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ABSTRACT: Fault Diagnosis is an essential management task for any telecommunication network and it is even more crucial
for Wireless Sensor Networks due to their dynamic nature. Based on Agent Technology, this paper presents an architecture that
combines different network and diagnosis models to carry out a Fault Diagnosis process: a Causal Model to relate fault root
causes with their symptoms and a Structural Model to define the network and its properties. The behaviour of the proposed
agent is driven by an Expertise Model which handles the different phases, tasks and problems which can be found in any
diagnosis process. The proposed approach has been evaluated in a simulated environment with emulated MICAz devices for
a motion detection application.
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1. Introduction

Wireless Sensor Networks (WSNs) have emerged as a paradigm that makes the network highly dependent on the environment
where it is deployed [1]. Due to the features of this type of network, such as low-cost [5] or multifunctional sensor capacity [12],
WSNs have been applied in many different fields increasing the demand of efficient and flexible solutions for different management
tasks [9], such as energy management [24] or fault management [26].

As in any telecommunication network, Fault Diagnosis is a key task in a WSN. Actually, the features of such networks make this
task even more crucial than in other types of networks [20]. For instance, that are error-prone means they have unsatisfactory
reliability for some applications [13]. Thus, a correct real-time fault management would improve its reliability and further spread
its use in the industry.

Generally, two different approaches are used for Fault Diagnosis in WSN: proactive and passive. On one hand, the proactive
approach uses extra computational resources in low capacity devices, but it offers high-detailed information about the whole
network, such as energy status [27] or neighbour lists [19]. On the other hand, the passive approach collects those data with less
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intrusive methods which are decisive for low-energy consumption systems, such as packet marking strategy [10] or packet
sniffer approach [4].

This paper proposes a flexible agent architecture that blends both approaches, proactive and passive, which enables to increase
or to decrease the work load in different critical nodes of the dynamic topology of WSNs using agent technology. To evaluate
the proposed approach, a simulation environment is presented. In the simulation, a WSN for motion detection is running and
Fault Diagnosis tasks are carried out in real time by a Fault Diagnosis Agent that is running in the sink node of the network.

The reminder sections of this paper are structured as follows. Firstly, Section 2 describes the different models used by the
proposed architecture to carry out the diagnosis tasks in the WSN. Secondly, Section 3 presents the proposed Fault Diagnosis
Agent Architecture which combines different reasoning techniques to manage the uncertainty inherent in the diagnosis pro-
cess of a dynamic network. Thirdly, Section 4 shows the most important features of the simulated WSN scenario and Section 5
exposes the preliminary results of some experiments. Finally, Section 6 presents some concluding remarks and proposes some
future works.

2. Diagnostic Models

Fault Diagnosis is a task that has been carried out traditionally by human operators following different strategies depending on
the context. These strategies are presented in Section 2.1 following an Expertise Model. This model only provides different ways
to solve the diagnosis task, not the domain knowledge required to carry out the diagnosis process for a telecommunication
network, such as a WSN.

In the scope of this work, other models are required to represent that domain knowledge, such as the network structure, the
services offered in that network or the possible faults and the symptoms of those faults. Section 2.2 exposes the network
diagnostic models used in the proposed architecture.

2.1 Expertise Model
This section presents a generic expertise model following the MAS-CommonKADS methodology [6] based on the analysis
exposed by Benjamins in [2]. The main elements of an expertise model are tasks, problem-solving methods and primitive
inferences.

A task is a specification of a goal that is needed to be achieved. It can be decomposed into subtasks by a Problem- Solving
Method (PSM). A PSM is the definition of the way to achieve the goal specified in a task. The achievement of a goal specified
in a task can be realised by several methods, each of which consists of subtasks that can be reusable in different PSMs. In the
following diagrams, PSM are represented by rectangles and tasks by ellipses.

Figure 1. Prime Diagnostic Method



                                    Journal of Networking Technology   Volume   6   Number  4    December    2015               137

Following this nomenclature, the Fault Diagnosis task is realised by the Prime Diagnostic Method (see Figure 1), which is
decomposed into three subtasks: (i) Symptom Detection, finding out whether complaints are indeed symptoms, (ii) Hypothesis
Generation, generate possible causes based on the symptoms, and (iii) Hypothesis Discrimination, discriminating between the
hypotheses based on additional observations.

As mentioned above, each subtask can be realised by several methods. Hence, the subtasks that compose the Prime Diagnostic
Method can be performed in different ways depending of the diagnosis scenario. The Symptom Detection Task (see Figure 2)
can be realised by methods that can be automated by a diagnosis system such as Compare Symptom Detection or Classify
Symptom Detection, or performed externally by third-part systems or human agents, such as User Symptom Detection.

The Compare Symptom Detection method is divided in two subtasks to generate an expected value of a variable and to compare
the value obtained from the environment. After that comparison, if the detected behaviour is not the expected one, we say that
a symptom is detected. In contrast, the Classify Symptom Detected method is based on a classification task. The information
observed from the environment are filtered by a classification engine that decides if the observations are a symptom or not.
Finally, the other method is the manual report from a user that is supposed to be truth. Then, no check or classification process
is required.

Figure 2. Symptom Detection Task

After a symptom is detected, the Prime Diagnostic Method continues with the next task: Hypothesis Generation (see Figure 3).
The two principles options to achieve this goal are the use of a Compiled Method or a Model-based Method. On one hand, the
compiled method is composed by three subtasks that uses associations between symptoms and causes and can be followed by
a probability filter. This method starts with an abstraction process that translates between raw observations to qualitative and
generalised observations. Then, the method continues with the association of that abstracted observations with possible
causes of fault. Finally, an optional task is the addition of a probability filter to discard non-probable hypotheses. On the other
hand, the model-based method follows other approach based in non-abstracted observations. Firstly, the finding of a set of
model entities (such as devices, components or states) that could contribute to an abnormality observation is required. Then,
that set is transformed to a hypothesis set in which every element is a possible explanation for the observed symptoms. Finally,
a prediction-based filtering can be used to discard inconsistent hypotheses.

Once the hypothesis set is generated, the Hypothesis Discrimination Task (see Figure 4) is performed to find the final conclu-
sion of the Fault Diagnosis Task. The method described by Benjamins in [2] is divided in four subtasks that starts with a decision
about the next action to accept or discard one of the possible hypotheses. There are several strategies (or methods) to make that
decision driven by different criteria, such as by time restrictions or by computational cost.

Once the strategy is decided, data about possible observations are collected and analysed to find new symptoms or evidences.
Finally, the hypothesis set is updated based on the observations collected in the previous task.
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As we are focusing the diagnosis task using Agent Technology [25], it is interesting to consider a Multi-Agent System (MAS)
in a distributed environment. Thus, we propose the use of two different methods: Individual Reasoning, that is the classical
approach exposed in [2], and Social Reasoning, that is a distributed way to reason about the possible hypotheses of fault causes
discussing and/or sharing partial information during a diagnosis task.

If a reliable conclusion is found in the hypotheses Update task, the Fault Diagnosis task can be considered as finished.
If not, the discrimination process continues repeating the previous tasks (Hypothesis Selection, Data Collection and
Symptom Detection) until a reliable conclusions is achieved.

Figure 3. Hypothesis Generation Task

Figure 4. Hypothesis Discrimination Task

Summarising, the expertise model presented above describes a generic Fault Diagnosis process that can be carried out
by an agent or a set of agents, both human, software agents or a combination of them. This general expertise model is
particularised for the reasoning cycle of proposed Fault Diagnosis Agent Model in Section 3.
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2.2 Network Diagnostic Models
The aim of a model is to represent knowledge to be used for a purpose. Thus, we define a Network Diagnostic Model as a
representation of some aspects of a network that is used to diagnose fault root causes. For our purpose, we use conceptual
models to know and understand key aspects of a telecommunication networks for the fault diagnosis process.

Hence, different aspects of a telecommunication network must be expressed in models to be able to automate fault diagnosis
tasks. In this work, two types of models are used: causal models and structural models.

The relation between symptoms and fault root causes is required. A causal model that relates those concepts is used for this
purpose. The definition of that causal model is shown in Section 2.2.1. This is an essential model for any diagnosis process, but
other views of the network are required to carry out successfully a complete diagnosis task.

The structural model defines the network itself, i.e. its nodes, its links, the services running in the nodes, etc. So, this model not
only defines the structure of the network, but also offers information about that nodes and links and the processes that are
executing in them. The definition of the structural model is exposed in Section 2.2.2.

2.2.1 Causal Model
A Causal Model (CM) is defined as an abstract model that describes the causal mechanisms of a system. Concretely, Judea Pearl
[17] defines a CM as an ordered triple < U, V, E >, where U is a set of exogenous variables whose values are determined by factors
outside the model; V is a set of endogenous variables whose values are determined by factors within the model; and E is a set
of structural equations that express the value of each endogenous variable as a function of the values of the other variables in
U and/or V .

Following Pearl’s definition, a causal model can be represented as a network with nodes (variables U ∪ V ) and links between
those nodes (structural equations E), that is called causal network. A Bayesian Network (BN) [16] can be considered as a causal
network if the relations between its variables are causal relations. Formally, a BN is a probabilistic graphic model that represent
a set of random variables V and their conditional dependencies R via a Directed Acyclic Graph (DAG). Hence, the equivalence
between a CM and a BN is given if the variables of the network are both exogenous and endogenous variables (V = U ∪V ) and
the conditional relations are only causal relations (R = E).

Thus, the causal model used in the proposed Fault Diagnosis Agent Model to determine the relation between symptoms and
fault root causes in a telecommunication network is a Bayesian network. Following the Pearl’s nomenclature, the fault root
causes and the symptoms are the exogenous and endogenous variables respectively. In other words, the symptoms are caused
by the faults or the faults are the cause of the symptoms.

Focusing on the structure, a BN is composed by layers of variables that are related with variables in other layers. The simplest
models, such as QMR [15] or QMR-DT [21], are composed only by two layers: symptoms and fault root causes, as shown in
Figure 5.

Figure 5. Two layers model of Bayesian network
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In contrast, other models, such as the BN3M Model [7], adds context information to the variables set. Thus, a third layer is added
to the model, as shown in Figure 6. This three layer structure is simple and its performance is reasonably similar to the two layer
models [14]. And the usage of only three types of variables keeps it easy for a human to identify which variables belong to each
type. Adding more layer, i.e. more types of variables, will increase the complexity of the model and will not increase the
diagnostic performance [18].

Summarising, the models presented above can be used to build causal models that use evidences observed from the environment
(in our case, from the telecommunication network) to discriminate between the possible fault root causes. While two layer
models use only symptoms and fault root causes (and the relations among them) to form the structure of the network, three layer
models adds context variables to be able to use the same model in different contexts. For our purpose of fault diagnosis in
telecommunication networks, we can use both types of model, depending of the information that can be collected from the
environment.

2.2.2 Structural Model
A Structural Model (SM) of a telecommunication network is defined as a representation of the components of the network, both
devices, connections and services, and their properties. Formally, a SM is a duple < E, P >, where E is a set of elements that
compose the telecommunication network and P is a set of properties that define the set of elements contained in E and the
relation between them. To express this knowledge in an standard language, we purpose to use the Network Description
Language (NDL) [23] which its first version is being standardised1 . NDL provides a way to describe networks in a meaningful
way in Resource Description Framework (RDF) format. A set of Ontology Web Language (OWL) ontologies have been defined
using NDL in the ORCA Project2 and they are published under the Eclipse Public License3 . These ontologies are available under
the name of NDL-OWL and they cover a great variety of networks. However, they are only a example of use of the Network
Description Language that shows the validity of the language.

Some basics classes of NDL are briefly explained below and shown in Figure 7. The NetworkObject class represents the
elements of the network, denominated above as E, with complementary concepts, such as Link, Node or Service. These
concepts are extended with others that specifies more information about them in type, such as BidirectionalLink or
AdaptationService, or in structure, such as NodeComponent. In contrast, other classes represents element properties, denominated
above as P, both endogenous, such as VirtualNode, or exogenous, such as Location.

Summarising, the Network Description Language (NDL) is suitable for our purpose of building a Structural Model (SM) for the
telecommunication network. With the expressiveness of NDL, the network can be successfully described to be used during the
diagnosis tasks in different aspects. Furthermore, the use of standard formats, such as RDF, allows an easy deployment and
update of the model in real-time. This is an important feature to allow the use of the proposed architecture in wireless networks
where the devices connect and disconnect depending of their locations.

Figure 6. Three layers model of Bayesian network
1NML Standardisation Work Group: http://redmine.ogf.org/projects/nml-wg
2ORCA Project Web Page: https://geni-orca.renci.org/trac/
3Eclipse Public License 1.0: http://www.eclipse.org/legal/epl-v10.html
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3. Fault Diagnosis Agent
This section presents an Agent Architecture for Fault Diagnosis in Telecommunication Networks based on the Belief- Desire-
Intention (BDI) model [25]. This architecture is based on the classical BDI approach adding the models shown in Section 2. The
Reasoning Cycle of the proposed Fault Diagnosis Agent, shown in Figure 8, follows the Expertise Model exposed in Section 2.1.
The following subsections shows how the subtasks which compose the Expertise Model are implemented and combined with
the Network Diagnostic Models exposed in Section 2.2.

3.1 Symptom Detection
This subtasks is realised analysing the incoming data that agent receives from the telecommunication network. The information
obtained from those data are stored in the SM. The updated information is used to reason with the SPARQL Inference Notation
(SPIN) rules4. These rules can be used to detect anomalies in the expected behaviour of the network and/or to updated the
dynamic network features, such as topology, network load or services status. A simple example of SPIN rules used in the case
study5 to discover the path to the sink node is shown in Figure 9.

Figure 7. Main classes of the Network Description Language

3.2 Hypothesis Generation
When any symptom is detected, the next subtasks of the Fault Diagnosis process starts. Based on the symptom and on the
information available in the SM, the fault is classified by its typology. Once the fault type is identified, it is included in the
Diagnosis Model which handles the diagnosis itself which starts when a symptom is detected and finishes when a conclusion
is reached.

This Diagnosis Model manages the information referred to a specific diagnosis case, such as detected symptoms, possible fault
root causes, performed tests or hypotheses set. Based on the context (i.e. the information about the network available in the
SM), on the fault typology and on the detected symptoms, an hypothesis set is generated using that information as input for the
CM.

4SPIN Web Site: http://spinrdf.org/
5Other examples of SPIN rules can be found in our Github public repository: https://github.com/gsi-upm/shanks-wsnmodule/
tree/master/src/main/resources/rules
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Figure 8. Fault Diagnosis Agent Architecture

CONSTRUCT {
? p a t h nm l- b a s e : hasNode ? n e x tRo u t e r .
? p a t h nml - b a s e : ha sLink ? l i n k .

}
WHERE {

? t h i s a wsn - n d l : ZigBe eRout e r .
? p a t h a wsn - n d l : P a t hToBa s e S t a t i o n .
? p a t h nml - b a s e : hasNode ? t h i s .
? t h i s nml - b a s e : i s S o u r c e ? l i n k .
? n e x tRo u t e r nml - b a s e : i s S i n k ? l i n k .

}

Figure 9. Example of SPIN rule

3.3 Hypothesis Discrimination
After a set of possible fault root causes has been identified in the previous phase, the discrimination phase starts collecting
more information about other possible symptoms performing any additional test. That information will be included in the CM
and the probabilities of the possible faults are inferred based on the new evidences collected from the network.

This loop of executing tests and updating the hypothesis set continues until no more tests can be executed or an hypothesis
reach a confidence threshold. Then, the diagnosis process is finished and the most reliable hypothesis (i.e. the hypothesis with
highest probability) is offered as fault root cause of the detected symptoms.
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4. Simulation Scenario

This section describes the simulated WSN scenario that has been developed to validate the agent architecture proposed in
Section 3. The developed simulation environment is based on MASON simulation framework [11] and it is available in a public
Github Repository6.

The WSN topology is automatically generated7 with two parameters: number of ZigBee End Devices (ZEDs) and number of
ZigBee Routers (ZRs). One ZigBee Coordinator (ZC) is deployed as sink node in the topology and the Fault Diagnosis Agent
is executed in this node which we consider without any power or computational restrictions. The ZR nodes route all packages
received from the ZEDs, i.e. motion detection alerts, to the sink. All ZED devices connected to the same ZR device conform a
cluster, and that ZR is known as cluster head.

Thus, when the simulation starts, the network topology is generated in three steps. Firstly, the ZC node (sink node) is placed in
a fixed position and all ZR and ZED nodes are randomly placed. Secondly, ZR and ZED nodes are moved until they have at least
one router (or directly the ZC sink node) in range. Finally, Dijkstra’s algorithm [22] is used to create routes (i.e. links) between ZR
nodes using minimum power consumption criteria based on accurate power consumption values provided by Landsiedel et al.
in [8] and ZED nodes are linked to the closest ZR node. An example of the result of this process is illustrated in Figure 10.

The behaviour of the simulated devices have been implemented following the specifications of MICAz device8 . The emulated
MICAz devices are equipped with IR Motion Detection sensors8 which detect a mobile target. When the target is in range, the
detecting nodes generate a message to notify that detection. To reduce the messaging cost of the simulated scenario, no ACK
messages are sent to confirm the reception. So, some messages can be lost due to several causes, such as network overflow or
weather/noise conditions, as exposed in Section 5. These messages are forwarded including trace information and some data
about the nodes in the path. In other words, every node which receives a message adds data about the node itself, such as, node
id, message id, cpu load or memory load. Thus, the message received by the sink node contains information about all nodes
which have forwarded the original message. That information is used by the Fault Diagnosis Agent to update the structural
model and to detect symptoms. The packages between nodes are parsed as plain text and sent using the maximum throughput
in ZigBee WSN obtained by Burchfield et al. in [3].

When the WSN is ready to work, the mobile target starts its random movement generating traffic over the network. Then, the
Fault Diagnosis Agent that is running in the ZigBee Coordinator node, i.e. the sink node, processes the incoming information
about the network status and topology and updates the structural network model in real-time, as shown in Section 3.

Figure 10. Snapshot of the simulated WSN scenario

6WSN Simulation Public Repository: https://github.com/gsi-upm/shanks-wsn-module
7We are using the ZigBee Alliance nomenclature: http://www.zigbee.org/
8MICAz Datasheet: http://www.memsic.com/wireless-sensor-networks/
9IR Motion Detection Sensor Datasheet: https://www3.panasonic.biz/ac/e/control/sensor/human/wl/index.jsp
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5 . Experimentation

This section exposes the results obtained executing 200 different simulated scenarios with different parameters. We simulate a
WSN where nodes are deployed on a two-dimensional space of 100 square meters during 10 minutes10 with one mobile target
with 5 kilometres per hour speed that moves randomly in the simulation space. The perception range of the motion detectors is
5 meters. We consider the simulation is indoor for radio range of MICAz devices. Under these conditions, we design our
experiments to quantify the behaviour of the Fault Diagnosis Agent that is running in the sink node. Specifically, we have
measured the number of lost messages due to network overflow are detected11. In the current version of the simulation
environment, we have focused on the symptom detection task (see Section 2.1) using the trace information contained in the
messages, as shown in Section 4.

Figure 11. Ratio of lost messages by number of deployed sensors

Figure 12. Ratio of lost messages by ratio of number of routers and number of deployed sensors
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The results of the simulations are analysed comparing the ratio of detected lost messages and some metrics of the WSN
topology. Figure 11 shows the ratio of lost messages by the number of sensors deployed in the simulation. A gradual increase
of the ratio can be observed with the number of deployed sensors.

Other interesting relation is the ratio of lost messages compared with the ratio of routers by total sensors, shown in Figure 12.
A decrease is detected when the number of routers is similar to the number of deployed sensors, i.e. there are small sensor
clusters in the network topology.

Finally, we analyse the lost message ratio with the ratio of edge routers, i.e. the first router in a path to the sink node. This is a
metric of the complexity of the trunk network if we build the WSN topology as a tree. Figure 13 shows a similar behaviour
independently of the ratio of edge routers in the network.

These initial results show the potential of the simulation environment to continue exploring this WSN scenario in further
extensions of the developed simulation framework. That extended scenario will be used to evaluate the remaining phases of the
proposed Agent Architecture shown in Section 3: Hypothesis Generation and Hypothesis Discrimination.

Figure 13. Ratio of lost messages by ratio of number of edge routers and number of total routers

6. Conclusions and Future Work

This paper presents the basis of a Fault Diagnosis Agent Architecture for Wireless Sensor Network (WSN) based on the BDI
model. Different models that describe the diagnosis process and the network itself are used together to carry out a complete
Fault Diagnosis task: from the Symptom Detection, through the Hypothesis Generation, to the Hypotheses Discrimination. The
proposed architecture uses a Causal Model to relate the possible symptoms with their fault root causes and a Structural Model
using the NDL language [23] to describe the network topology and the heterogeneous information that composes the global
network.

For future work, we plan to extend our simulation environment to evaluate the proposed architecture with a autonomous
diagnosis process, as we have focus in the symptom detection task in this work. For scalability and privacy reasons, we plan to
explore the application of argumentation techniques among several agents that have a partial view of the global network. The
deployment of several agents in a WSN could require some computational cost in the nodes where agents execute, but could get
some interesting capabilities for distributed fault diagnosis process.
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