorithmically in [Schneider 2004 [20]; Praing and Schneider 2008 [16]; 2009 [17]]. For example, 
the approach in [Praing and Schneider 2009 [17]] introduces the concept of topological feature vectors to represent topological 
relationships between complex region objects in a quantitative way. The topological change of a complex region object can 
be regarded as the result of the change of the topological relationships between its simple components. For example, the fact 
that two spots of a forest fire grow and merge over time into one large fire area can be seen as a change of the topological 
relationships between these two spots from disjoint to meet to overlap. There are two main differences between the study 
of topological relationships and the study in our article. First, we treat the components as an entire complex region. Second, 
instead of only describing the topological properties of static region objects, we consider time as a third dimension so that the 
topological changes become time dependent. 

2.3 Moving Region Objects 
The combination of space and time leads to the category of spatiotemporal objects whose locations, shape, and extent 
change over time. Such time dependent and continuously evolving spatial objects are called moving objects [Güting 
et al. 2000 [8]], and the databases that are able to store and manage them are called moving objects databases [Güting 
and Schneider 2005 [9]]. Several approaches have been proposed to model moving objects in databases and GIS. At 
the conceptual level, a moving object is defined as a function from time to the two-dimensional space. For example, a 
moving point is defined as a function from the data type time to the spatial data type point. At the implementation level, 
a moving point is represented as a polyline in the three-dimensional (2D+time) space. Sample points are represented 
as (x, y, t) tuples, and intermediate locations are approximated through linear interpolation [Sistla et al. 1997 [23]; Su 
et al. 2001 [24]]. Similarly, at the conceptual level, a moving region is defined as a function from the data type time to 
the spatial data type region. At the implementation level, the approach in [Forlizzi et al. 2000 [7]] provides a discrete 
representation for moving regions. Snapshots of a moving region are captured at time instants, and its entire movement 
is constructed from a series of snapshots [Tøssebro and Güting 2001 [25]]. The limitation of this approach is that it can 
only compute a simple moving region. A recent approach enables the unique construction of a moving region from two 
snapshots of a complex region [McKenney and Webb 2010 [15]]. 

2.4 Topological Relationships and Topological Changes of Moving Region Objects 
Topological relationships between moving region objects have a time-varying character since they can change over 
time in parallel to the location, shape, and extent changes of the moving region objects themselves. The approach in 
[Egenhofer and Al-Taha 1992 [3]] discusses the problem of the gradual changes of topological relationships between 
two objects. This model  analyzes the changes of the topological relationships between simple regions that result from 
their movements. A general concept of time-varying topological predicates, called spatiotemporal predicates, has been 
proposed in [Erwig and Schneider 2002 [6]]. A spatiotemporal predicate is an alternating sequence of so-called basic 
spatiotemporal predicates like Disjoint or Inside, which hold for a time period, and standard topological predicates, 
which hold for a time instant. 

Topological changes characterize the properties and the temporal evolution of an individual moving object. Worboy’s group 
[Worboys and Duckham 2006 [26]; Jiang and Worboys 2008 [10]; 2009 [11]; Jiang et al. 2011 [12]] discuss the qualitative 
changes of an areal object in wireless sensor networks. They propose a set of qualitative changes such as region_appear, 
region_merge, and hole_appear, and detect these changes with the help of sensor devices. Their research is performed on a 
specific wireless sensor network environment. They represent an areal object using a graph based method where sub-components 
are represented as nodes of a graph. Topological changes are detected through the change of node’s connectivity in the graph. 
In our method, instead of using node representation, we partition a snapshot into a set of evaluation units which still keeps 
the geometric properties of the original moving region. The authors’ own previous approach [Liu and Schneider 2011 [13]] is 
able to detect topological changes in a complex moving region that is given as a sequence of snapshots. We define six basic 
states of a region object and characterize their topological changes as the transitions between these states. We propose a two-
phase process which divides every snapshot into so-called evaluation units and maps each unit in the first snapshot to exactly 
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one unit in the subsequent snapshot. Thus, the topological changes between different states can be interpreted uniquely. In 
this article, we will extend the concepts of our previous work with respect to the following aspects. First, we formalize the 
descriptions of different region data types such as a simple region, a simple region with holes, a multi region without holes, 
and a complex  region, which are used to represent different static topologies of a moving region object at specific time 
instances, by giving  mathematical definitions of them. Second, in addition to giving a list of basic topological changes, we 
give formal definitions of them as well. Third, we discuss applications of this model in detail by using a case study. 

3. Regions And Moving Regions 

In this section, we formally discuss what regions, moving regions, and their properties are. They build the foundation of  
detecting topological changes of a complex moving region. We first review the data type region from spatial databases in 
Section 3.1. In Section 3.2, we describe the characteristics of moving regions. In Section 3.3, we give the definitions of 
moving regions and show their properties in a formal way. Finally, in Section 3.4, we introduce the representation of moving 
regions through the snapshot approach. 

3.1 Regions 
A moving object describes the temporal evolution of a spatial object over time and is represented by a function from the 
data type time to its corresponding underlying spatial data type such as point, line, or region [Güting et al. 2000 [8]]. This 
means that a moving region object is a mapping from the data type time to the spatial data type region. The objective of this 
subsection is to provide a formal definition of different kinds of region objects, which are needed later. For this purpose, we 
first introduce some basic concepts like connectivity, closure and boundedness. Our definitions are based on point set theory, 
point set topology, and our previous research on complex region objects [Schneider and Behr 2006 [21]], where regions are 
embedded into the two-dimensional Euclidean space R2 and modeled as infinite point sets. 

In the simplest case, a region object consists of a single connected component and is called a simple region. The point set 
in the 2D Euclidean space representing a simple region object is connected, closed, and bounded. These three characteristic 
properties are formally described in the following three definitions. Let X ° , X −, and ∂X denote the interior, exterior, and 
boundary of a set X ⊆ R2 . Let further X–– denote the closure of X with X–– = ∂X ∪ X ° . 

Definition 3.1 (Connectivity) Two sets X, Y ⊆ R2 are said to be separated if, and only if, X ∩ Y–– = ∅ = X ∩ Y. A set 
X ⊆ R2 is connected if, and only if, there are no sets Y, Z ⊂ X such that (i) Y ≠ ∅, Z ≠ ∅, (ii) X = Y ∪ Z, and (iii) Y 
and Z are separated. 

Definition 3.1 states that if a region is connected, it is not equal to the union of two nonempty separated sets. A counter-example 
is shown in Figure 1a, where R = R1 ∪ R2, R1 ≠ ∅, and R2 ≠ ∅. However, since R1 and R2 are separated, the situation in this 
figure violates the connectivity property. 

Definition 3.2 (Closure) Let X ⊆ R2. X is said to be regular closed if, and only if, X = X °––. 

Definition 3.2 has the effect that a regular closed region does not have geometric anomalies. The interior operation elimi-
nates dangling points, dangling lines, and boundary parts. The closure operator adds the boundary and eliminates cuts and 
punctures by supplementing points. An example of a region which is not closed is shown in Figure 1b where we can see 
dangling points and lines as well as cuts. 

Figure 1. A disconnected region(a) and an irregular region with 
dangling points and lines which is not regular closed (b) 

(a)	 (b) 
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Definition 3.3 (Boundedness) Let X ⊆ R2, p = (x1,y1) ∈ X, q = (x2, y2) ∈ X, and d(p, q)= 2 2
1 2 1 2( ) ( )x x y y− + − . X is 

said to be bounded if holds: ∀ p, q ∈ X ∃r ∈ R+ : d(p, q) <r. 

Definition 3.3 states that if a point set is said to be bounded, the distance between any two points in it must be bounded. 
Otherwise, we can find two points for which the distance between them approaches infinity, which is an unrealistic assump-
tion in applications. 

Based on Definition 3.1 to Definition 3.3, we are able to formally define the data type region as follows. 

Definition 3.4 (Region) The spatial data type region is defined as follows: 

region = {R ⊂ R2 | (i) R is regular closed 
(ii) R is bounded 
(iii) The number of connected components of R is finite} 

In the following, we define six different subtypes of the spatial data type region and provide their structural characterization. 
In the simplest case, a region is composed of a single connected component, and we call it a simple region. A simple region 
is shown in Figure 2a and defined in Definition 3.5. 

Definition 3.5 (Simple Region) The data type SR of simple regions is defined as 

SR = {R |	 (i) R ∈ region, R ≠ ∅ 

	 (ii) R is connected} 

The symbol ∅ denotes the empty region. There are eight topological relationships between two simple regions [Egenhofer  
1989 [2]], which are disjoint, meet, overlap, covers, coveredBy, equal, contains, and inside. They will be used in the definitions 
of other types of region objects in the rest of this section. 

Next, in Definition 3.6, we consider multi-regions which are collections of disjoint or at most meeting simple regions without 
holes. This means that such a region object consists of several components and is thus not connected. 

Definition 3.6 (Multi-region) The data type MR of multi-regions is defined as 

MR = {R |	 (i) R ∈ region 
	 (ii) ∃ n ∈ N ∃ R1,...,Rn ∈ SR : R = 1

n
i=⊕  Ri

	 (iii) ∀1 ≤ i < j ≤ n : disjoint (Ri,Rj) ∨ 0-meet(Ri ,Rj)} 

The operation ⊕ denotes the geometric union operation [Schneider and Behr 2006 [21]]. The predicate 0-meet is a dimension 
refined topological predicate [McKenney et al. 2005 [14]], i.e., simple regions are only allowed to meet in a finite number 
of boundary points. An example of a multi-region objectis shown in Figure 2b. 

Figure 2. A simple region (a), a multi-region without holes (b) a simple region with one hole (c), a simple region with 
multiple holes (d), a complex region (e) and the empty region (f)
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Another spatial phenomenon is that a simple region contains one (Definition 3.7) or more (Definition 3.8) holes. 

Definition 3.7 (Simple Region with One Hole) The data type SROH of simple regions with one hole is defined as 

SROH = {R | (i) R ∈ region 
(ii) ∃ R0, R1 ∈ SR : contains (R0, R1) ∧ R = R0 É R1} 

The operation É denotes the geometric difference operation [Schneider and Behr 2006 [21]]. Figure 2c shows an example 
of a simple region with one hole. 

Definition 3.8 (Simple Region with Multiple Holes) The data type SRMH of simple regions with multiple holes is defined as 

SRMH = {R | (i) R ∈ region 
(ii) ∃n ∈ N−{1}∃ R0,...,Rn ∈ SR : R = R0 É 1

n
i=⊕  Ri 

(iii) ∀1 ≤ i ≤ n : contains(R0, Ri) 
(iv) ∀1 ≤ i < j ≤ n : disjoint(Ri, Rj)} 

Figure 2d gives an example of a simple region with multiple holes. Finally, we specify the most general region data type CR 
of complex regions. It models region objects that consist of at least two components, and at least one component must be a  
simple region with one or more holes. 

Definition 3.9 (Complex Region) The data type CR of complex regions is defined as 

CR = {R | (i) R ∈ region 
(ii) ∃ n ∈ N −{1}∃ R1,...,Rn ∈ SR ∪ SROH ∪ SRMH : R = 1

n
i=⊕  Ri

(iii) ∃ 1 ≤ i ≤ n : Ri ∈ SROH ∪ SRMH 
(iv) ∀ 1 ≤ i <j ≤ n : disjoint (Ri, Rj) ∨ 0-meet (Ri, Rj)} 

The topological predicates disjoint and 0-meet are here also applied to simple regions with holes. According to  Definitions 
3.5 to 3.9, we obtain five different region data types modeling region objects of different geometric complexity. In addition, 
we introduce the data type ER that includes the empty region object ∅ as its only value (see Figure 2f). Hence, in total, we 
obtain six possible region shapes. 

For all six region data types we assume the availability of the two functions comps, which yields the set of connected com-
ponents (i.e., the simple region components with or without holes) of a region object, and holes, which yields the set of holes 
(given as simple region components) of a region object. 

3.2 What are Moving Regions? 
Having discussed the spatial data type region, we will next give a formal description of what a moving region is and what 
properties it has. A moving region describes the temporal evolution and change of a region object with respect to location, 
shape, and areal extent. Examples of moving regions include continuously moving hurricanes, growing forest fires, and 
spreading oil spills. 

In Section 3.1, we have introduced six different region shapes. We call these six shapes the six states of a region object. Since a 
moving region is a region object evolving over time, the snapshots we take at different time instants can have different states. If 
the states of two consecutive snapshots are different, we witness a topological change. For example, an erosion area near the coast 
might divide an area into two separate areas in ten years. This phenomenon illustrates a topological change that is from a simple 
region to a multi-region without holes. In contrast, the state of a moving region at different time instants may not change. A hur-
ricane moves from Florida to Louisiana in three days. During this period the area of the hurricane  also changes, i.e., it grows or 
shrinks and has a different shape at different time instants. However, it remains one simple region without splitting into two parts 
or generating holes inside it. This kind of change is called topology-preserving change [Jiang and Worboys 2008 [10]]. In this 
article, we mainly focus on the discussion of the internal topological changes of a moving region since they are more important 
in applications. 

In previous work, a moving object has been defined as a function from time to a spatial data type. In particular, a moving 
region f is defined as a function f : time → region. However, this definition is too general and cannot capture the properties 
of a movement in reality. For example, under this definition, a simple region can suddenly split into a complex region. But 
this situation happens rarely in the real world. Only continuous and smooth changes of shapes exist in reality. Thus, a clear 
definition is needed which is able to describe the continuous changes of a moving region. 
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3.3 Definitions of Moving Regions and Their Properties 
Moving regions are time dependent. However, not all time-dependent region objects can be considered as moving regions. 
The most important property a moving region should have is continuity. For example, an instantaneous jump will violate 
the continuity property. In contrast, the transition of a moving region should be smooth. As moving regions can be defined  
as functions of time, the continuity of a moving region is similar to the continuity of a function. In our previous work, we 
have defined the continuity of a moving region by a slight change of the area between two instants [Güting et al. 2000 [8]]. 
We briefly review this definition here. 

Given R1, R2 ∈ region, we introduce a concept called dissimilarity, which describes the difference between two region objects 
in a quantitative way. The dissimilarity function ψ : region× region → R between R1 and R2 is defined as 

ψ (R1,R2) = area (R1 É R2) + area (R2 É R1) 

where the operator area calculates the area of a region object. Figure 3a shows an example of a moving region at two dif-
ferent time instants t and t ′  with t < t ′  so that we get two region objects f(t) and f(t ′ ) respectively. f(t) is represented by 
the shape with the solid line, and f(t ′ ) is represented by the shape with the dashed line. We observe that f(t ′ ) is slightly 
larger than f(t) and has moved to another location. Their projections to the 2D plane are shown in Figure 3b. We observe 
that most parts of these two regions overlap with each other. The shaded area shows the difference between two regions 
and thus forms the dissimilarity. Assume that the region changes smoothly, then if the time difference between t and t ′ 
approaches zero, the dissimilarity area should approach zero accordingly. Based on this idea, Definition 3.10 describes 
the continuity of a moving region. 

Definition 3.10 (Continuity of Moving Regions) Given a moving region f : time → region, 

(i) f is right-semicontinuous at t, if and only if, limt ′→ t+ ψ (f(t), f(t ′ )) = 0 

(ii) f is left-semicontinuous at t, if and only if, limt ′ → t− ψ (f(t ′ ), f(t)) = 0 

(iii) f is continuous at t, if and only if, f is right-semicontinuous and left-semicontinuous at t 

(iv) �f is continuous in [t1,t2] if, and only if, f is right-semicontinuous at t1,  
left-semi-continuous at t2 and continuous at any t ∈ ]t1,t2[ 

Conditions (i) and (ii) distinguish whether time t ′ approaches time t from the right (future) or from the left (past) of t. The nearer 
t and t ′ are to each other, the smaller the dissimilarity value has to be. Condition (iii) is stricter than Conditions (i) and (ii) 
and unites their behavior. Condition (iv) specifies continuity of a moving region on a time interval in which it is defined. 

Figure 4 illustrates examples of moving regions that are continuous and discontinuous respectively. Figure 4a shows a mov-
ing region which first shrinks and then grows. The entire changing process is smooth and represents a continuous movement. 
Figure 4b shows a region that grows and then forms a hole. Although the topology of the region has been changed from a 
simple region to a simple region with holes, the change is continuous and smooth. Figure 4c shows an example of disconti-
nuity. At time t2, the moving region performs an instantaneous jump to a new location. Thus, the moving region is not left- 
semicontinuous at t2 and thus not continuous in [t2, t3]. In Figure 4d, the moving region shows a significant topology change 
at time t2; it changes from a simple region to a complex region, which violates the continuity property. 

Figure 3. Snapshots f(t) and f(t ′ ) captured from a moving region at instants t1 and 
t2 respectively (a); the dissimilarity area of them in the 2D plane (b) 

(a) 	 (b) 
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3.4 Snapshot Representation of Moving Regions 
In order to detect the topological development in a moving region, the first important task is to represent the moving region 
properly. However, this task is challenging. Because a moving region continuously changes its locations and shape, we are 
not able to track the continuous deformation of that moving region at all times due to the shortcomings of the tracking de-
vices. For example, when detecting a forest fire, we get the report from the sensors at discrete time instances since sensors 
usually take measurements at discrete times. When studying whether there is a hurricane, we analyze the pictures from the 
satellites which are captured every few hours. Thus, our idea is to represent a moving object as a sequence of snapshots. In 
this article, we call a snapshot an observation. 

The snapshot based approach has been widely accepted by researchers in many fields. In computer-based animations, precise 
images are captured less frequently and named as I-frames, and interpolation is performed to fill the gap between two I-frames.  
Similarly, in our model, we represent a moving region at different time instances and interpret the transitions in between. At 
different time instants we can, for example, obtain the observations that a moving region object is a simple region, a multi-
region without holes, or a simple region with holes. Our model will be able to characterize the basic topological changes 
between two consecutive observations such as the splitting of a region or the formation of a hole.

Figures 5a and 5b represent two observations of a complex moving region captured at times t1 and t2 respectively. We can 
see that this moving region object moves to the right and down, and there is a merge between the largest region component 
with the region component at the right upper corner. Also, there is a hole appearing in the region component in the center. 
However, this interpretation is intuitive and lacks a formal explanation.  

Figure 4. Moving regions that are continuous during their lifetime (a), 
(b), instantaneous jump (c), and sudden shape change (d) 

(c)	 (d)

(a) (b)

Figure 5. Two snapshots O1 and O2 of a moving region illustrating region 
merging and hole formation 

(a)	  (b) 
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For such a complex moving region containing multiple components, we cannot tell precisely which component before the 
change corresponds to which component after the change. Therefore it is difficult to formally determine from two consecutive 
snapshots, without human intuition and/or background information, whether a spot of fire disappears, or whether it merges 
with another spot of fire. In the next two sections, we solve this problem by providing a three-phase strategy which is able 
to uniquely interpret the topological changes between two consecutive snapshots. 

4. Modeling Topological Changes In Moving Regions 

In the following two sections, we present our method for detecting topological changes in a complex moving region through 
snapshots. We make two reasonable assumptions so that the continuous transition between two consecutive snapshots can be  
detected. First, the movement of a moving region is considered continuous so that there is no instantaneous jump between two 
consecutive observations like in Figure 4c. Second, devices such as sensors and satellites update their periodical data with a 
proper frequency so that there will be no “tremendous” topological changes between two consecutive observations. In this 
section, we define basic topological changes. In the next section, we will introduce how to partition observations into evalu-
ation units, map them between two observations, and interpret topological changes between consecutive observations. 

A moving region may have different shapes at different time instants, leading to topological changes. However, because of 
the continuity property, topological changes cannot happen between every pair of states. For example, a direct change from 
a simple region to a complex region is impossible. Instead, there must be other intermediate states between them. Therefore, 
we introduce the state transition diagram which shows the validity of transitions between different states of a moving region. 
The state transition diagram represents all direct topological changes and is shown in Figure 6. An arrow between two states 
shows that there exists a direct topological change between these two states. If there is no arrow between two states, this 
means that a direct topological change between them is not valid and does therefore not exist. There can be more than one 
possible topological change between the same two states. For example, from a simple region to a simple region with holes, 
two topological changes mayhap pen: either a hole is formed inside the region, or the region touches itself and forms a hole. 
These two topological changes are named as hole form and region self-touch respectively. 

The six possible snapshot states of a moving region object at a time instant are represented by the six region data types ER, SR, 
SROH, SRMH, MR, and CR (see Section 3.1) for the empty region, simple regions, simple regions with one hole, simple regions 
with multiple holes, multi-regions, and complex regions respectively. The six data types are summarized in the set StateSet. We 
have identified the 11 basic topological change mappings d0 to d10 (see Table I and Figure 6) that change a moving object m at 
time instant t1, i.e., the region object m(t1), into the moving object m at time instant t2, i.e., into the region object m(t2). Formally, 
a basic topological change mapping di with 0 ≤ i ≤ 10 is a function with the signature di : a → b with , a, b ∈ StateSet. It can be 
overloaded, i.e., represent different mappings from states (region data types) of StateSet to states (region data types) of StateSet. 
This leads to a large number of instances of these mappings shown in Table I and in Figure 6. 

Figure 6. The state transition diagram representing valid topological changes of a moving region
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The following Definitions 4.1 to 4.11 provide the semantic specifications of the basic topological change mappings. Our 
observation is that a simple region of the region data type SR is the structurally most basic object that can be involved in 
a topological change either as a component objector as a hole object. The definitions make extensive use of topological 
relationships [Egenhofer and Franzosa 1991 [5]; Schneider and Behr 2006 [21]] like disjoint, meet, and contains, which 
characterize the relative position between spatial objects, and dimension-refined topological relationships [McKenney et 
al. 2005 [14]] like 0-meet and 1-meet, which additionally characterize common boundary parts as single, zero-dimensional 
points or as one-dimensional lines. 

d0 (topology preserve) : a → a 
d1 (region appear) : ER → SR 

: SR → MR 
: SROH → CR 
: SRMH → CR 
: CR → CR 

d2 (region disappear) : SR → ER 
: MR → SR ∪ MR 
: CR → SROH ∪ SRMH ∪ CR 

d3 (hole form) : SR → SROH 
: MR → CR 
: SROH → SRMH 
: SRMH → SRMH 
: CR → CR 

d4 (hole fill) : SROH → SR 
: SRMH → SROH ∪ SRMH 
: CR → MR ∪ CR 

d5 (region split) : SR → MR 
: MR → MR 
: SROH → MR ∪ CR 
: SRMH → MR ∪ CR 
: CR → MR ∪ CR 

d6 (region merge) : MR → SR ∪ MR ∪ SROH ∪ SRMH ∪ CR 
: CR → SROH ∪ SRMH ∪ CR 

d7 (region self-touch) : SR → SROH 
: MR → CR 
: SROH → SRMH 
: SRMH → SRMH 
: CR → CR 

d8 (ring split) : SROH → SR 
: SRMH → SROH ∪ SRMH 
: CR → MR ∪ CR 

d9 (hole split) : SROH → SRMH 
: SRMH → SRMH 
: CR → CR 

d10 (hole merge) : SRMH → SROH ∪ SRMH 
: CR → SROH ∪ SRMH ∪ CR 

Table 1. Basic topological change mappings

The first basic topological change mapping called topology preserve (d0) does not change the topological structure of a region 
object. That is, the region objects of both snapshots are topologically equivalent. However, this mapping allows that a region 
object grows, shrinks, rotates, and changes its shape as long as these changes are performed without splitting or forming 
holes. An example is shown in Figure 7, and a formal specification is given in Definition 4.1. 

Definition 4.1 (Topology Preserve) A basic topological change mapping is called topology preserve and denoted by d0 : a → b 
if a = b and d0 is a homeomorphism. 
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A homeomorphism is a function that is a bijective mapping between sets such that both the function and its inverse are continuous.  
Intuitively a homeomorphism is a continuous topological transformation which can be interpreted as an elastic transformation that 
stretches, twists, or otherwise deforms without cutting. Examples are affine transformations like translation, rotation, or scaling. 

The basic topological change mapping called region appear (d1)adds a simple region to a region object of any region data 
type. For example, an empty region becomes a simple region, and a complex region with n components becomes a complex 
region with n +1 components. An example is shown in Figure 8. It could represent a fire spot arising at a particular location. 
A formal specification is given in Definition 4.2. 

Definition 4.2 (Region Appear) A basic topological change mapping is called region appear and denoted by d1 : a → b with  
a and b according to Table I if the following holds: 

∀ u ∈ a ∃ v ∈ b ∃ sr ∈ SR :  
	 d1(u) = u ⊕ sr = v ∧ u 1-coveredBy v ∧ v 1-covers sr ∧ (u disjoint sr ∨ u 0-meet sr) 

The interior of the simple region component added must be disjoint from the interior of the original region object. 

The basic topological change mapping called region disappear (d2) removes a simple region from a region object of any 
region data type. Hence, its effect is opposite to the mapping region appear. An example is shown in Figure 9, and a formal 
specification is given in Definition 4.3. 

Definition 4.3 (Region Disappear) A basic topological change mapping is called region disappear and denoted by d2 : a → b 
with a and b according to Table I if the following holds: 

∀ u ∈ a ∃ v ∈ b ∃ sr ∈ SR : 
	 d2(u) = u É sr = v ∧ u 1-covers v ∧ u 1-covers sr ∧ (v disjoint sr ∨ v 0-meet sr) 

This topological change mapping is not unique in its codomain. Hence, we can regard b as a union type here. If a simple 
region disappears from a multi-region u, we either get a simple region v if u has two simple regions as components, or we 
again get a multi-region v if u has more than two simple region components. The disappearance of a simple region from a 

Figure 7. d0: Topology preserve 

Figure 8. d1: Region appear 

Figure 9. d2: Region disappear 
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complex region can lead to a simple region with one hole or multiple holes if the complex region consists of two components, 
or to a complex region in all other cases. 

The basic topological change mapping called hole form (d3)lets a hole appear in the interior of a simple region, a simple 
region with one hole, or a simple region with multiple holes, possibly as a component of a complex region. An example is 
shown in Figure 10. It could represent a forest fire whose central part is extinct while the surrounding area is still on fire. A 
formal specification is given in Definition 4.4. 

Definition 4.4 (Hole Form) A basic topological change mapping is called hole form and denoted by d3 : a → b with a and b 
according toTable I if the following holds: 

∀ u ∈ a ∃ v ∈ b ∃ sr ∈ SR : 
	 d3(u) = v É sr = v ∧ u 1-covers v ∧ v 1-meet sr ∧ (u 0-covers sr ∨ u contains sr) 

The basic topological change mapping called hole fill (d4) removes a hole from a simple region with one or more holes that 
is possibly a component of a complex region. Hence, its effect is opposite to the mapping hole form. An example is given in 
Figure 11. It could represent an area that is enclosed by fire all around at the beginning and finally becomes a victim of the  
fire. A formal specification is given in Definition 4.5. 

Definition 4.5 (Hole Fill) A basic topological change mapping is called hole fill and denoted by d4 : a → b with a and b 
according toTable I if the following holds: 

∀ u ∈ a ∃ v ∈ b ∃ sr ∈ SR : 
	 d4(u) = u ⊕ sr = v ∧ u 1-coveredBy v ∧ u 1-meet sr ∧ (v contains sr ∨ v 0-covers sr) 

Note that according to the definition, sr will exactly fill out a complete hole. Since sr is located inside v and at the same time meets 
u, sr must lie inside the hole of u and fill it out since otherwise sr 1-coveredBy v would hold. Again, in two cases, the codomain is 
not unique. A simple region with two holes is mapped to a simple region with one hole. A simple region with more than two holes 
remains a simple region with multiple holes after the mapping. A complex region with exactly one component that is a simple 
region with one hole becomes a multi-region. In all other cases, the mapping produces a complex region again. 

The basic topological change mapping called region split (d5) separates a region component (without or with holes) into two 
region components. The original shape is preserved to a large extent except for the location where the separation occurs.  
Figure 12 shows an example, and Definition 4.6 gives a formal specification. 

Definition 4.6 (Region Split) A basic topological change mapping is called region split and denoted by d5 : a → b with a 
and b according to Table I if the following holds: 

∀ u ∈ a ∃ u′ ∈ comps(u) ∃ v ∈ b ∃ v′ ,v′′ ∈ comps(v) ∃ sr ∈ SR : 
d5(u) = u É sr = v ∧ u 1-covers v ∧ u′ 1-covers v′ ∧ u′ 1-covers v′′ ∧ v′ disjoint v′′ 

∧ v 1-meet sr ∧ v′ 1-meet sr ∧ v′′ 1-meet sr ∧ u′ = v′ ⊕ sr ⊕ v′′ 

Figure 10. d3: Hole form

Figure 11. d4: Hole fill 
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The resulting region v is a proper part of u and contains one component more than u. The topological predicate 1-covers 
means that a region object v is contained in another region object u and touches the boundary of u in a one-dimensional line 
[McKenney et al. 2005 [14]]. 

The basic topological change mapping called region merge (d6) adds a region part to two disjoint components of a region 
object so that the two components are melted into a single connected component. Hence, its effect is opposite to the mapping 
region split. Figure 13 gives an example. This transition can be found in many applications. For example, two originally 
disjoint fires pots become merged into a single, larger fire spot as they are moving close to each other. Definition 4.7 provides 
a formal specification. 

Definition 4.7 (Region Merge) A basic topological change mapping is called region merge and denotedby d6 : a → b with  
a and b according to Table I if the following holds: 

∀ u ∈ a ∃ u′, u′′ ∈ comps(u) ∃ v ∈ b ∃ v′ ∈ comps(v) ∃ sr ∈ SR : 

d6(u) = u ⊕ sr = v ∧ u 1-coveredBy v ∧ u′ 1-coveredBy v′ ∧ u′′ 1-coveredBy v′ 

∧ u′ disjoint u′′ ∧ u 1-meet sr ∧ u′ 1-meet sr ∧ u′′ 1-meet sr 

∧ v 1-covers sr ∧ v′ 1-covers sr ∧ v′ = u′ ⊕ sr ⊕ u′′ 

This mapping describes the fusion of two components of a region object (determined by the function comps) by a simple 
region into a single, connected component. 

The basic topological change mapping called region self-touch (d7) closes a bay formed by a region component such that a 
new hole of this component is formed. In order to be able to do this, the region component has to grow. An example is shown 
in Figure 14. Definition 4.8 gives a formal specification. 

Figure 12. d5: Region split 

Figure 13. d6: Region merge 

Figure 14. d7: Region self-touch
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Definition 4.8 (Region Self-touch) A basic topological change mappingis called region self-touch and denoted by d7 : a → 
b with a and b according to Table I if the following holds: 
∀ u ∈ a ∃ u′ ∈ comps(u) ∃ v ∈ b ∃ v′ ∈ comps(v) ∃ sr ∈ SR : 

d7(u) = u ⊕ sr = v ∧ u 1-coveredBy v ∧ u′ 1-coveredBy v′ ∧ u 1-meet sr 
∧ u′ 1-meet sr ∧ v 1-covers sr ∧ v′ 1-covers sr ∧ v′ = u′ ⊕ sr  
∧ |holes(v)| = |holes(u)| +1 

A self-touch can appear in a single component of an object of any region type. A single component itself can be either a 
simple region, a simple region with one hole, or a simple region with multiple holes. In all cases, the number of holes is  
increased by one. 

The basic topological change mapping called ring split (d8) breaks a hole of a region component and creates a bay for 
this component. Its effect is opposite to the mapping region self-touch. An illustration is given in Figure 15, and a formal 
specification is provided in Definition 4.9. 

Definition 4.9 (Ring Split) A basic topological change mapping is called ring split and denoted by d8 : a → b with a and b  
according to Table I if the following holds: 

∀ u ∈ a ∃ u′ ∈ comps(u) ∃ v ∈ b ∃ v′ ∈ comps(v) ∃ sr ∈ SR : 
d8(u) = u É sr = v ∧ u 1-covers v ∧ u′ 1-covers v′ ∧ v 1-meet sr ∧ v′ 1-meet sr ∧ 

�∧ u 1-covers sr ∧ u′ 1-covers sr ∧ v′ = u′ É sr  
∧ |holes(v)| = |holes(u)| − 1 

The basic topological change mapping called hole split (d9) divides a hole of a region component into two holes. Figure 16 
gives an example. Definition 4.10 provides a formal specification. 

Definition 4.10 (Hole Split) A basic topological change mapping is called hole split and denoted by d9 : a → b with a and  
b according to Table I if the following holds: 

∀ u ∈ a ∃ u′ ∈ comps(u) ∃ v ∈ b ∃ v′ ∈ comps(v) ∃ sr ∈ SR : 
d9(u) = u ⊕ sr = v ∧ u 1-coveredBy v ∧ u′ 1-coveredBy v′ ∧ u 1-meet sr 

∧ u′ 1-meet sr ∧ v 1-covers sr ∧ v′ 1-covers sr ∧ v′ = u′ ⊕ sr  
∧ |holes(v)| = |holes(u)| + 1 

The basic topological change mapping called hole merge (d10) merges two holes of a region component into one hole so that 
the number of holes decreases by 1. This is illustrated in Figure 17. A formal specification is given in Definition 4.11. 

Figure 15. d8: Ring split 

Figure 16. d9: Hole split 
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Definition 4.11 (Hole Merge) A basic topological change mapping is called hole merge and denoted by d10 : a → b with a 
and b according to Table I if the following holds: 

∀ u ∈ a ∃ u′ ∈ comps(u) ∃ v ∈ b ∃ v′ ∈ comps(v) ∃ sr ∈ SR : 
d10(u) = u É sr = v ∧ u 1-covers v ∧ u′ 1-covers v′ ∧ v 1-meet sr ∧ v′ 1-meet sr 

∧ u 1-covers sr ∧ u′ 1-covers sr ∧ v′ = u′ É sr  
∧ |holes(v)| = |holes(u)| − 1 

Basic topological change mappings can be assembled to composite topological change mappings. We define an order relation 
¶ that specifies the effect of the application of two consecutive basic topological change mappings in Definition 4.12. 

Definition 4.12 (Observation Order Relation) Let m : time → region be a moving region, and let T = 〈t1, t2, t3〉 be a sequence 
of three consecutive observation times with t1, t2, t3 ∈ dom(f) ⊂ time and the order t1 < t2 < t3. Then m(t1), m(t2), m(t3) ∈ region 
are three consecutive observations of m. Let further D = 〈D1, D2〉 be a sequence of two basic topological change mappings 
with D1, D2 ∈{d0,...,d10} where Di is supposed to happen at the observation time ti. We define the order relation ¶ between 
observations in the following sense: 

D1(m(t1)) ¶ D2(m(t2))     ⇔     t1 < t2 < t3 ∧ D1(m(t1)) = m(t2) ∧ D2(m(t2)) = m(t3) 

Over time, a moving region may have experienced a sequence of n basic topological changes. Hence, we generalize the order 
relation ¶ to n observation times and n observations. We call such a sequence a topological development. Definition 4.13 
gives the formal definition of a topological development of a moving region with respect to a number of observations. 

Definition 4.13 (Topological Development) Let m : time → region be a moving region, and let T = 〈t1, ..., tn〉 be a sequence of 
consecutive observation times witht1, ..., tn ∈ dom(f) ⊂ time for some n ∈ N and with the order t1 < t2 < ... < tn −1 < tn. Then 
m(t1),...,m(tn) ∈ region are n consecutive observations of m. Let further D = 〈D1,..., Dn −1〉 be a sequence of basic topological 
change mappings with D1,..., Dn−1 ∈{d0,...,d10} where Di is supposed to happen at the observation time ti. Then we say that 
D1,...,Dn−1 is a topological development of m with respect to the observation times in T , written as dev(m, T ), if holds: 

dev(m, T ) = D1(m(t1)) ¶ D2(m(t2)) ¶ ... ¶ Dn−1(m(tn−1)) = m(tn) 

Sometimes, we are only interested in showing D1,..., Dn−1, i.e., the sequence of basic topological change mappings, for a 
moving object m. We then allow to write: 

dev(m, T ) = D1 ¶ D2 ¶ ... ¶ Dn −1 

5. Three-Phase Evaluation Of Topological Changes In a Moving Region 

In this section, we introduce a three-phase evaluation method of detecting the topological development of a complex mov-
ing region. Section 5.1 introduces the first phase which partitions each observation into a set of evaluation units. Section 5.2 
introduces the second phase which maps the evaluation units of one observation to the evaluation units of the other observa-
tion. Section 5.3 discusses how to interpret the topological changes from the mapping we obtained in the second phase. 

5.1 The Partitioning Phase 
The difficulty in detecting the topological changes in a complex region comes from the fact that such a region is composed 
by several sub-components, and different changes may happen to different sub-components. As we have mentioned in Sec-
tion 1, one problem is that we do not know which subcomponent before a topological change maps which sub-component 
after the change. Thus, our first step is to partition a complex moving region into a number of sub-components so that later 
topological changes can be detected easily. The partition is based on the rule that at most one topological change can happen 

Figure 17. d10: Hole merge 
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to each sub-component between two observations we consider. For example, assume that the topological changes that we 
want to detect from a complex region are region split and hole form. Our partition will result in two sub-components so that 
we can detect a region split from one of them and a hole form from the other. We call the sub-component which only involves 
one basic topological change an evaluation unit. It is defined in Definition 5.1 and makes use of the geometric intersection 
operation ⊗. 

Definition 5.1 (Evaluation Unit) Let O1, O2 ∈ region be two observations of a moving region at the time instances t1 and t2. 
Let the set R1 = {c1,1,...,c1,n} be a spatial partition of O1 such that (i) n ∈ N, (ii) c1

,i ∈ region for all 1 ≤ i ≤ n, (iii) O1 = 1
n
i=⊕

c1,i, and (iv) c1,i ⊗ c1,j = ∅ for all 1 ≤ i < j ≤ n holds. Similarly, let R2 = {c2,1,...,c2, n} be a spatial partition of O2. Each subregion 
c1,i is called an evaluation unit of O1, and each subregion c2,j is called an evaluation unit of O2 if the following holds: 

∃p : {1,...,n}→{1,...,n}, p total and bijective ∀1 ≤ i ≤ n ∃ di,p (i) ∈{d0, d1,...,d10} : 
di,p(i)(c1, i) = c2, p (i) 

We call the process of finding p as well as the evaluation units partitioning. As described in Definition 5.1, our goal of 
partitioning is to find the mapping of all evaluation units between two observations. This partitioning phase contains two 
steps. In a first step, we perform a preprocessing which adjusts or synchronizes the minimum bounding rectangles of both 
observations. The purpose of this is to eliminate topology preserving changes such as growing or location changing. In a 
second step, we partition each observation to evaluation units according to our rules. Given two specific snapshots, the result 
of the partitioning will be unique. 

5.1.1 Preprocessing: Adjust Minimum Bounding Rectangles. Assume that we want to detect the topological change of a forest 
fire. The observations we take at t1 and t2 are two complex regions denoted by O1 and O2 respectively, as shown in Figure 5. 
As we have discussed in Section 3.4, from the figure, we can see that the moving region moves to the right and down with 
respect to the current coordinate system. At the same time, some topological changes, such as region merge and hole appear 
happen. Since this complex region changes its location in the coordinate system, it is difficult forus to detect what has hap-
pened between these two snapshots. Therefore, our first task is to adjust the coordinate systems before and after the changes, 
so that these two regions can be mapped to each other later. 

Let x = minx
i denote the leftmost bounding line of Oi (i ∈{1, 2}), x = maxx

i  denote the rightmost bounding line of Oi, y = min yi 
denote the lower bounding line of Oi, and y = max yi  denote the upper bounding line of Oi. The point list < (minx

i , min yi ), (maxx
i  

, max yi ) > represents the minimum bounding rectangle (MBR) of Oi. The value wi = maxx
i  − minx

i  equals the width of the 
MBR of Oi, and hi = max yi  − min yi 

 equals the height of the MBR of Oi. We “shift” the bottom-left point of each rectangle to 
(0, 0) and adjust their width and height by shrinking or enlarging, so that these two observations will have the same MBRs. 
Let pi = (xi, yi) ∈ Oi denote apoint of Oi before the adjustment, and p′i = (x′i, y′i) denote that point after the adjustment. Then 
they have to satisfy the following conditions: 

(i) ∀ p1 = (x1, y1) ∈ O1 : p′1  = (x1 − minx
1, y1 − min y1 )

(ii) ∀ p2 = (x2, y2) ∈ O2 : p′2 = 1 2 2 1 2 2

2 2

( ) (
( , )

x yw x min h y min
w h
− −

Condition (i) shifts the entire observation O1 by making the left bottom point locate at (0, 0). Condition (ii) first shifts the 
observation O2 to (0, 0) and then adjusts its size by shrinking or enlarging the length and width with respect to the ratio of O1. 
Thus, the result is that these two observations do not only have the same left bottom point but also have the same minimum 
bounding rectangles. The MBRs of both observations after the adjustment both become < (0, 0), (maxx

1 , min y1) >, as shown 
in Figures 19a and 19b. These transformations are allowed since shifting, shrinking, and enlarging are topology preserving 
(topology invariant) operations. 

5.1.2 Partitioning of Complex Regions. After adjusting the minimum bounding rectangles of these two observations, we per-
form the second step of the first phase: partitioning. We introduce a partitioning algorithm shown in Figure 18. This algorithm 
compares two consecutive observations O1 and O2 and divides each of them into a set of disjoint subregions represented by R1 
and R2 respectively. In line1 we initialize R1 and R2 as empty regions. By performing the intersection operation, line 2 finds 
the common part O of both observations. In line 3, the function num_of_components determines the number of separated 
regions in O. From lines 4 to 8, the algorithm adds all components of O to both R1 and R2 since they belong to both O1 and O2 
originally. From lines 9 to 12, the algorithm computes the geometric differences D1 and D2 between O1 and O and between O2 
and O. The difference of an original observation and O is a set of components. The operator num_of_components determines 
the number of separated regions in D1 and in D2 respectively. From lines 13 to 20, the algorithm adds these components to 
R1 and R2 respectively. R1 and R2 represent spatial partitions of O1 and O2. 
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method partition (O1, O2) 

1 R1 ← ∅, R2 ← ∅ 
2 O ← O1 ⊗ O2 
3 n ← num_of_components(O) 
4 for i = 1 to n 
5      R1 ← R1 ∪ O[i] 
6      R2 ← R2 ∪ O[i] 
7      i ← i + 1 
8 endfor 
9 D1 ← O1 ¶ O 
10 m1 ← num_of_components(D1) 
11 D2 ← O2 ¶ O 
12 m2 ← num_of_components(D2) 
13 for i = 1 to m1 
14      R1 ← R1 ∪ D1[i] 
15      i ← i + 1 
16 endfor 
17 for j = 1 to m2 
18      R2 ← R2 ∪ D2[j] 
19      j ← j + 1 
20 endfor 
21 end 

Figure 18. The algorithm partition that divides observations into lists of sub-components 

5.2 The Mapping Phase 
In this subsection, we describe the mapping phase as the second phase of our three-phase evaluation method. Each subregion 
c1,i of the spatial partition R1 of O1 with 1 ≤ i ≤|R1| is mapped to exactly one subregion c2,j of the spatial partition R2 of O2 
by using the following mapping rules (MR): 

MR1 If c1,i is already mapped, proceed to the next element c1,i+1 in R1. This may happen because c1,i has been mapped to 
some component of R2 before according to MR3. 

MR�2 If c1,i is a connected component of R1, i.e., c1,i is disjoint to any other component, and c2,i is a connected component of 
R2, then we map c1,i to c2,i, denoted by c1,i ⇔!̀ c2,i (the symbol !̀ indicates object-wise mapping). This situation happens 
when c1,i and c2,i are exactly the same in both observations; thus, no topological change happens between them. 

MR�3 If c1,i is adjacent to other components in R1 and c2,i is a connected component in R2, then add all components that can 
be reached from c1,i in R1 to the left side of the mapping; add c2,i to the right side of the arrow. If the left side has a com-
ponent which is also contained in R2 but has not yet been mapped, append it to the right side. This guarantees that we do 
not miss any components that are connected to those components we already processed. For example, assume that in R1 
we have c1,1 that is adjacent to c1,3, and c1,3 is adjacent to c1,2; in R2, we have c2,1 and c2,3 which are disjoint with each 
other, and we do not have c2,2 in R2, then we have the following mapping: c1,1 ⊕ c1,3 ⊕ c1,2 !̀ c2,1 ⊕ c2,3. 

MR�4 If c1,i is a connected component in R1 and c2,i is adjacent to other components in R2, then add all components that can 
be reached from c2,i in R2 to the right side of the arrow; add c1,i to the left side. If the right side has a component which 
is also contained in R1 but has not yet been mapped, we append it to the left side. This rule is the opposite of rule MR3. 

MR�5 If there are remaining non-mapped connected components c1,i in R1 or c2,j in R2, then they are mapped to empty on the 
other side. This is trivial. Because the partition process will result different partitions of both observations. Thus, it is 
possible that a component in one observation cannot be mapped to any other component in the other observation. This 
rule will help us detect topological changes such as region appear or region disappear. 

As a result of the application of the mapping rules, we obtain a set of object-wise evaluation unit mappings of the form r !̀ 
s where r, s ∈ region are the evaluation units of these mappings. 

5.3 The Interpretation Phase 
As a result of the partitioning and mapping phases, we obtain the knowledge which evaluation unit from the first observation is mapped 
to which evaluation unit from the second observation. In the last phase, the interpretation phase, we have to determine the topological 
development between two observations by integrating all topological changes expressed by the evaluation unit mappings. 



	 Journal of Multimedia Processing Technologies    Volume 1  Number 3   September 2010	 177

Assume that we have two observations Oi−1 and Oi of a moving region object m at the time instances ti−1 and ti as well as a 
number of evaluation unit mappings for Oi −1 and Oi. For each evaluation unit mapping of the form r !̀ s with r, s ∈ region, 
we can detect exactly one basic topological change mapping d ∈{d0,...,d10} that describes the topological change in a man-
ner such that d(r) = s holds. Let the basic topological changes be Di−1,1, Di −1,2,...,Di−1,k for k ∈ N and Di −1,1, Di−1,2,..., Di−1,k 
∈{d0,...,d10}. Then the topological development between Oi−1 and Oi is 

dev(m, {ti−1, ti}) = Di−1,1 ¶ Di−1,2 ¶ ... ¶ Di−1,k 

The order of Di,1, Di,2,...,Di,k is not strict since they are detected together and can be seen as happening at the same time or in any 
order. Similarly, assume that later we obtain the third observation Oi+1 at time ti+1, partition it, and perform the mapping between 
Oi and Oi+1. Again we detect the topological development between Oi and Oi+1, denoted by dev(m, {ti, ti+1}). Then we obtain: 

dev(m, {ti−1, ti, ti+1}) = dev(m, {ti−1, t}) ¶ dev(m, {ti, ti+1}) 

Assume that we have n observations O1,O2,...,On of a complex moving region m with the observation times T = {t1,...,tn} 
and the order t1 < t2 < ... < tn. Based on the topological development of each pair of consecutive observations, we get the 
topological development of m with respect to T as 

dev(m, T ) = dev(m, {t1, t2}) ¶ ... ¶ dev(m, {ti−1, ti}) ¶ dev(m, {ti,ti+1}) ¶ ... ¶ dev(m, {tn−1, tn}) 

6. Case Study: Detect Topological Changes of a Complex Moving Region 

To illustrate the three-phase strategy, we perform a case study in this section. We take the diagram in Figure 5 as an example. 
It shows two observations O1 and O2 of a complex moving region at two time instants. From the diagrams we notice that this 
complex region moves to the right and down during the interval [t1, t2]. In addition, we make a few findings of the changes 
between these two diagrams: (i) the left bottom component in O1 shrinks compared to O2, (ii) O1 has four separated com-
ponents while O2 has only three separated components, indicating that either a region merge or a region disappear happens, 
and (iii) the component in the middle of O1 forms a hole, which is not the case in O2. 

However, these are only intuitive considerations. Now we explain what happens exactly in a formal way using our method. 
Our first step is to adjust the minimum bounding rectangles of both observations. This eliminates the fact of a location change 
or other topology preserving changes and thus enables us to focus on the topological changes. The results of the adjustment 
are shown in Figures 19a and 19b where two observations have the same MBRs. Then we perform the second step. We apply 
the intersection operation on O1 and O2 which returns their overlapping part, denoted by O, as shown in Figure 19c. We then 
determine the difference between both observations. Thus, we apply the geometric difference operation between O1 and O as 

Figure 19. Adjust MBR of O1 (a) and O2 (b), intersection O of the two snapshots O1 and O2 (c), geometric difference 
between O1 and O (d); spatial partitions R1 of O1 (e) and R2 of O2 (f) 
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well as between O2 and O. The difference between O1 and O is shown in Figure 19d. The left bottom part c1,5 is adjacent to 
c1,1 in R1, and c1,1 corresponds to c2,1 in R2. The component c1,6 in the middle right of the figure is the part that disappears in 
O2 but forms a hole inside c3. We obtain Figure 19e which is a new partition of O1, and we name it as R1. Similarly, we get 
the new partition of O2, which is R2, shown in Figure 19f. We observe that Figure 19e is identical to Figure 19a, and Figure 
19f is identical to Figure 19b with respect to geometry. 

After performing the mapping phase, we obtain the following evaluation unit mappings between two observations, 

c1,1 ⊕ c1,5  c2,1 
c1,2 ⊕ c1,4  c2,2 ⊕ c2,7 ⊕ c2,4 
c1,3 ⊕ c1,6  c2,3 

For each of the above evaluation unit mappings, we find a unique basic topological change mapping d ∈{d0,...,d10}: 

d0(c1,1 ⊕ c1,5) = c2,1 
d6(c1,2 ⊕ c1,4) = c2,2 ⊕ c2,7 ⊕ c2,4 
d3(c1,3 ⊕ c1,6) = c2,3 

Since d0 is the topology preserving change, we do not need to report this change. Since d6 and d3 both happen in the interval 
[t1,t2] for O1 and O2, we do not take care of their ordering. Thus the topological change of the moving region according to 
the first two snapshots is described as d6 ¶ d3 or d3 ¶ d6, which can be explained as region merge followed by hole form, or 
vice versa. 

Assume that we have further observations O3, O4, O5, and O6 of the complex moving region at later time instants t3, t4, 
t5, and t6, as shown in Figure 20. We apply the same strategy to each consecutive pair of observations. Then we obtain a 
topological development for each such pair. From O2 to O3 we detect d8 (ring split), from O3 to O4 we detect d5 (region 
split), from O4 to O5 we detect d2 ¶ d5 (region disappear followed by region split), and from O5 to O6 we detect d1 (region 
appear). 

In the end we assemble all topological developments together by the ¶ operator. For a moving object m with the set T = 
{t1,t2,t3,t4,t4,t5,t6} of observations times and Oi = m(ti) for 1 ≤ i ≤ 6 we obtain the composite topological development 

dev(m, T ) = d3(d6(m(t1))) ¶ d8(m(t2)) ¶ d5(m(t3)) ¶ d5(d2(m(t4))) ¶ d1(m(t5)) = m(t6) 

or, if we prefer the short version, 

dev(m, T ) = [d6 ¶ d3] ¶ d8 ¶ d5 ¶ [d2 ¶ d5] ¶ d1 

The brackets [ and ] indicate that all basic topological change mappings listed between them belong to the same time interval 
of two consecutive observations. They can be omitted if this is not of interest. 

Figure 20. Later observations of the complex moving region: O3 (a), O4 (b), O5 (c), and O6 (d) 
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7. Conclusions and Future work 

In this article, we address the problem of identifying the topological development of a complex moving region object based 
on a list of observations or snapshots. We propose a solution to this problem by means of an algorithm. The change of topol-
ogy of a moving region can be widely seen in many applications and thus studying this change is of great importance. In the 
spatiotemporal database context, a moving region is represented as a function from the data type time to the data type region. 
Thus, we first study the non-moving spatial data type region, discuss all possible topological shapes of a region object, and 
give formal definitions of them. Since it is diffcult to track and store continuous movements, we capture complex moving 
regions at different time instants as snapshots. The snapshots are called observations, and the topological development of 
a moving region can be detected from a sequence of observations. Because a complex moving region is composed of sev-
eral separated components, a major problem of finding topological changes from snapshots is that we do not know which 
component in the snapshot before a change maps to which component in the snapshot after the change. In our method, we 
provide a three-phase evaluation strategy which first partitions each observation into a set of components, then performs the 
mapping process between components, and then interprets the topological changes between two consecutive observations. 
We compose all topological changes between any two consecutive observations to express the topological development of 
the moving object. In the future we will implement complex moving regions and our evaluation algorithm in the context of 
databases and perform queries to detect the topological development of moving regions. 
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