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ABSTRACT: A perceptually adaptive scheme for image watermarking by use of the bit inverting transformation is
developed. The transformation can change a signal level by both inverting a specified bit and altering the level at random
within a limited range. From the analysis of the transformation properties, a perceptual model with two kinds of measures
of level distortion is assumed for evaluating subjective visual qualities of the transformed image. Using the measurements
of visual quality by the subjective evaluations of human observers, the subjective quality measure based on the perceptual
model is derived by multiple linear regression analysis. This measure can estimate a subjective visual quality from the two
distortion measurements of the transformed image.

In the adaptively watermarking scheme, by using the subjective quality measure, the embedding parameter is adaptively
determined every image block so that a desired visual quality can be achieved on the resulting watermarked image. The
simulation results demonstrate the performance of the subjective quality measure and the efficiency of the adaptively
watermarking scheme.
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1. Introduction

Digital watermarking is a technique for embedding additional signals, so-called watermarks, into digital signals such as
images and afterward extracting them [1]. From the viewpoint of the domain to embed watermark signals into, the watermarking
techniques are mainly divided into two categories: spatial-domain-based techniques and transform-domain-based ones.

In the watermarking of images, the transform-domainbased techniques can usually provide not only good visual quality in
the resulting images but also stronger robustness against image modification than the spatial-domain-based ones. However,
it is hard to embed watermarks exactly into transform domains. In the case of image watermarking, the pixel values of a source
image, which are the quantized levels or integers, are first transformed into frequencies. The frequency coefficients are then
modified so as to represent watermarks. The values inversely transformed from such modified transform domain are usually
real numbers with fractions. Thus, the quantization errors occur inevitably when the integral spatial domain is reconstructed.
These errors are likely to disturb the watermark existing in the transform domain.

In contrast, exact watermark signals can be embedded into the spatial domain, though they are fragile under signal modification.
The traditional method for spatial-domainbased image watermarking is first to select pixels in a source image and then, to
modify the levels of the selected pixels so that the watermark can be expressed there [2]. The most primitive method for
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modifying a pixel level is to select a bit in the binary expression of the level and then, to invert the selected bit [3]. In this
method, the bit position selected in the binary expression as well as the pixel location selected in a source image must be kept
secret so that the watermark can be protected from unauthorized access.

The embedded watermark distorts the source signal to some extent. The transformation in the image spatial domain has
especially direct effects on visual quality. In the bit inverting method, inverting the kth bit, denoted by bit-k, where the 0th
bit is the least significant bit, changes the signal level by 2k. Hence, the visual distortion caused by the level change increases
with an increase in k. On the other hand, when a bit-k holds a watermark bit, an attacker searches some range of integers for
the correct value of k to obtain the bit-k. With increasing k, the searching range becomes larger, and accordingly, a tolerance
to unauthorized access increases. Hence, a method for evaluating visual quality of the watermarked image is necessary to
implement the embedding of watermark efficiently.

In the previous papers, we have proposed a method for inverting a bit-k while reducing the level change less than or equal
to 2k-1 [4][5]. Suppose that a source level is allowed to change by up to 2k-1. Then, some additional signal-transformation as
well as the inverting of the bitk can be performed. As such additional transformations, we have considered the randomly
changing of signal levels [6]. Or alternatively, if the pixels of inverted bits are to be discriminated in the watermark extraction
side, additional watermark bits can be embedded there [7].

In the present paper, we develop a scheme for implementing the bit inverting transformation to embed watermark bits so that
a desired subjective visual quality can be achieved on the resulting image. For this purpose, we consider the randomly
changing of signal levels as the additional signal transformation above mentioned. Then, a perceptual model for evaluating
visual quality of the watermarked images is constructed based on the human visual system [8]. Such a perceptual model is a
function of objective quality measures that can approximate human subjective quality. Variouskinds of quantities are proposed
for the measurement of objective quality [12]. In the modeling here, the quantities based on the properties of the bit inverting
transformation are defined for the objective quality measures. By determining adaptively the embedding parameters by
means of the perceptual model, the watermarking scheme can perform as a perceptually adaptive system [9].

In Section II we outline the signal transformation including the inverting of signal bits, and describe the properties of the
distortion caused by the transformation. In Section III we consider the modeling of subjective quality of the transformed
images. First, two kinds of objective quality measures are defined from the properties of the distortion. Then, using the
measurements of subjective quality, we determine the subjective quality measure by multiple linear regression analysis. In
Section IV the scheme for adaptively implementing the transformation is developed by using the subjective quality measure.
The performance of the scheme is demonstrated in the simulation result. Furthermore, the validity of the subjective quality
measure is considered. Finally, Section V concludes the paper.

2. Bit Inverting Transformation

2.1 Bit Inverting with Level Compensation
The inverting of a bit of a signal results in a change of the signal level. The signal level is supposed to be uniformly quantized
to M bits and expressed from the M-bit sequence of 0···0 to that of 1···1 in natural binary. Each bit in the binary expression is
denoted by bit-k for k = 0, 1, . . . , M-1, and bit-0 means the least significant bit. Also, let B(v, k) denote the binary value of bit-
k of the signal level v. The inverted bit-k changes, that is, either increases or decreases the signal level by 2k. The amount of
the level change can be reduced by altering the other bits of the signal.

The bit conversion that performs both the inverting of bit-k in an M-bit signal and the minimizing of the resultant level change
is expressed in the following level transformation gM,k from vs to vB: letting ∆k = 2k-1 and, for simplicity in notation, n =

where denotes the integral part of the real number x,vs/∆k
 x

vB = gM ,k(vs ) = {(n+1)∆k ,       if n is even
n∆k -1,        if n is odd

, (1)

where 0 < vs < 2M - 1, for n = 0, 1, . . . , 2M- k+1 -1. Here, as described later, k > 1. Figure 1 shows the input-output relationship of
the transformation by the bold lines.
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∆k =2k-1          m=0,1,...,2M-k-1

Figure 1. Input-output relationship of the level transformations: the bold lines
represent vB = gM ,k(vs); the shaded areas represent the ranges of vR = hM ,k(vs)

The relationship between the input level vs and the output level vB = gM,k(vs) has the following properties:

(a) Concerning the values of bit-(k-1),

              B(vB , k-1) = B(vs , k-1)

where b denotes the 1’s complement of a bit b.

(b) Concerning the values of bit-k,

              B(vB + ∆k , k) = B(vB + ∆k , k)

where adding ∆k is carried out in modulus of 2M.

(c) vB is closest to vs in those levels that satisfy (3). That is,

|vB-vs|= min {|v-vs| B(v + ∆k , k) = B(vs + ∆k , k)}

(2)

  (3)

(4)v

The level change caused by gM ,k depends on the input level as Figure 1 shows. Letting dM ,k (v) = gM ,k(v)-v, for
 0 < vs < 2M-1,

{1< dM ,k (vs) < ∆k ,          if n = is even

−∆k  < dM ,k (vs)< -1,        if n is odd

vs/∆k (5)

Thus, it is the bit-(k-1) that is inverted in the signal, and the inversion of bit-k is performed in the levels shifted by 2k-1.
Consequently, a signal of any level in the input dynamic range changes by 2k-1 levels or below with the bit-k inverted. This
performance holds for 1< k < M-1. Hence, gM ,k has been defined in this range of k.

2.2 Level Randomization
The transformation gM ,k maps 2M consecutive source levels into 2M-k+1 sparse output levels. Hence, the resulting images look
like coarsely quantized ones. The transformed levels can be distributed in the same range as the input dynamic range by a
stochastic process. Taking into account that the maximum change caused by gM ,k in the source dynamic range is ∆k  levels,
we transform the output vB = gM ,k(vs) further to vR so that it can satisfy both of the following two conditions:
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(i) The inversion of bit-k is achieved;

              B(vR + ∆k , k) = B(vs + ∆k , k)

(ii) The amount of level change remains ∆k or below;

|vR-vs| < ∆k.

The above vR is obtained by adding an appropriate random level to vB. The procedure is as follows: Let vB = gM ,k (vs ) and

n = .

Step 1: Calculate the range w where vB can change at random.

vs/∆k

w ={vs < ∆k - vB ,     if n is even
vB - (vs- vk ),     if n is odd

Thus 0 < w < ∆k -1.

Step 2: Let r be an arbitrary level in the range [0, w].

Step 3: vR is obtained by altering vB by r in the following manner:

vR =
vB + r ,    if n is even
vB - r ,     if n is odd{

Considering the above procedure to be a level transformation from vs to vR , let vR = hM ,k (vs). hM ,k (vs) is a stochastic function
whose range depends on vs as below:

{vR [ gM ,k (vs ), vs+∆k ],    if n is even
vR [ (vs- ∆k  , gM ,k (vs )],   if n is odd

The number of levels composing the output range varies in [1,∆k ]. Hence, the randomization is achieved for k > 2.

Figure 1 includes the input-output relationship of hM ,k by showing the stochastic output ranges by the shaded areas. Thus,
the range of hM,k spreads all over the M-bit dynamic range.

2.3 Watermarking by Using Transformation
In this section, a use of the transformation hM ,k for image  watermarking is specified. Consider the embedding of a watermark
into a cover image by merely substituting each watermark bit for a certain bit of a pixel.

Let X denote a cover image composed of Nx×Ny pixels, and X(x, y) be the pixel level at the coordinates (x, y) in X for x = 0, 1,
. . . , Nx and y = 0, 1, . . . , Ny. W denotes a watermark that is a sequence of ordered L bits {w0, w1, . . . , wL-1}, where L < Nx×Ny.

1) Embedding procedure: The procedure for embedding the whole W into X is described as follows:
Step 1: Select L different points pi = (xi, yi) within X for i = 0, 1, . . . , L-1. Let P denote the sequence of the ordered L points {p0,
p1, . . . , pL-1}.

Step 2: Assign an integer ki in the range [2, M-1] to each point pi for i=0, 1, . . . , L-1. Let K denote the sequence of the ordered
L integers {k0, k1, . . . , kL-1}.

Step 3: Modify the pixel level at the point pi = (xi, yi) in X so that the ki th bit can represent wi, for i = 0, 1, . . . , L-1. Let vs = X(xi
,yi) and bs = B(vs + ∆ki , ki). The pixel level is transformed from vs to vout by the following relation:

           (6)

           (7)

           (8)

           (9)

vout =
hM ,k (vs ),     if bs = wi
vs,                 if bs = wi

{

           (10)

           (11)

As a result of the above procedure, the watermarked image, denoted by X’ , is obtained. Both P and K must be kept from those
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who have no permission to extract the watermark.

2) Detection procedure: To extract the watermark from the watermarked image X’ , the steps listed below can be used:

Step 1: Obtain both P and K associated with X’ .

Step 2: At the point pi = (xi , yi) in X’ , the watermark bit wi is extracted by

wi = B(X’(xi , yi) + ∆ki , ki)

for i = 0, 1, ..., L-1

Thus, the whole of the watermark W is given by the sequence of the extracted bits {w0, w1, . . . , wL-1}.

2.4 Properties of Transformation
1) Change of signal levels: The output level vR = hM, k(vs) is a random variable, and accordingly, the level difference of vR and
vs ,written by dR =vR - vs, also changes at random. The range of the random change is determined for each vs as shown in
Figure 2.

2) Change of level occurrences: The difference in width among the ranges of hM, k(vs) affects the occurrence of the output
level vR. We have analyzed the occurrence frequencies of vR under both the assumption that M-bit input levels are uniformly
distributed over the dynamic range and the assumption that vR is chosen in the output range with the uniform probability
distribution. The analysis result is shown in Figure 3.

Although the output range of hM, k spreads over the entire M-bit range, in every two ranges of ∆k levels the order of two
ranges are reversed through the mapping, as shown in Figure 4. These reversed ranges result in distortions on the picture
surface.

Figure 2. Relationship between input level and level difference: vR = hM, k(vs).
Bold lines just represent the level difference caused by gM, k(vs)

2.5 Image Distortions
The distortions caused by hM, k have two phases. In the first phase that is caused by gM ,k, although the change in each signal
level is made minimum, the number of levels available in the image is reduced. The second phase is caused by the level
randomization. In this phase the number of levels appearing in the image increases while the change from the source image
increases accordingly. Each phase of distortion affects the image quality in different manners.

1) Distortion in low-detail regions: The first phase of the distortion affects especially the quality of low-detail image
regions. Figure 5 shows examples of the transformations of an 8-bit grayscale ramp image with k = 5. In Figure 5(b) we may
perceive eight stairs, which can be referred as false contours, in the gradation transformed by gM, k , while the image actually
has 16 different stairs.
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Figure 3. Output level occurrence distribution
of hM ,k obtained in the stochastic analysis

Figure 4. Correspondence of hM ,k
between input and output levels

Figure 5(c) shows the randomized version of Figure 5(b). The false contours of the random levels in Figure 5(c) look half as
wide as those in Figure 5(b). Note that an extremely large value of k has been used in Figure 5 so that the distortion is certainly
visible.

Figure 5. Transformed images of a grayscale ramp (M = 8, k = 5): (a) A source ramp; (b)
The result of gM, k consisting of 16 levels; (c) The result of hM, k consisting of 256 levels

2) Distortion in high-detail regions: We consider a local image area where source levels are bounded in a small range. If the
source level range is [2m∆k ,2(m + 1)∆k), the transformed levels lie in the same range, as Figure 3 has shown. On the contrary,
if the source range of 2∆k levels is [(2m+1)∆k ,(2m+3)∆k), the transformed levels lie outside the range and no levels appear
inside the range (Fig. 6(a)). If the source range of 3∆k levels is [(2m+1)∆k ,2(m+2)∆k), there also exists an empty range where
no transformed levels appear (Figure 6(b)). Both the replacement of ranges and the missing ranges cause distortions in the
texture of the local areas.

3. Perceptual Modeling

3.1 Objective Quality Measures
The level transformation hM, k causes distortion in the source image, and thus, degrades the image quality. According to the
performance analysis of hM, k, we have defined two kinds of objective measures to evaluate the distortion.
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Figure 6. Transformation hM ,k from bounded source ranges:
Source levels are assumed to occur uniformly in the range

  (a)              (b)

1) Change of signal levels: The first measure is the mean-square-difference (MSD) between two images. The MSD between
a source image X and the transformed image X’ , denoted by Dmsd, is defined by

Dmsd =
∆ 1

NxNy

Ny -1

Σ
Nx -1

y=0
Σ

x=0
( px, y - px, y )

2‘

where px, y and px, y are pixel levels at the coordinates (x, y) in P and P’, respectively, for x = 0, 1, ..., Nx-1 and y=0, 1,..., Ny-1. The
MSD of a watermarked image (or region) evaluates the mean distortion over the whole image (or region).

2) Change of level occurrence distributions: By hM, k in every interval of 2∆k levels in the input dynamic range, the upper half
and the lower half are mapped inversely into the output dynamic range, as already shown in Figure 4. To evaluate the change
in the level occurrence distribution, we define the square variation of level occurrence between a source image X and the
transformed image X’, denoted by

Ddst, by

‘

Ddst =
∆ Σ

2M-1

i=0
(fi  -  fi )

2                fi‘ Σ 2
2M-1

i=0

where fi and fi  are the relative occurrence frequencies of a signal level i in the picture X and X’ , respectively, for i = 0, 1, ...,2M-

1, satisfying

‘

 Σ2M-1
i=0 fi=1and               fi  =1.              Σ2M-1

i=0 ‘

3.2 Subjective Testing
To find a correlation between the objective quality and the subjective quality of the transformed images, we have carried out
the subjective evaluations by human observers [10]. In the measurement of image quality, we used a ratingscale method [11]
where the observers viewed the test images and assigned each image to one of the given ratings. The results were presented
by computing a mean value from the numerical values corresponding to the ratings, which is referred to as a Mean Opinion
Score (MOS).

The testing materials were prepared in the following way. Here, assuming that M =8, that is, we have only considered 8-bit
images.

           (13)

           (14)
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• hM, k was implemented with a pseudo-random number generator of a computer in the stochastic process.

• The test images were printed on photographic papers in 200 pels per inch with a PICTROGRAPHY-3500 printer, which has
a printing resolution of 400 dots per inch.

All the observers, who were all in their twenties, were unfamiliar with the performance of hM, k. They were asked to look at the
materials sitting at a desk under ceiling lights inside a room.

Two kinds of source images were used. The first one is a 256-grayscale ramp image where the pixel levels vary linearly from
0 to 255 extending from the top side to the bottom side. Thus, the ramp image represents a low-detail region. The transformation
hM, k makes the linear gradation of levels distorted in the output image. Accordingly, transforming the source ramp with
varying both the value of k and the ratio of pixels chosen to transform in the image, which is referred as the transformation
ratio τ, yields the distorted images of various values of Dmsd. In the measurement of subjective quality each test image was not
compared with the source image, but evaluated from a viewpoint of the appearance of smooth gradation and assigned one of
the five ratings of the absolute rating scale listed in Table I(b).

The other kind of source image was a granular image representing a high-detail region. The source images used in the
measurement were composed of pixels of (pseudo-) random levels ranging uniformly in bounded intervals of a width of a
multiple of ∆k levels for a given k. According to the stochastic analysis of the mapping characteristics, the transformed
images have the same Dmsd (more strictly, almost same Dmsd with a small difference due to the pseudorandom numbers) and
the different Ddst depending on the source intervals. Samples of the test images are shown in Figure 7. Each transformed
image was compared with the source image just printed beside on the same paper and then, evaluated according to the degree
of perceptible difference with the impairment rating scale listed in Table I(a).

Thus, eleven scores were collected for each test image, and the MOS was calculated from them.

               (a)                 (b)
Figure 7. Samples of the pairs of a source image and the transformed image that
were used for comparative testing in the subjective evaluation: (top) source images
of the levels spatially located at random and uniformly ranging in the interval of (a)
[23∆4, 26∆4) and (b) [5∆6, 7∆6); (bottom) the corresponding transformed images
with (a) k = 4 and (b) k = 6. All the images are shown at 200 pixels/inch here

3.3 Subjective Quality Measure
In the evaluation of the ramp images, a subjective quality of each test image of a different Dmsd value was measured in MOS.
Figure 8 shows the measured MOS Smos plotted against Dmsd calculated by (13). The result indicates an approximately linear
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correlation between the subjective quality and the logarithms of Dmsd. Consequently, Dmsd has the primary effect on the
estimation of MOS for the images transformed by hM, k.

Value Rating
   5 Imperceptible
   4 Perceptible but not annoying
   3 Slightly annoying
   2 Annoying
   1 Very annoying

Value Rating
    5 Excellent
   4 Good
   3 Fair
   2 Poor
   1 Bad

Table 1. Ratings Used in the Subjective Testing

                                                 (a)                                    (b)

In the evaluation of the granular images, those test images transformed with the same k have the same Dmsd and the different
Ddst. Figure 9 shows the measured MOS plotted against the Ddst calculated by (14) for k = 3, 4, 5 and 6. For a given k, the MOS
values Smos decrease as the Ddst increases. We suppose that the correlation between Smos and Ddst can be considered
approximately linear, while the gradients vary with the value k.

Figure 8. Measurements of subjective image qualities MOS versus level change Dmsd: The broken line
shows the linear regression line in the middle range of 1 < Dmsd. Note that the abscissa is on a log scale

Figure 9. Measurements of subjective image qualities MOS versus level occurrence
change Ddst: The broken line shows the linear regression line for each k

0.1 1 10 100 1000

1 

2 

3 

4 

5 

MSD msdD

M
O

S
m

os
S

0 1 2 3

1

2

3

4

5

M
O

S

dstD

m
os

S

3k =
3k =

4k =

4k =
5k =

5k =

6k =
6k =



       Journal of Multimedia Processing and Technologies Volume  2  Number  1  March  2011                       35

For a transformed image region, let us consider a subjective quality measure as a function of two parameters, Dmsd and Ddst,
that estimates a subjective quality of the distortion, where Dmsd and Ddst are measured by comparing the distorted image with
the source image. According to the above analysis of the measurements, we suppose that a subjective quality measure Smos
can be expressed as a linear combination of the logarithm of Dmsd and Ddst. That is,

Smos = α. ln Dmsd + β. Ddst + γ            (15)

where α, β and γ are parameters to be estimated by multiple linear regression analysis.

To carry out the regression analysis, we used the triplets of {Smos , Dmsd , Ddst} measured from the test granular images
described above. Thus, 54 measurements of the dependent variable Smos at 12 different values of the independent variable
vector (Dmsd, Ddst) were used in the multiple linear regression analysis. As a result, the values of α, β  and γ are estimated as

α = -0.46, β = -0.70 and γ = 6.4,^ ^ ^            (16)

respectively. Also, the resulting coefficient of determination, which is commonly denoted by R2, is 0.86. Figure 10(a) shows
the correlation between the values of Smos predicted with the parameter values of (16), Se , and the measured values. Thus, the
subjective quality measure Se gives the values comparable to the MOS values.

To evaluate the effect of Ddst on the modeling of Smos, we have also used a simple linear regression model of one independent
variable of Dmsd. In this model, Smos is expressed in the form

Smos = α’. ln Dmsd + β. Ddst + γ’

where α’  and γ’ are the model parameters. By using the same data as those used in the above multiple regression analysis,
these two parameters were estimated from 54 measurements of Smos at four different values of Dmsd in simple linear regression
analysis. As a result, we obtained the estimated values of α’ and γ’ as

α’ =-0.55 and γ’ =5.7,

           (17)

           (18)

respectively. Also, the resulting value of R2 was 0.55. The values of Smos predicted by this model are compared to the
measured values in Figure 10(b). The relation between the measured and predicted values of Smos in Figure 10(a) has higher
correlation than that in Figure 10(b). Thus, Ddst as an independent variable improves the linear model of Smos.

4. Perceptually Adaptive Watermarking

4.1 Block Processing Procedures
The subjective quality measure Se gives an estimate of subjective quality for each image region under the assumption that the
whole of the region is transformed with a given value of k. Let Se(k) denote the value of Se under the transformation with k.

Figure 11 shows an example of values of the subjective quality measure with various k, where the measure is applied to every
non-overlapping block of 4×4 pixels in a source grayscale image. It is observed that the measure values vary for a given k
according to the image texture. Also, the measure values tend to increase with decreasing k.

By using the subjective quality measure Se, we can examine whether the transformation of an image region with a value of k
satisfies a given condition of subjective quality. Accordingly, the measure can determine the values of k to transform an
image region with so that the desired subjective quality can be achieved. Because the level range available for the additional
transformation extends with increasing k, the largest one of the available k’s is to be chosen. Furthermore, the value of k to
use can be changed for each image region.

To implement the above adaptive watermarking, we determine both a threshold value ST comparable to the subjective quality
measure and an upper limit of available k, which is equal to M-1 here. The ST can be determined from the ratings listed in Table
I. Here, let us assume the transformation ratio is 1. Then, the value of k for each image region, kB, is determined by
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kB =     max         {k | Se (k) > ST }.
1< k < M-1

(19)

The region is actually transformed with kB. Thereby, the subjective image quality of Se(kB) is achieved in the transformed
region.

The procedure for implementing (19) is carried out in each image region, starting from k = 1 as follows:

Step 1: Transform the region with the value of k.

Step 2: Calculate Dmsd by (13) and Ddst by (14) within the region.

                                                                    (a)                                                                                      (b)

Figure 10. Measured values Smos and calculated values Se: The
broken line shows the linear regression line for these plotted points

Figure 11. Examples of values of the subjective quality measure. (a) Source imageN ‘Lena’ of
256×256 8-bit pixels. (b)-(e) Grayscale images showing the measure values Se(k) applied to 4×4-
pixel blocks. The average is (b) Se(3) = 4.3, (c) Se(4) = 3.5, (d) Se(5) = 2.7, and (e) Se(6) = 2.1

(a)                  (b) k =3                                        (c) k =4

    (d) k =5            (e) k =6

Gray scale corresponding to
the measure values shown
in (b) through (e)
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Step 3: Calculate Se(k) as Se of (15) with the specified coefficients of (16).

Step 4: Compare Se(k) with the given ST. If Se(k) < ST , kB =k-1. Otherwise, increase k by one, and repeat from Step 1.

4.2 Simulation Results
Simulations of the adaptive watermarking were carried out. The test images of 256×256 8-bit pixels, which are well known as
‘Lena’, ‘Peppers’, ‘Cameraman’ and so on, were used as the source images. The adaptively watermarking procedure was
implemented every block of 4×4 pixels in the simulation with various threshold value ST .

Figure 12 shows an example of the values of the parameter kB that were determined for each block by the adaptive scheme.
From this figure it is observed that the adaptive scheme performs such that in the low-detail regions such as the ‘sky’, where
the human visual system is sensitive to distortion [11], kB’s of small values are assigned, and in the high-detail regions such
as the lower half of the image kB’s of large values can be used.

           (a) Source ‘Cameraman’      (b) kB values

Figure 12. The embedding parameters kB that are determined for each
block by the adaptive scheme: Block size is 4×4 pels and the threshold
ST = 3.5. In (b), black means kB = 1, and the brighter, the larger kB

Table II shows for the source image ‘Peppers’ the distribution of the values of kB that were determined by the adaptive
scheme for various ST .With increasing ST the ratios of large kB’s decreases, and the average of kB decreases accordingly.

Table II also shows the value of Se averaged over all the blocks in the image. As this result indicates, the averaged value of
Se was achieved at about 0.5 greater than the given threshold for each of the images in the simulation. The reason why this
difference is likely to occur is considered that only integers are available for k.

The block size is 4×4; Source image ‘Peppers’.

Threshold ST

3.0 3.5 4.0 4.5 5.0
Number of blocks kB = 1   0   0   0 2.3 44.6

        (%) kB = 2   0 0.68 18.7 67.5 52.2
kB = 3 7.7 54.3 74.9 30.0 3.2
kB = 4 71.0 44.5 6.5 0.07   0
kB = 5 21.3 0.51   0   0   0
kB = 6 0.07   0   0   0   0

Averaged kB 4.14 3.45 2.88 2.28 1.59

Se 3.60 4.10 4.54 4.99 5.46

PSNR (dB) 30.3 34.0 37.3 40.6 44.2

Table 2. Simulation Result of Percetually Adaptive Watermarking
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Examples of the images resulting from the same source image for ST = 3.0, 4.0 and 5.0 are shown in Figure 13. From these images
it is observed that the better visual quality is certainly achieved as the threshold quality ST is set larger.

2.3 Validity of Subjective Quality Measure
We consider the validity of the subjective quality measure in this section. When we look at an image, we usually evaluate the
quality of the whole image. Taking account of this fact, we compare the subjective quality measure to human evaluations in
terms of the whole image quality.

Figure 13. Results of the adaptive watermarking with the various threshold values ST : Each
right column image magnifies a 64 by 64 pel region of the left one, whose size is 256 by 256 pels

Using various images produced in the simulation of the adaptive scheme, first, we have carried out the subjective evaluations
of visual quality by use of the impairment rating scale listed in Table I. The MOS value Smos was then obtained from the scores
of about forty people for each image, who were given no information about the making of the images. Note that these Smos’s
are the evaluation of the whole image quality. Next, to estimate subjective quality of the whole image from a collection of the
measure values of block quality, the block values Se were averaged over all the blocks in each image, and the mean value Se
is obtained.

(a) Source ‘Peppers’

(b) ST = 3.0; Se = 3.60, PSNR=30.3 dB

(c) ST = 4.0; Se = 4.54, PSNR=37.3 dB

(d) ST = 5.0; Se = 5.46, PSNR=44.2 dB
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Figure 14 shows the relationship between the mean value Se and the measured Smos in each of the three test images. A linear
correlation between Smos and Se is clearly observed from either result in this figure. However, the slope of the linear regression
line is 1.9, 1.8 and 2.2 in Figure 14(a), (b) and (c), respectively.

This inclined linear correlation results in the incorrect prediction of subjective quality by the measure as that, for example,
viewers evaluate the quality of an image at the worst MOS of one, while the mean value of block quality indicates that the
image holds the quality of MOS of three.

The value Se can be corrected using the corresponding value of Smos by linear regression analysis. The linear regression
model is expressed in the form

Smos= µ . Se + v (20)

where µ and v are to be estimated by simple linear regression analysis. To carry out the analysis, we collected the pairs of {Se,
Smos} where 1< Se < 5, from the results of three images shown in Figure 14. As a result, the parameters µ and v are estimated
as

µ = 1.9, and  v = -4.4, (21)

respectively.

Using (21), the values of Se in Figure 14 were modified to Se . The resulting relationship between Smos and Se is shown in Figure
15. In this figure, each value of Smos is shown with its 95% confidence interval. The slope of any linear regression line in the
figure is about 1.1. Furthermore, from the viewpoint of the confidence intervals of MOS, the linear correlation looks valid.
Consequently, Se can be used to predict the evaluation of subjective quality for at least these three images.‘

‘

Figure 14. MOS versus the subjective quality measure averaged over the blocks Se for
each source image used in the simulation. The line in each figure shows the linear regression
of the data points. The points painted solid in white are out of range 1 < Se < 5

             (a) Image ‘Lena’     (b) Image ‘Peppers’       (c) Image ‘Cameraman’

5. Conclusion

The properties of the subjective quality measure, which is the primary result in this paper, are summarized below:

• The subjective quality measure is the function of two objective quality measures, Dmsd and Ddst, obtained from an image
region. Consequently, the subjective quality measure is essentially carried out in block processing.

• The subjective quality measure predicts a value of MOS in the impairment rating scale. Hence, a threshold value for the
measure values can be given in terms of subjective evaluation.
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• The values of the subjective quality measure are dependent both on the bit position to be inverted and on the image texture.
This property enables the bit position to vary depending on the image texture in the adaptive scheme.

On the other hand, the subjective quality measure was derived from the measurements of the computer synthesized test
patterns. The validity of the measure for natural scene images was examined in terms of the whole image quality. We obtained
the whole image quality value by averaging the block quality value over the blocks within the image. In the experiment using
three test images, a highly but inclined linear correlation was observed between the mean value and the measured MOS.
Although the inclined gradient was successfully corrected by simple linear regression analysis in this experiment, the cause
of the difference between the estimated values and measured values of whole image quality may be related to human eye’s
characteristics [11]. Accordingly, we have to consider a method for estimating the whole image quality from the block
qualities in more detail.

Another remaining subject is the block size of the subjective quality measure. The block size of 4×4 has been used in this
paper. The block size is related to the resolution of quality measure. On the other hand, a bit position to be inverted is decided
at each block in the adaptive scheme. Hence, the same number of bit positions as the blocks must be preserved and afterward
provided for the extraction procedure. From these viewpoints, the appropriate block size should be considered.
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