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ABSTRACT: The crucial issue in Wireless Sensor Networks is saving energy so that the lifetime of in-field deployments can
be extended. It was documented that the communication is generally the most energy consuming task and needs to be
reduced in order to build resource-efficient long-term applications. It is evident that the communication demand for
retrieving query results from deep within the sensor network is typically high. As a result, frequent non-continuous data
acquisition consumes a lot of energy and shortens the lifetime of the sensor network significantly. We address the issue of
optimizations for processing high amounts of unique queries by using a dynamic adaptive caching scheme: the DACS. In
DACS query results can be retrieved from caches that are placed nearer to the query source instead of sending queries
deep into the network. The communication demand can be significantly reduced and the entire network lifetime is
extended. To verify cache coherence in sensor networks with non-reliable communication channels, an approximative
update policy is used. To localize the adequate cache adaptively, model-driven queries including a degree of demanded
result quality can be defined. The entire logic is thereby processed by DACS and hidden to the user. We have shown that
the significant energy conservation is proven in evaluations that include real sensor node deployments.
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1. Introduction

Currently, the new forms of  highly distributed networks consisting of tiny sensory processing units denoted as Wireless
Sensor Networks (WSNs) using the evolving techniques of microprocessor and communication technology are emerged.
Researchers characterize the WSNs as large scale, wireless ad-hoc networks that are formed by tiny sensor nodes / motes
typically for monitoring and environmental analyzation tasks [1], [2], [3]. in WSNs Each sensor node is equipped with an
energy efficient microcontroller, a radio unit, diverse sensor units to analyze the environment and a limited energy supply.
Sensor nodes are non-reliable platforms as they are limited in their lifetime due to the energy constraints and lack of robust
communication due to interference. Previous work in data management has therefore been focussed on energy efficient data
acquisition to extend the lifetime of the networks and energy efficient communication usage with additional improvements for
more robust data transmission.

Significantly, the main data acquisition scenario in WSNs is to share measured information over non-reliable communication
channels. Queries are inserted in the network by gateway nodes. The evaluation of these queries and the transmission of
results need to be optimized regarding the present resource constraints. The main research goal is to extend the lifetime of the
sensor networks by reducing the communication overhead during query processing. In-network aggregation techniques
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therefore have been introduced. While initial approaches [4], [5] rely on fixed routing schemes, advanced solutions question
the usage of a fixed topology with regards to the non reliable communication and propose approximative aggregation
schemes using broadcast messages for enhanced reliability [6]. Moreover, optimizing the sensor nodes activity, e.g. adjusting
the actual sampling rates to the acquisition demand, by analyzing active queries has been suggested [4].

Together, the previous acquisition optimization strategies presume the query result retrieval from deep within the network at
the data sources. Nevertheless, the communication demand can be further reduced by using only a limited part of the entire
network to evaluate the query. One possible approach is to use data caches instead of sending queries to each data source.
As a result the communication demand can be significantly reduced.

In this work we introduce the Dynamic Approximative Caching Scheme: DACS. Previous work on data caching in WSNs
require the usage of hierarchical communication topologies with deterministic data routes, e.g. [7]. Unlike these approaches,
DACS works without topology assumptions and is robust against communication limitations. The framework consists of a
dynamic distribution of data caches in the sensor network. In order to extend the lifetime of the network and take care of the
unreliable communication channels, a weak cache coherence is discussed that is based on an approximative update policy.
By attaching a result quality requirement to a query, DACS automatically retrieves query results from caches nearer to the
data sink and further ensures that the degree of result quality is not violated. As a result, queries do not need to be sent to
all sensor nodes deep within the network which reduces the communication overhead. Evaluations show that by using
DACS and by accepting a minimal deviation in the query result the network’s lifetime can be significantly enhanced.

In Figure 1 we give a simplified example for a network running DACS. In an uniform distributed network data source nodes
are cached throughout multiple layers. Gateway nodes are used to send queries into the network. In this example we define
a data source node (SN) and four gateway nodes (GW). Every other node is a possible cache node. However, unlike this
simpified example, DACS supports unlimited, randomly placed data source nodes, gateways and cache nodes, e.g. each data
source node is cached separately by DACS and each data source node acts also as a cache for other nodes. Thereby, the
maximum memory consumption can be limited. Due to the implicit redundancy on the update layers we verify that each source
node can be cached.

Figure 1. Overview DACS Simple Network Model Example
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The basic concept of DACS is to use cache nodes instead of the actual data source nodes for retrieving information, e.g.
temperature values. Hereby, the communication demand can be significantly reduced by using caches that are layered nearer
to the gateway than the actual data source, e.g. using the caches C1, C2 or C3 instead of the data source SN. However, cache
nodes need to be kept coherent. Sensor node communication in WSNs is generally unreliable. As a result, strict coherence
or even consistency is not possible. Besides, keeping every cache node coherent comes at high communication costs for
rapidly changing data at the data sources. To overcome these limitations, DACS uses an approximative update policy. As
shown in Figure 1, the cached data can deviate from the actual source data based on the distance between cache and data
source. For a simplified example, we can define a maximum deviation of the cache value for each source-cache distance as
shown in Figure 1, e.g. using a linear increasing deviation of 10% per hop.

As a result, the estimated communication demand for cache updates decreases with increasing distance from the data source
as highlighted by the number of arrows. In this work, we show how DACS implements this approximative cache coherence.
Using approximative caches requires using modeldriven queries since it is not obvious how deep queries should be sent in
the network to accordingly reach caches with lower deviation. DACS hides the cache localization process to the user by
allowing to issue queries with additional demand of result quality, e.g. get temperature values that might include an overall
maximum deviation / error of 30%. In this paper, we discuss this localization approach for unlimited data sources and data
caches.

The remaining parts of the paper are organised as follows: In the next section we give an overview on important previous and
related work. In Section III we give a detailed introduction into DACS covering issues of Cache Placement (Section III-A),
Cache Coherence (Section III-B) and Cache Localization (Section III-C). In Section IV we evaluate the framework and show
results on the communication efficiency and the robustness of the framework. We conclude our paper in Section V and show
possible areas of future work.

2. Related Work

In this Section we present previous work related to data caching and data management in WSNs. Previous work in data
management in WSNs was initially focussed on deep in-network aggregation and data acquisition optimizations to save
energy during processing query results [4], [5]. Using caching structures to optimize in-network query processing in WSNs
was firstly discussed for the query engine TinyDB in [7]. While there has been a clear recommendation for using caches to
evaluate queries closer to the actual data sink and hence to save energy, the used strategies provide only a simple round-
based caching scheme.

In this approach, in a static aggregation tree aggregation values of child nodes are cached by their parents for a determined
number of rounds. The actual aggregation values are not regarded and the caching scheme is strictly connected to the TAG
tree topology. Beside this approach other caching strategies for WSNs have been presented in [8], [9], [10], [11], [12]. Most
of these these approaches require the usage of hierachical communication topologies with deterministic data routes, e.g.
TAG [7]. Hence, we denote them as hierarchical caching strategies. The strategies can be further divided in nonapproximative
and approximative approaches. In detail Shashi et al. describe an optimal cache placement strategy in tree topologies by
finding nodes in Steiner Data Cashing Trees in a scenario where multiple subscribers are receiving data from one source [8].
Multi-source scenarios like described in this work are left out for future work. Chand et al. describe a cooperative caching
scheme to improve data access performance and availability in mobile ad-hoc networks [9]. Their work is focused on a new
utility based cache replacement strategy in contrast to a usage based policy. However this approach is not optimized for
energy constrained WSNs and therefore seems not to be applicable in the presented way. In [10], Rahman et al. propose
strategies for improving the energy efficiency of WSNs. The presented caching strategy is focussed on avoiding unnecessary
sensing by estimating the data change frequency, comparable to the acquisitional data processing strategy of TinyDB.
Strategies for in-network caching to optimize query evaluation like described in this paper are not presented. Jung et al. focus
on an external cache-based sensor network bridge to avoid querying the entire WSN by using cached results [13]. The
approach works for non-constrained external devices (e.g. gateways) and hence is not applicable for in-network query
optimization.

3. Contribution

In this Section we give a detailed description of the DACS Framework. The basic concept of DACS is to provide a general
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data cache solution that does not rely on any given topology assumptions. The design goal of DACS is to reduce the
communication overhead by letting queries be evaluated by data caches on the route to the actual data source. Reducing the
communication overhead increases the lifetime of the network significantly.

For setting up a general caching scheme for WSNs, the following issues need to be reviewed:

• Cache Placement (Section III-A): A general strategy on where to place data caches on the communication routes needs to
be resolved. A general network model is the basis of this strategy.

• Cache Coherence (Section III-B): Data caches need to be updated when new data occurs at the data source.

• Cache Localization (Section III-C): Queries need to be redirected to adequate data caches for evaluation. The localization
process should be hidden to the user, e.g. by a black box behaviour.

3.1 Cache Placement and Network Model
WSNs are highly dynamic networks. The exact position of nodes after deployment, e.g. out of a plane, is often not precise
and the lack of communication robustness does not guarantee fixed data routes in general. As a result, the placement of data
caches cannot be verified before deployment and the caching structure needs to be set up during runtime autonomously.
DACS is able to adapt the distribution and placement of data caches dynamically in case of changing network conditions.
Additionally, no assumptions on the network topology are made. The organization of the cache structure is a collaborative
decision of the network itself.

The following general network model is defined to make DACS suitable for most application scenarios:

• A network consists of a uniform distribution of N nodes.

• In the network each node except the gateway nodes can produce data, e.g. measure environmental information. Measurements
are taken on predefined intervals continuously.

• The general DACS approach supports multiple gateways, whereby each gateway is managed separately in identical
manner. However, in the following discussion, we assume the network to have one dedicated gateway for better understanding.

• To avoid bottlenecks on the routing path, DACS relies on using broadcast communication. We desist from using fixed
topologies to improve failure tolerance and to support a maximum number of deployment scenarios. However, to avoid
energy unefficient flooding of the network we use ring-oriented, directed communication as proposed in [6]. As a result the
energy demand is only minimal higher than existing static topology approaches with unicast delivery but the fault tolerance
is significantly improved. As porposed in [6] this routing technique is optimal for sensor networks that generally are
sensitive to node and communication faults resulting in unpredictable network conditions, e.g. network partitioning.

In DACS we desist from using dedicated cache placements. Instead, every node beside its own measurement task is a
potential cache for other nodes. Thereby, nodes decide which data they cache based on their distance to the data source that
is determined by the hop count of update messages. Nodes can then be classified concerning their membership to distance
layers. We therefore define two different layers:

1) Cache Layer: The cache layer defines the distance between the gateway and a cache node, denoted by dGC. For example,
in Figure 1 C1 is on cache layer 1 for Gateway GW1.

2) Update Layer: The update layer defines the distance between the data source and a cache node, denoted by dSC. For
example, in Figure 1 C1 is on update layer 3 for the source node SN.

As denoted previously, we use a ring-oriented broadcast communication as proposed in [6], e.g. cache results are sent to the
corresponding gateway over decreasing cache layer and update messages are sent to the caches over increasing update
layer. The actual placement of the cache is now adjustable by placement rules, e.g. caches are placed every second or third
layer, depending on the memory and energy resources of the application scenario. The actual update logic is defined by the
cache coherence protocol that is described in the next section. Finally, by avoiding dedicated caches and instead using cache
layers we further introduce an implicit data replication which optimizes the node failure tolerance and makes the networks
more stable concerning communication path failures.
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3.2 Cache Coherence
Cache consistency predefines that for each point in time the cache is consistent to the data source whereas cache coherence
demands that the cache is consistent to the data source during the evaluation of queries. Cache coherence therefore
significantly reduces the effort of keeping the cache up-to-date and hence the communication demand. However, both claims
can mostly not be satisfied in WSNs because of the unreliable communication and the energy demand of continuous cache
updating that conflicts with the general hardware restrictions in WSNs. In detail, the times when queries have to be evaluated
are generally not predictable resulting in a continuous updating process of the caches which significantly reduces the
lifetime of the entire WSN due to the communication overhead.

To overcome these problems, DACS introduces an approximative cache update policy. Each cache node does not store the
actual value of the data source but rather stores a value for that a maximum deviation / error is guaranteed. An update is only
processed if the maximum deviation is exceeded. The maximum deviation for each cache item is set based on its distance to
the actual data source.

In Figure 1 we give an example for an approximative update policy with linear increasing error (10% per hop on distance dSC).
In the following, we give a detailed description on how DACS supports this policy.

As described in the previous section, nodes are classified based on their membership to cache and update layers. Each
logical update layer consists of nodes with the same distance dSC to the data source and includes a maximum deviation / error
regarding the cached values and the values of the actual data sources.

This error is defined by a function (dSC) ex that calculates the maximum error ex for a given cache data source distance
x = dSC. The function is initially known to all nodes based on the application scenario and the efficiency predefi- nitions. For
Figure 1 it can be defined as (dSC) =dSC/10. In general, the higher the steepness of the function, the lower the estimated
communication demand in general for updates. The high impact of choosing the error function according to efficiency
predefinitions that can result into significantly lower communication demand is also shown in the evaluation of this work in
Section IV. Moreover, the function can be adjusted concerning the estimated number of queries per update as also shown in
Section IV.

On incoming update messages, nodes decide based on the function (dSC) whether an update message needs to be
processed, e.g. the value needs to be cached and the message needs to be forwarded to higher update layers. DACS
currently supports three forward policies, that can easily be extended for future work:

1) Decision at Source Node: The source node tracks the progress of cache values based on a virtual layer scheme and
determines itself how many hops an update needs to be sent in order to verify the update policy. This approach prevents
policy violation and is denoted as stable approach.

2) Forward If Updated: Cache nodes forward as long as the update policy results into cache updates. The forward process
is a dynamical decision on the update layer path. However, monotonic changes in source values can produce temporary
violation of the demanded deviation gradation, e.g. higher update layers exceeding the maximum deviation temporary. It can
be shown that the maximum error can be nearly squared. Nevertheless, this simple solution performs well in average without
policy guarantees.

3) Weighted Forward If Updated: The problem of the error policy violation of the Forward If Updated forward strategy can
be solved by dynamically weighting the function (dSC). However, this approach requires additional logic on the routing
path and is out of scope of this paper due to its complexity.

In the experiments of this work we have used the forward policies 1) and 2) which both ensure a stable performance. In
summary, we have shown in this section how cache coherence can be guaranteed by allowing an average error gradient in the
network based on an adjustable error function. In the next section we discuss how caches can be localized for given user
queries.

3.3 Cache Localization
In DACS, caches can be localized using model-driven approximative queries [14]. The query issuer defines a quality demand
that needs to be resolved by DACS autonomously. DACS estimates the distribution of the nodes in the network and derives



  Journal of Networking Technology Volume  2  Number  1  March    2011                           15

the error distributions of the caches in the network. Based on the distributions DACS extrapolates the next cache layer that
fulfils the quality requirements. This entire process is hidden to the query issuer which makes DACS an optimal solution for
non expert sensor network users.

As described in the previous section, cache nodes are classified by their membership to cache layers, e.g. the distance dGC
between a gateway and the cache nodes. In DACS the user defines an overall maximum average error requirement along his
query, e.g. get all temperature values with an overall maximum average error of . DACS automatically retrieves a corresponding
cache layer, e.g. the maximum hop for the query messages, so that the requirement can be satisfied.

We therefore define a function C( ) c N that looks up a corresponding cache layer c that fulfils . The resulting cache
layer guarantees that the overall average error of the results does not exceed . Hereby, it is important that not onlythe
maximum deviation of the cache layer is relevant to the overall average error but also the amount of nodes between the cache
layer and the gateway that will send exact results. On the other side, DACS chooses the cache layer as close as possible to
the gateway without violation of the requirement to optimally reduce the communication overhead.

The localization of the cache nodes depends on two factors:

1) the error function (dSC)

2) the distribution F(X) of the nodes on the hop layers of the network starting from the gateway. The distance from the
gateway to a node is defined by dGN. The density function is denoted as f(X). In Figure 2 we show a possible gaussian
distribution which will be used throughout this section as an example an is, as we show later in this section, representative
for many network scenarios.

Figure 2. Network Node Distribution Density f(x) on Hop Layer

Localization based on Node and Error Distributions
The function C( ) can be derived inductively over the used cache layers as shown in the following cases:

CASE 1: Cache Layer C = 0

In this initial case, we assume that the gateway acts as a cache. By using the approximative update policy the maximum error
of the cached value of a node n with distance x = dSC = dGN is defined by ex = (dSC) = (dGN). In example, a node that is 5
hops away from the gateway will be cached by allowing a maximum deviation of (5).

Accordingly, by reviewing all nodes in the network we can derive an error distribution for a given cache layer C denoted as
G(C, ex) (with density g(C, ex)) that determines the amount of nodes that are cached by the cache layer C allowing a maximum
error ex. For the present case (C=0) the error distribution is now directly determined by the given node distribution density
f(X):

g(0, ex) = f( −1(ex)) (1)
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In detail, the amount of nodes that are cached with a maximum error of ex is the amount of nodes that are on a layer with
distance dGN and for that the equation (dGN) = ex is true. We can retrieve this layer by resolving the function −1(ex) and
get the amount of nodes on this layer from the density function f( −1(ex)).

As shown in Figure 3, this theoretical derivation means that for the initial case (C = 0) we can directly determine the amount
of nodes that are cached with a certain error ex from the general node distribution.

Figure 3. Network Error Distribution for Cache Layer 0: g(0, ex)

The estimation value of the derived error distribution for cache layer 0 is the worst case overall average error of DACS . As
denoted previously, we now have to review the case that we retrieve results from cache layer deeper in the network whereby
nodes between the gateway and the cache will answer with exact results without error.

CASE 2: Cache Layer C > 0

We continue the inductive derivation of C( ) by reviewing the usage of caches deeper in the network (C > 0). The overall
average error of a query result can again be determined by the expectancy value of an error distribution g(C, ex). Nevertheless,
we have to take care of the nodes that are positioned between the cache layer C and the gateway, as they will send exact
results.

We give an example in Figure 2. By using cache layer C = 3, all nodes on previous layers will answer with exact results. These
nodes are marked by the red area and the number of these nodes is directly determined by F(3).

In general, by using cache layer C, F(C) nodes send exact results (ex = 0) and hence we can derive

g(C, 0) = F(C) (2)

In the following, we need to determine the error distribution of the rest of the nodes with error ex > 0 that are actually cached
by the cache layer C, e.g. the nodes from layer C +1. As shown previously, the amount of nodes on layer C + 1 is determined
by the node distribution f(C + 1). Accordingly, because these nodes are only one hop away from the cache layer the maximum
error e1 of the cached values is (1). Based on the node distribution, we then retrieve the density of error e1 as

g(C, e1) = f( −1(e1) + C) (3)

By reviewing all layers of cached nodes, we retrieve the general error distribution for a used cache layer C (C > 0):

In other words, we retrieve the actual error distribution for a cache layer C (C > 1) by left shifting the error distribution of
Equation 1 by C. In example, we show the resulting error distribution for the usage of cache layer C = 3 in Figure 4.

(4)
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Figure 4. Error Distribution in Network for Cache Layer 3

Equation 1 and Equation 4 now form the general error distribution of DACS for variable cache layer C:

(5)

As denoted previously, we can now retrieve the overall average error by calculating the expectancy value E of the error
distribution: E(g(C, ex)).

Finally, C( ) is defined as
(6)

This function retrieves the cache layer C whereby the overall average error of this layer (E(g(C, ex))) is as close as possible
to the error requirement  without violating it. In DACS the function C( ) is solved using interval-valued approximation.

Remarks on the Distribution of Nodes
In the derivation of C() we assume the knowledge of the general node distribution F(X). This distribution of nodes can be
known for dedicated deployments, e.g. square deployments with equidistant nodes. However, for general deployments, e.g.
deployments out of air, the exact position of nodes and their relative position to each other can not be fully verified. For this
purpose, we have investigated the node distribution of randomly distributed networks to find distribution classes that can
be used in DACS . We therefore randomly placed nodes of large scale networks consisting of n nodes (n>1000) and issued
an analyzation query from a gateway to retrieve the amount of nodes on each hop layer.

As a result, we retrieved that randomly deployed networks tend to be gaussian distributed. In Figure 5 we show a histogram
of the distribution of randomly placed nodes based on an average of 100 evaluations for 100 nodes. The red curve denotes
the density function of the gaussian distribution with a mean / median of 17 and a variance of 8. The gaussian distribution
was verified running statistical verifications, e.g. the Kolmogorow-Smirnow Test [15]. The previous described localization
strategy in general is independent of the actually used distribution. However, based on these statistical tests, a gaussian
distribution can be assumed as a general case. Only an estimation of the network diameter has to be done before using
DACS.

4. Evaluation

In this section we give an extended overview on evaluation results of running DACS in WSNs. Hereby, DACS has been
evaluated in real sensor node deployments and simulations to test the scalability for very large deployments. The measurement
data is based on real temperature measurements in Friedberg, Germany. As proposed throughout this work, the intention of
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DACS is to save energy on the communication path. Hereby, it is not only important that DACS actually reduces the
communication overhead but also that the error requirement  of a given query is never violated. Therefore the evaluation
covers the following most important aspects:

1) Communication Efficiency: The impact on the communication demand of using various error functions is shown in
Section IV-A.

2) Query per Update Trade-off : The evaluation in Section IV-B covers aspects on when to use DACS in relation to the ratio
between expected updates and queries.

3) Validity and Robustness: The error requirement of a given query has to always be guaranteed. Therefore the deviation
gradiation on the update layer path that is defined by the used error function needs to be adhered. An evaluation for this
aspect is given in Section IV-C.

As sensor node hardware we use Pacemate nodes [16], based on a Philips LPC 2136 Processor, and iSense core modules,
based on a Jennic 32bit RISC Controller [17]. The available RAM was 96kByte shared for program and data (heap memory was

15kByte, program memory was 81kByte). We hereby point out that DACS is fully applicable on real sensor nodes and
has been tested in an indoor application scenario as shown in Figure 6 whereby each node sends measurements continuously
and one node acts as a gateway. The network consisted of up to 30 nodes that where either placed randomly or in a pairwise
linear topology.

        Figure 5. Statistical Node Distribution for uniform randomized Deployments

4.1 Energy and Communication Efficiency
We first test the communication efficiency of DACS based on two quarter temperature measurements and different error
functions. The results are shown in Figure 7. Hereby, the xaxis shows the chosen linear error function for the coherence
protocol and the y-axis denotes the communication demand in update messages. As a result, linearly increasing the error
function significantly reduces the communication demand. Both measurements show a logarithmic decrease. Using DACS in
the network therefore significantly reduces the update demand if the user can accept more deviation in the cache results.

4.2 Query per Update Trade-off
In the next evaluation, the usability of DACS in relation to the expected amount of queries was tested. As denoted previously,
the usability of a caching scheme depends on the amount of unique queries that are sent in the network. Generally, caching
becomes interesting if a high amount of independent queries is estimated and the update rate is lower. In this evaluation we
show how this trade-off can be determined for DACS . Thereby, we have to compare the cache layers that are actually used.
In Figure 8 we show the trade-off results for the message demand for the temperature evaluation scenario based on a network
of 100 nodes with a diameter of 6 hops over 91 update cycles (one quarter). The x-axis hereby denotes the numer of queries
that occur during the 91 update cycles (query per update ratio). The y-axis denotes the overall communication demand in
messages. The message demand for direct querying acts as a reference, where all nodes need to be reached without using
caches and hence the results need to be forwarded through the entire network. The different curves show the usage of cache
layer one to six. The higher the cache layer the deeper it is in the network. As a result the intersection between the direct
querying curve and the cache layer curve determines the point of inflection at which caching reduces the communication
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demand. We show the inflection points of this scenario in Table I. For caches closer to the gateway the tradeoff is significantly
small, e.g. for cache layer 1 0.14 queries per update, which shows the benefits of approximative data caching in WSNs.

Figure 6. DACS Pacemate Indoor Deployment

Figure 7. Message Demand for varying Error
Function Update Policies

Figure 8. Update per Query Trade-Off

Cache Layer Ratio Query per Update
           1 0,14
           2 0,16
           3 0,23
           4 0,38
           5 0,98
           6 36,6

Table 1. Point of Efficiency: Query Per Update
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To verify the results, we show the corresponding experimental results for using a 5% and a 20% error function in Figure 10
whereby an average of both quarters is shown.

Figure 10. Validity of the Update Policy for a 5% / 20% per Hop Error Function

Again, the update policy can be guaranteed for both error functions. Hence, DACS provides a flexible stable update
management with stable error gradiation which ensures the correctness of the cache localization process.

5. Conclusion

This paper proposes a dynamic approximative caching scheme for wireless sensor networks to optimize model driven query
evaluation. An approximative update policy has been introduced to support a weak cache coherence. Based on a deviation
tolerance a query is issued to the network and the corresponding caches are used adaptively. Evaluations have shown that
this concept performs significantly better than traditional query evaluation when a minimal deviation in the query results can
be accepted. For future work, the adaptation of transactional techniques in the cache update process is reviewed to further
optimize the approximate cache coherence update policy.

Figure 9. Validity of the Update Policy for a 10% per Hop Error Function
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