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ABSTRACT: Effective and efficient job scheduling is an important aspect of Grid computing. Task scheduling becomes more
complicated in a Grid environment, due to geographically distribution, heterogeneity and dynamic nature of grid resources.
In this paper, a new computational job scheduling policy based on Nash Equilibrium is proposed. The jobs are put into
scheduling queue based on priority. This priority is computed by the amount the grid user is willing to pay. Our solution is
based on the Nash Bargaining Solution which provides a Pareto optimal solution for the distributed system and is also a fair
solution to the problem under consideration. One of the goals of our work is to provide fairness to the customers i.e., all the
users and their jobs should experience approximately equal expected response time which includes the expected queuing
delay,  processing time, and  communication delay. As another part of our goal, we try to maximize the revenue levels for the
grid owners. This scheduling policy is simulated using Alea GridSim toolkit to test the performance.
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1. Introduction

A distributed system often consists of heterogeneous computing and communication resources. Due to the possible differences
in the computing capacities and uneven job arrival patterns, the workload on different computers in the system can vary greatly
is presented in [1].This situation can lead to poor system performance. Improving the performance of such a system by an
appropriate distribution of the workload among the computers is commonly known as job allocation or load balancing.  Formally,
this problem can be stated as follows: given a large number of jobs, find an allocation of jobs to the computers optimizing a given
objective function (e.g., total expected (mean) response time (expected queuing delay + processing time + any communication
time) of the system or total expected cost (the price that has to be paid by the users for using the resources) of the system). There
are two main categories of load balancing policies: static policies and dynamic policies as stated in [2]. Static policies base their
decisions on collected statistical information about the system. They do not take into consideration the current state of the
system. Dynamic policies base their decisions on the current state of the system, where state could refer to, for example, the
number of jobs waiting in the queue to be processed and job arrival rate.

The nodes (computers) exchange this information periodically and will try to balance the load by transferring some jobs from
heavily loaded nodes to lightly loaded nodes. Despite the higher runtime complexity, dynamic policies can lead to better
performance than static policies. A Grid [3] is a conglomeration of computing resources connected by a network, which is used
to solve large-scale computation problems.
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This system tries to run these applications by allocating the idle computing resources over a network or the internet commonly
known as the computational grid. These computational resources have different owners who can be enabled by an automated
negotiation mechanism by the grid controllers. The prices that the grid users have to pay for using the computing resources
owned by different resource owners can be obtained using a pricing model based on a game theory framework. The objective of
job allocation in grid systems can be to find an allocation that reduces the price that the grid users have to pay for utilizing the
resources.

In grid computing systems, there are often large amounts of resources available to be used for computing jobs. Scheduling in a
grid computing system is not as simple as scheduling on a multi-processor machine because of several factors. These factors
include the fact that grid resources are sometimes used by paying customers who have interest in how their jobs are being
scheduled [4]. However, grid computing systems usually operate in remote locations, so, scheduling tasks for the clusters may
be occurring over a network [5]. Job scheduling algorithms are commonly applied to grid resources to optimally post jobs to grid
resources [6][7]. Usually, grid users submit their jobs to the grid manager to utilize and fulfill the facilities provided by grid. The
grid manager distributes the submitted jobs among the grid resources to minimize the total response time. In a Grid environment,
there is moderately large number of job scheduling algorithms proposed to minimize the total completion time of the jobs [8][9].
The rest of the paper is organized as follows. Section 2 presents the related works. In Section 3 the system model for scheduling
in Grid computing environment is presented. In section 4, solution is proposed and an algorithm is written for the same. The
simulation of the Nash priority scheduling algorithm using Alea GridSim is presented in section 5. Finally, section 6 concludes
the paper.

2. Related Work

There has been significant research continuing to attempt to devise scheduling algorithms for grid environment’s problem of
efficient job assignment. Some of the jobs scheduling algorithms in a grid environment are given below.

Extensive studies exist on the static load balancing problem in single-class and multi-class job distributed systems. Most of
those used the global approach, where the focus is on minimizing the expected response time of the entire system over all the
jobs.

Different network configurations are considered and the problem is formulated as a non-linear optimization problem in [10][11][12]
and as a polymatroid optimization problem in [13]. These schemes implement the entire system optimization approach in order
to determine a load allocation that yields a system-wide optimal expected response time. A few studies exist on static load
balancing that provides individual-optimal and user-optimal solutions [14] which are based on game theory. Individual and user-
optimal policies for an infinite number of jobs/users based on non-cooperative games using Wardrop equilibrium are studied in
[15]. An individual-optimal solution for finite jobs based on cooperative game theory is provided in [16] optimal solutions based
on Nash equilibrium are provided in [17] for finite number of users. Game theory is also used to model grid systems [18] and for
price-based job allocation in distributed systems [19]. X. He et al. [20] have proposed an algorithm based on the conventional
min-min algorithm known as QoS guided min-min which schedules the jobs requiring high bandwidth before others. F. Dong et
al. [23] have proposed an algorithm called QoS priority grouping scheduling. This algorithm, considers completion time and
acceptation rate of the jobs and the makespan of the entire system as key factors for job scheduling. E. Ullah Munir et al. [24]
have proposed a new job scheduling algorithm which makes use of grid computing environments known as QoS Sufferage. K.
Etminani et al. [9] have proposed an algorithm which provides a solution on basis of max-min and min-min algorithms. The
algorithm discovers the situations where to adopt one of these two algorithms, based on the standard deviation of the estimated
completion times of the jobs on every computing resources. L. Mohammad Khanli et al. [21][22] have proposed a QoS based
scheduling algorithm for an architecture called Grid-JQA. In this method the solution involves applying an aggregation formula
which includes a combination of different parameters together with weighting factors to perform operations on QoS.

3. System Model

In this section, we present the system model of scheduling in Grid computing environment. A queuing network model of Grid
resources based on Nash Equilibrium is considered as shown in Figure 1. Set of jobs arrived are kept in the jobs queue. These
are sorted out according to pricing bands as shown in table 1. P1, P2, P3,…., Pn denotes the priority of the jobs based on the
pricing bands. The payoff  matrix computes the Nash Equilibrium according to the algorithm given in this paper. In the figure 1
NE denotes the Nash Equilibrium of each payoff matrix.
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These values are further sent to the priority scheduler which assigns grid resources for their execution. The priority scheduler
assigns jobs to the grid resources based on their pricing bands. The best offer is selected by computing the Nash Equilibrium
from the payoff matrix as shown in the figure.1.

Figure 1. Queuing Model of a Grid System using Nash Equilibrium

JOB ID             OFFERED           REQUESTED
                            PRICE($)           RESOURCES
    1 2000    50
    2 1000    20
    3 4000    30
    4 200    60
    5 5600    100
   6 100    21
   7 340    34
   8 450    10
   9 234    15
  10 125    06

Table 1. Job Request
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RESOURCE NAME AVAILABLE
CAPACITY

           R1        120
           R2        150
           R3        134
           R4        200
           R5        140
           R6        160

Table 2. Resource Availability

JOBS/        R1                  R2           R3                    R4                 R5          R6
 RES

    1            ( 2000,70)       (2000, 100)        (2000,84)         (2000,150)          (2000,90)          (2000,110)

    2            (1000,100)      (1000,130)         (1000,114        (1000,180)          (1000,120)        (1000,140)

    3            (4000,90)        (4000,120)         (4000,104)       (4000,170)          (4000,110)        (4000,130)

   4            (200,60)          (200,90)             (200,74)            (200,140)            (200,80)            (200,100)

    5            (5600,20)       (5600,50)           (5600,34)         (5600,100)          (5600,40)          (5600,60)

   6            (100,99)          (100,129)           (100,113)          (100,179)            (100,119)          (100,139)

   7            (340,86)          (340,116)           (340,100)          (340,166)            (340,106)          (340,126)

   8            (450,110)        (450,140)           (450,124)         (450,190)            (450,130)          (450,150)

   9            (234,105)        (234,135)           (234,119)         (234,185)            (234,125)          (234,145)

  10          (125,114)        (125, 144)          (125,128)          (125,194)            (125,134)          (125,154)

Table 3. Payoff Matrix
3.1 Application Model

3.1.1 Game Theory
Game theory aims to help us understand situations in which decision-makers interact. Like other sciences, game theory  consists
of a collection of models. A model is an abstraction we use to understand our observations and experiences. We can represent
the preferences of a player in a game by considering an entity known as a payoff function, which associates a number with each
action of the player in such a way that actions with higher numbers are preferred [26]. More precisely, the payoff function u
represents a decision-maker’s preferences if, for any actions a in A and b in A, u(a) > u(b) if and only if the decision-maker prefers
a to b.

3.1.2 Mixed Strategy
In the generalization of the notion of Nash equilibrium that models a stochastic steady state of a strategic game with VonNeumann-
Morgenstern (vNM) preferences, we allow each player to choose a probability distribution over her/his set of actions rather
than restricting her/his to choose a single deterministic action. We refer to such a probability distribution as a mixed strategy.  A
mixed strategy of a player in a strategic game is a probability distribution over the player’s actions.

3.1.3 Pure Strategy
A mixed strategy may assign probability 1 to a single action, by allowing a player to choose probability distributions; we do not
prohibit her from choosing deterministic actions. We refer to such a mixed strategy as a pure strategy. Player i’s choosing the
pure strategy that assigns probability 1 to the action ai is equivalent to her simply choosing the action and we denote this
strategy simply by ai.
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ui(O(s* − i)) ≥ ui(O(ui ,s* − i))

Ri (first element)  = Price that the customer is willing to pay

where Ri symbolizes the  ith row
Ci (second element)  = r

Where r = Available Resources – Requested Resources

Inorder to find the Nash Equilibrium, we need to formulate an objective function that would promise maximum profits for the grid
service providers and also maximize the resources that are remaining after the scheduler allocates jobs to the grid.

From basic inference, we observe that we need to maximize the first element in every cell since we are looking forward to develop
a model that promises higher revenue to the grid service providers. We also need to maximize the second element in a cell since
from equation (3), the remaining resources i.e. r, should be as large as possible inorder to cater to other jobs in the queue. Thus,
we can formulate the objective function as follows :

n(1, 1) = Pmax (R1, C1)

n(1, 2) = Pmax (R1, C2)

n(1, 3) = Pmax (R1, C3)
             .
             .
n(2, 1) = Pmax (R2, C1)

n(2, 2) = Pmax (R2, C2)
             .
             .
n(3, 1) = Pmax (R3, C1)

n(3, 2) = Pmax (R3, C2)
             .
             .
n(i, j) = Pmax (Ri, Cj)

(1)

(2)

(3)

(4)

3.1.4 Nash Equilibrium
(Nash equilibrium of extensive game with perfect information) The strategy profile s* in an extensive game with perfect information
is a Nash equilibrium if, for every player I and every strategy ri of player I, the terminal history O(s*) generated by s* is at least
as good according to player i’s preferences as the terminal history O(ri , s* -i) generated by the strategy profile ( ri , s* -i) in which
the player i chooses ri while every other player j chooses s* j . Equivalently, for each player i or every strategy of  player i,

where ui is a payoff function that represents player I’s preferences and O is the outcome function of the game.

3.1.5 Strategy Profile
A strategy profile (sometimes called a strategy combination) is a set of strategies for each player which fully specifies all actions
in a game. A strategy profile must include one and only one strategy for every player.

According to our model, we populate the payoff matrix by considering values from the ‘Job request’ table and ‘Resource
availability’ table. In this model, we consider the two players to be the ‘job request’ i.e. obtained from Table 1 and ‘Resource
availability’ i.e. obtained from Table 2. Table 3 shows the final payoff matrix which is populated according to game theory
principles. A cell in the matrix consists of two elements that is obtained by solving the following equations:
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Where n(i, j) denotes the ith row and the jth column.

Thus, equation (4) is our objective function. And inorder to find the Nash Equilibrium, we need to find the best allocation of a
job to the resources that are available. The cell containing the element n(i, j) denotes the desired value.

Now, in-order to provide fairness to the users, we have considered many payoff matrices that compute the Nash Equilibrium for
different price ranges. This scheme is depicted in figure 1. The advantage of this scheme is that the low priority jobs are not made
to starve for a longer period of time.

4. Proposed Solution

In this section, we briefly explain the proposed solution for scheduling the jobs using Nash priority technique in grid environment.
The user submits jobs along with the requirements to the Alea GridSim scheduling system. The submission of jobs to the
resources involves computing the Nash for suitability of the available PEs and maximum price. If the requirement is satisfied, the
jobs are assigned to the respective resources. This technique uses a dynamic priority mechanism to schedule the jobs to the
system efficiently and maximize the resource utilization and revenue of the grid providers. The Nash priority scheduling model
is depicted in the Figure 1. The jobs waiting for the service is placed in the waiting queue. The jobs selected from waiting queue
are compared with maximum resource availability inorder to cater the service efficiently. And our objective here is not to sit idle
resources for longer time, so identify those types and assign them the jobs. However, the jobs present in payoff table are
executed based on Nash priority scheduling policy. The jobs complete their execution based on price bands as early as possible
without rejection. So, smaller average response time is achievable and provides fairness to the grid users.

4.1 Algorithm1

// JOBS ARRIVING

1. add new jobs in queue
2. get job from the queue in a FCFS manner.
3. for each job exiting the queue
                   Collect
                                   price willing to pay.
                                   requested resources.
                                  from job table
                    end collect
    end for
4. if price < price_band1
                    add job to payoff matrix 1
                                      set priority = 1
5. else if price < price_band2
                       add job to payoff matrix 2
                       set priority = 2
6. else if price < price_band2
                       add job to payoff matrix 3
                       set priority = 3
7. else
           print “unable to process job or mismatch of price bands”
8. end if-else
9. repeat steps 2 to 7 until all jobs occupy the pay of matrix

4.2 Algorithm 2

// PAYOFF MATRIX POPULATION
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                // COMPUTING NASH EUILIBRIUM
                2. Consider price_ job1 = Maxrow
                               for (price_ job (2...n) >Maxrow)
                                                Maxrow = price_ jobi
                              end for
                              selected_J = Maxrow

                3. Consider rem_res of ‘selected_J’ on R1 =Maxcol
                              for ( rem_res(2...m) > Maxcol )
                                          Maxcol = rem_resi
                            end for
                            selected_R = Maxcol

                  4. OUTPUT selected_R and selected_J to scheduler

                  5. REPEAT steps 1 to 4 for the other two pricing bands.

                     // DONE COMPUTING NASH EQUILIBRIUM

4.3 Algorithm 3

                     // WORKING OF PRIORITY SCHEDULER

     while ( job_waiting)
            if ( arriving = 3 and existing = 2 or 1 )
                                       pre-empt priorities 2 and 1
                                      assign resources to job_priority 3
           end if
        if ( arriving = 2 and existing = 1 )
                                pre-empt priority 1
                                assign resources to job_priority 2
       end if
       assign resources to Low Priority jobs
    end while

// END WORKING OF PRIORITY SCHEDULER

// END OF ALGORITHM

The time complexity of the above mentioned algorithms is O(n2) Though this algorithm works with a quadratic time complexity,
no significant delay was observed in the test cases considered below.

5. Simulation and Results

According to figure 2, we observe that at peak loads, i.e., the days between 13 and 18, the FCFS (First Come First Serve)
algorithm performs less efficiently as compared to PBS_PRO (A Priority Scheduling Algorithm). Since, our algorithm uses game
theory principles to implement priority scheduling, it produces significant results as compared to both FCFS and PBS_PRO. We
prefer to call our algorithm as ‘Nash-Priority Algorithm’.

These algorithms were simulated on Alea 3.0 that runs on GridSim [25]. We assumed a configuration of 5000 gridlets, 103656

                 1. for each job present in payoff matrix
                          calculate rem_res
                          rem_res = resource_avail – resource_req
                          add rem_res into column of payoff matrix
                      end for
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processing elements and a fairness criterion of 1 for all the 3 algorithms under test.

On the 13th day, when the jobs entering the waiting queue was at it’s peak, we observed that the FCFS algorithm chooses the 1st

job and therefore makes all the remaining jobs to wait in the queue, thereby, not promising fairness to the users. Considering the
priority based algorithm, i.e., PBS_PRO, we observe that on the 13th day, though the job load was high, the number of waiting
jobs in the list was reduced to 450 , which is considered better than the FCFS scheduling algorithm. But, by using game theory
principle, more specifically, Nash- Equilibrium technique, it is possible to further reduce the number of jobs waiting in the queue
to a meager 401. This trend trickles down to the 14th, 15th, 16th and the 17th day, thereby, proving that priority scheduling using
game theory principles is more efficient than other algorithms since the waiting jobs are significantly lower as compared to
PBS_PRO and FCFS. Thus, Nash_Priority algorithm promises better fairness to the grid users. The data shown in figure 3 shows
a statistical representation of the set of jobs that are selected by the ‘Nash-Priority Algorithm’ on a typical day. As we can

Figure 2. Average waiting Jobs/Day

Figure 3. Jobs vs Price
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observe, the fairness to every user is guaranteed since a job that pays less is not pre-empted completely and jobs that pay more
are not the only ones that are considered for resource allocation. We can infer from our experiences that, firstly, the FCFS
doesn’t follow such a distribution. Secondly, the priority scheduler PBS_PRO, would give preferences only to jobs that pay
more. Thus, we can conclude that ‘Nash-Priority’ also promises fairness to the users.

6. Conclusions and Future Work

The objective of job scheduling in grid computing is to minimize execution time of the application and maximize the revenue of
grid providers by allocating jobs to proper processing elements. In parallel and distributed system, it is important to allocate
tasks that can be executed efficiently and exhibit good performance.

As network environment has changed and the internet has grown up so vast, the focus these days are on parallel systems. Now
a days, a system has heterogeneous platform and needs new scheduling strategies. This paper proposed a job scheduling
algorithm keeping in mind the heterogeneous environment, i. e, each job has different computational price, computation cost,
communication delay and each processor has different processing ability and network bandwidth. We used Nash equilibrium to
schedule jobs according to their pricing and resource demand.

The game-theoretic model which can achieve higher revenue for the grid service providers, as well as yielding good makespan
to the customer jobs. This grid computing applications can serve as a promising results to real-life applications. This service-
oriented platform design satisfies the best quality of service requirements and maximizes the revenue in ever changing grid
environment has the potential to design the future ubiquitous grid. The exploration on optimal strategies of non co-operative
grid providers attests the research avenue of the selfish grids.

In this paper, we have considered only two player games (jobs and grid resources) for the time being. Multiplayer games will be
more challenging due to the interaction between the users under many grid server. We plan to extend our work to model
multiplayer games for grid resources within its range to give a better approximation of the interactions between the players.
Finally, the job allocation strategy can also be improved by considering a Nash Equilibrium function that characterizes the grid
scenario in a better fashion. The results showed that a significant improvement in terms of a smaller average response time is
achievable and provides fairness to the grid users.

We are also trying to improvise the algorithm to a time complexity of O(log n).
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