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ABSTRACT: In professionel moviepost-production, various components are pushed to their performance limits. Former
processorsfor example were not ableto playback the JPEG 2000 compr essed i mage-sequences which are used for distribution
in Digital Cinema aswell aslong term storage in digital archiving —inreal time. While today’s processors are able to decode
such files a new bottleneck became part of the processing chain: In many cases conventional Hard Disk Drives (HDD) are not
ableto deliver the requested data —which islimited to a maximum value of 250 Mbit/sin Digital Cinema—inreal time. In this
paper we propose an algorithm for increasing the data throughput of conventional HDDs by utilizing the progression order
of scalable media files, called UCODAS (Use-Case-Optimized DAta Storage). The motivation is given by the architecture of
conventional hard drives, and finding that the file structure of scalablemedia, such as JPEG 2000, can be (re-)arrangedin
such a way that the throughput of the disk can be significantly increased - especially if subsequent access patterns to the
image-sequence are known a-priori. The advantages and disadvantages of today's hard drives are summarized before we
show how scaling is achieved within JPEG 2000. Then, various methods for improving the performance of HDDs - taking
advantage of the scalability - are proposed and the data sets used for the measurements are described. We performed tests
using a collection of common file systems including FAT32, NTFS, ext2 and ext3 as well as RAW data access without a
filesystemin order to prove our implementation of the UCODASalgorithm. In particular, we show that UCODAS can increase
the data-throughput of a conventional HDD by more than a factor of 3 and thus overcome the bottleneck introduced by
conventional HDDs.
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1. Introduction

On one hand due to the architecture of storage devices, using rotating discs with a magnetic surface to store information
permanently, random accessis possible. On the other hand, hard drives require a certain time to navigate the read/write heads
to aparticular track storing the requested data[1]. This delay isreferred to as Seek Time and since only in the most favorable
case the requested sector isdirectly under the head when it startsto read a certain track, arotational latency isincurred aswell.
The individual delays sum up and have a significant impact on the overall transfer rate of the HDD. In general, drives with
rotating discs have a high throughput if data can be read continuously and search times for repositioning of the read/write
heads are minimal. Disks, on which the requested records are fragmented and potentially spread over the whole device, show a
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show asignificantly worse performance.

The JPEG 2000 image compression standard [2] provides several scaling options, allowing the readout of different versionsfrom a
single code stream. Scaling of resolution, quality or color components aswell asaccessto certain areaswithin acompressed imageis
provided. During compression, the data in a JPEG 2000 code stream is arranged according to a certain progression order. The
progression order determinesin what priority theindividual packets of information are stored within the code stream. It ispossibleto
produceimages, wherethefirst packetsdeliver all theinformation necessary to decode alow-resol ution version of theimage, but with
highest quality (quaity-oriented). By choosing a different progression order, data for the maximum resolution will be stored firgt,
followed by subsequent packets that merely increase the quality (resolution-oriented). Packets can be rearranged even after the
encoding process and without the need to decode the compressed image. Such areordering causes achange of the progression while
leaving thefile size unaffected.

This property can be exploited to speed up hard drives, if the user behavior during subsequent file-requests of JPEG 2000 imagesis
known a-priori. E.g. inthe movie post-production, for many workstations used for cutting and conforming the resolutionislimited by
theattached displays. A resolution of 2K (2048 x 1080) sufficesfor aHD digplay (1920 1080), even if themaximum availableresolution
available from the stored JPEG 2000 filesis 4K (4096 x 2160). Hence, it can be expected that most of the users only request the 2K
portions of the images and skip the 4K parts.

SinceHDDs perform best if the requested data can be read continuously, the JPEG 2000 images should be stored in away, that the 2K
portions can be read with minimal repositioning.

Therefore, the possibility to change the progression order shall be utilized when asequence of imagesiswritten on adisk drive.
Since we expect certain file systems to have an impact on the performance, a selection of common file systems was used for
performance measurements in this work. In order to ease the simulation using different filesystems we implemented the
UCODA S behavior as astandal one module, which isresponsiblefor the re-ordering of theimage files according to specific use-
cases. |deally, afile system driver would assumethistask later on. Good candidatesfor such integration were presented in former
works: A virtual file system for management of scalable media with the ability to define access rights to certain versions of a
scalablemediafilewasintroduced in[8]. In[9], areal-time capablefile system for scal able mediafileswas presented. Thefocusof
the latter work was the elimination of bottlenecks introduced by slow interfaces between storage devices and host systems.
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Figure 1. Structure of aJPEG 2000 image using a) L RCP-quality-oriented and b) RL CP-resol ution-oriented progression

The utilization of other scalable mediaformatslike H.264 Scalable Video Coding (SVC) [6] or MPEGA4 Scalableto Lossless[7] is
appropriate, but not in focus of this work.

Therest of the paper is organized asfollows: Section |1 de- scribesthefile structure and scalability features of JPEG2000. The
description of UCODAS as well asitsimplementation is given in Section |11 and IV. Section V shows the gained results and
Section V1 presents the conclusion.

2. FileSructureand Scalability Featuresof JPEG 2000

The JPEG 2000 compression mainly consists of a discrete wavelet transform (DWT) and the subsequent Embedded Block
Coding with Optimized Truncation (EBCOT) entropy coder [3]-[5]. The application of the DWT resultsin individual sub-bands,
which are divided into code-blocks of equal maximum size that are processed independently before they are stored in the final
bit stream. According to the desired destination bitrate, code block information can be truncated as needed. This operation leads
to a stronger quantization.
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Scaahility by resolution is a characteristic of the wavelet transform. Discarding code-blocks for the highest resolution-level and
skipping the last synthesis step of the DWT reconstructs an image that is halved in both vertical and horizonta resolution. By
skipping another synthesis step, the resolution is quartered once again and so on.

Scaahility by quality isachieved by theintroduction of so-called Quality Layerswithinthe EBCOT stage. Here, each layer provides
additional quality information for the already decoded sub-image. By discarding quality layers during the decoding process, the
qudlity of the decompressed image is reduced. Spatial access to specific areas of an imageis a so possible since each code-block is
coded independently.

In order to ensure a better navigation within the final code stream, several code-blocks are combined into precincts. Each
precinct may be distributed across multiple packets in the resulting codestream. Finally, the complete code stream consists of
multiple consecutive stored packets, including special marker segments that ease the navigation within the file or signal coding
parameters.

Figure 1 showstwo possible progression orders of a JPEG 2000 image comprising two quality layers(LOand L 1), two resolution levels
(RO and R1) and three color components (CO, C1 and C2): a) L ayer-oriented progression order with priority to quaity layers(LRCP).
Here, al packets containing quality information will be stored first in the code stream. In order to read animage with reduced quality
but infull resolution, only thefirst six packets haveto beread from astorage device. Thefollowing six packetsincreasethequality for
vertical and horizontal resolutions, b) resol ution-oriented progression order with priority according to the resolution packets (RLCP).
By reading thefirst six packets of the code stream, alower resol ution of theimage with maximum quality can be decoded. Information
for the next higher resolution levelsisincluded in the remaining six packets.

3.Application-specific Ordering of I nfor mation Packets

The aim of the application-specific ordering isto ensure, that all JPEG 2000 fileswill be stored using a predefined progression orde,
regardiess which progression order was used during compression. The selected progression order will be derived from access
behavior that is expected when users request images from the HDD later. In thisway, large data portions can be stored successively
on the disk — a behavior that will improve the read-performance in terms of data-throughput since downtime for finding sectorsis
minimized.

The progression order of JPEG 2000 images is changed according to the selected behavior, when the data is copied to the storage
medium. In this case, certain user behavior — defining for which use-case the HDD should be optimized — can be selected @) for the
entire HDD during the format-procedure or b) on a per-fol der basiswithin the management section of aspecid file system. Here, two
strategies have been implemented, which are described in thefollowing text.

3.1File-oriented Reordering of Data Packets

Toadlow for sequential readsfrom disk | ater, datapacketswithin asinglefile may bereorganized if necessary. Thisreorderingleadsto
achange of the progression order on theone hand and allowsfor reading large chunksin asingle uninterrupted turn on the other hand.
Irrelevant packets will be skipped with one big leap that ends exactly at the position on the hard disk, where relevant packets of the
subsequent imagebegin.In order to be ableto restore the original filesifrequested,the native progression order hasto be storedin the
file systems’ catalogue. Figure 2 shows this behavior. During the write operation, when the JPEG 2000 images are written to the
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Figure2. @) Original image sequencei , i, to bestored on HDD withimproper progression order for requested
user behavior. b) Image sequence i(') - i2' derived from original image sequence with new progression order
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disk, the structure of the source images are analyzed (Figure 2a) and compared with the prescribed behavior. If the native
progression order isnot optimal for the predefined access strategy, it gets changed due to reordering of certain data packets (see
Figure 1). Thus, al relevant packets for subsequent file-requests are stored sequentially on the disk before the non-relevant
packets are stored (Figure 2b). Each arrow in Figure 2 represents a single independent request to the disk.
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Figure 3. @) Origina image sequence comprising relevant and irrelevant packetsfor certain user-behavior. b)
Two sub sequencesderived from original sequence according to sequence-oriented reordering of datapackets

3.2 Sequence-oriented Reordering of Data Packets

By writing the relevant packets of all images sequentially to the hard disk, further optimization of the reading performance can
be achieved. In thislayout, each file will be divided into two or more parts, so that thereis arelevant and a non relevant part.
Again, non-relevant packets are those packets of the code stream that will most likely not be requested by adecoding application.
The latter parts will be stored a) on a separate hard drive or b) on the same disk, after the relevant packets were stored
sequentially. Figure 3ashows an image sequencewith six images (i, — i), all comprising arelevant and anon-relevant part. Each
image will be divided so that the relevant parts of all images can be stored sequentially on the hard disk. Figure 3b shows two
different sequences: First, the relevant parts (i, — i,/ ) and subsequently, all non-relevant parts of the original image sequence

(iy— i) for aparticular access pattern.

A division of the original sequence into two sub-sequences - according to the progression order and the predefined user
behavior - provides the advantage, that the entire sequence can be read without any repositioning of the read/write heads
(compare arrow-quantity and lengthsin Figure 2 and Figure 3). Again, thefile system must save the metadata of the original file
before the division so that a reconstruction to the original file-structureis possible later on.

4. Implementation

The performance of different file systems for different progression orders has been evaluated using the following data sets, which
were generated using the current UCODA Simplementation:

1. Image sequence with 120 images, 4K resolutions and layer-oriented progression order. The JPEG 2000 imageswere created using
mathematically lossesscompression; avg. filesizeis10MB.

2. 4K version of the sameimage sequence, wherethe progression order was subsequently changed from layer-oriented to resol ution-
oriented; avg. filesizeisidentical to thelayer-oriented image sequence.

3. 2K version of the sameimage sequence, whichwasderived from 2. by discarding dl 4K packets(R1, seeFigure 1); avg. filesizeis6
MB.

All measurementswere performed using a250 GB HDD* comprising five empty partitions, each with a capacity of 10 GB. Four
partitions were formatted with one of the following file system: FAT32, NTFS, ext2 and ext3. The fifth partition was used for
direct read and write access to the hard disk without afile system (RAW). All records are accessible through afolder structure
of thefile system or by specifying ablock index when using the RAW-mode.

Figure 4 showsthebasic behavior of the softwarethat was used for the performance measurements. Thealgorithmfirst readsthe JPEG
2000 header of each filein order to determinethefile structure, beforeit determinestherel evant areas of thefiletoberead. Finaly, al
relevant parts of afilewill beread from the sel ected partition. Figure 4 shows, that only thetimefor reading the requested packetswas
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measured —whereastherest of theinstructionsfor reading the JPEG 2000 structure etc., will not be considered when determining the
read-performance.

Thetest-recordswere sequentially read from all partitionsin the order described above. Thisoperation was performed ahundred times
beforethe ten best and worst measurementswere discarded in order to minimize side-effectslike onset of kernel processes(e.g. astart
of avirus scanner or indexing service). Dueto thetotal datasize of all sequencesand the fact that they were read from four partitions
sequentially, before the first sequence was requested again, it is ensured that the operating system cannot cache the data.Rather, all
datamust be read from the disk. When accessing the data on the RAW partition using the current implementation,no caching of the
operating system wasinvolved.

It can be expected that the predetermined user behavior might change after the initial structuring was performed. For example, this
would happen, if allworkstationswereequipped with alarger display whiletheachievable network throughput remains constant. Inthis
case, are-ordering of the scalable data according to the techniques described above may be useful. A lower quality version at full
resolution could beread in asequential manner instead. Subsequently, more quality information can berequested if required. Without
further restructuring the data, the layout would not be optimal and the throughput of the disk would significantly decrease dueto new
user behavior.

01: Algorithmread_sequence (path, packetsToSkip)
02: for all imagesimg, do

03:  j2kimg= parseJPEG2000 (img, );

04: relevantParts= getRelevantParts ( j2kimg, packetsToSkip);
05: for all partsp, do

06: start= getSystemTime();

07: readPart(p,);

08: stop= getSystemTime();

09:  bytesRead += p, .total Sze;

10:  processingTime += (stop — start);

11: endfor

12: endfor

13: return processingTime;

Figure 4. Pseudo codefor time measurement function taking sourcefolder path to seriesof JPEG 2000files

Fortunately, thanksto the properties of scalable media, asubsequent reordering is possiblewithout the need to re-encode the images.
For this, the datamust be restructured again so that it isoptimally laid out for the new user behavior. To evaluate the time and system
performance required for arealignment of the fileswe further examined thefile-oriented approach (3.A). The algorithm used for our
measurements is shown in Figure 5. In principle, image data is read from disk, restructured in memory depending on the new
progression order (newProgOrder) and saved back to the same sectors on the disk. Again, each step is measured by using the
system clock in order to subsequently determine the performance.

01: Algorithmrestructure_img ( path, newProgOrder)

02: readSart = getSystemTime();

03: j2kimg =ReadFile (rawDevice, startlndex, length);

04: readSop = getSystemTime();

05: processing_start = getSystemTime();

06: j2kimg = change _prog_order ( j2kimg, newProgOrder);
07: processing_stop = getSystemTime();

08: writeStart = getSystemTime();

09: WriteFile (rawDevice, j2kimg, startindex, length);

10: writeStop = getSystemTime();

11: return (readStop — readStart) + (processing_stop — processing_start) + (writeStop — writeStart);

Figure 5. Pseudo code for restructuring algorithm including time measurements
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Even after arestructuring, thesegence must bestoredon the disk in a sequential fashion so that successiveimages can bereadin
asingleturn without expensive repositioning of the read/write heads. To ensurethis,we have chosenthe RAWaccess method for
our measurements, sinceit isthe only method that allows for the restructered data to be writtentothe exactsame sectorson the
storage device. Thus, we can ensure that images remain sequentially stored on the one hand.On the other hand, using one of the
file systems listed above there isno way to defineat which exact position on the disk the data gets stored.Since the file system
is free to store data anywhere on the disk, the images couldbescatteredall over the driveafter reconstruction, even ifthey
werepreviouslystoredoptimallyfor fluent playback.

5. Results

According to the use case described in section 1, requesting processes are only interested in the 2K version of the files—no matter in
which way the files were stored on the HDD. Figure 6 shows, that application of UCODAS can achieve significant performance
improvements when dataiis requested from ahard disk drive. Thissimulation reads a 2K resolution from an image sequence with a
resolution of 4K. First, the quality-oriented datais read without reorganization. According to Figure 2 several repositioning stepsare
necessary in order to read the 2K versions of thefiles. All tested file systems achieve acomparabl e performance of around 24 MB/s.
Thisvalueiswell below the maximum datarate of the hard drive, which was measured using drive performance software [10] to be
around 92 MBJ/s.

By resorting to aresol ution-oriented progression order within each file, the datathroughput increases significantly sincetherequired
time for repositioning the read/write heads is reduced. The performance increase varies depending on the tested file systems. A
particularly highincrease can be observed for FAT32 and NTFS (about 73 MB/s). Theext2 and ext3file systemsal so show ahigher data
throughput, but not as high as FAT32 or NTFS (about 61 MB/s).

A similar effect can be observed when reading the third test set: The largest increase in performance can be achieved with the
FAT32file system which deliversthe dataat about 82 MB/s. NTFS and ext2 provideaminimal increasein performanceto atotal
of 63 MB/s. When accessing the hard disk directly, without employing a file system, distinct transfer rates can be
achieved.Especially the access to the third image sequence shows a further increase in performance compared to an access
using afile system. The measured average throughput of 90 MB/s almost corresponds to the maximum measured hard drive
performance. The remarkable result of RAW-access can be explained by the uncompromising sequential organization of the
image files. This property is not necessarily given when using one of the tested file systems.
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Figure 6. Data throughput measured using different file systems as afunction of file-inherent progression order

In addition, we measured thetime-expensesfor changing theinternal structure of the scal ablefilesin responseto achange of the user-
behavior. The measurements were performed using the test set described above. The progression order was changed from LRCP
to RLCPandCPRL. The measured results for the new progression orders were almost identical, so that only the measured
percentagesfor therestructuring from LRCPto CPRL are showninTable . Itisfound that only 4% of theoverall processisrequired
for the restructuring of theimage datain memory. 96% of the timeis spent for reading and writing the data. The results show that a
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subsequent change in the structure can essentially be regarded as a single read andwrite operation perfile. The data throughput
of the HDD during the restructuring process was measured to be approx. 92MB/s.

Process Percentage time consumption
Read fromHDD 48%
Restructure Image 4%
WritetoHDD 48%

Table 1. Comparison of the required processing times
for the main steps of the reorganization of existing data

6. Conclusion

In this work we presented UCODAS, a use-case optimized storage technique for scalable media, an implementation of this
algorithm as a standalone module, performance measurement as a function of four common file systems as well as the
implementation of RAW accessto the storage devicein order to measure the performance decrease in datathroughput introduced
by afile system. Applying ause-case-optimized progression order provides auseful way to increase the throughput of hard disk
drives significantly. Especially the specific adaptation of the progression order within afile shows @) asignificant increasein
datathroughput and can b) be changed quickly by another reorganization of the scal able JPEG 2000 image sequence, e.g. if the
predefined use caseneeds to be adjusted due to changed user behavior.

Sincethefile-size of theimagesis not affected when changing the progression order, code streams can easily be rearranged on
the already occupied space on the hard disk.

Splitting imagesand storing parts of JPEG 2000 filesto different areas of ahard drive can further improvethe overall performance
on the one hand. On the other hand, the original version of a sequence can only be read with alow performance sincethedisk’s
read-heads have to jump across the platter several times for each image, depending on the file structure and the length of the
sequence. Storing the irrelevant data packets on a separate hard disk can prevent this. However, re-assembling the original
sequence can berealized very efficiently using aspecial copy-processthat allocates memory for the completefile on thetarget
disk, copies al relevant parts of the reorganized version before it copies the irrelevant parts. Development of these copy-
algorithmsaswell asaninvestigation of the performance of the presented algorithmsfor other scalable mediaformatslike H.264
SV C or MPEG4 SL Swill be subject to further research.
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