E-Learning Tool for Backpropagation Neural Network Architecture

Reddy, G. N., Gurpreet Singh 7
Drayer Department of Electrical Engineering QW
Lamar University

Beaumont, Texas, USA

gnreddy @lamar.edu

ABSTRACT: This paper presents an e-Learning tool for mastering the back-propagation neural network architecture. A
short review of the existing toolsis presented. It is developed using MSVMisual C++. Thetool’s functionality can be summarized
as. First, at its highest-level, it operates two basic modes: the training mode and the recall mode. Second, while it isin
training, it has two sub-modes: the learning-mode and the application-mode. In learning mode, the software gener ates text-
output traces corresponding to the top-down design steps of the NN-ar chitecture. The generated numeric traces have dual-
usage, either they can be used learning purposes or for generating class room tests. While in application-training mode, the
tool displays only the input-output relations — the values before and after the training. In this mode the tool also generates
a cumulative error-index to monitor the progress of the network training. Third, it enables the user to enter the network
training termination criteria. Fourth, at the end of the network training, it is stores the trained network into a text-file. Fifth,
in the test or recall mode, the trained network is retrieved from a stored-file, it then generates the network response
corresponding to the entered test input. The e-Learning tool istailored for mastering, classroomteaching, and test generation
of the BP-NN-architecture.

Keywords: Neural Network Architectures, Back-propagation Nueral Network, Modeling and Simulation, e-Leaning Tool,
Educational Software

Received: 18 May 2013, Revised 26 June 2013, Accepted 30 June 2013.
© 2013 DLINE. All rightsreserved
1. Introduction

Back propagation neural network architectureis complex and it requires agood e-learning tool to master itsunderstanding [1].
Some of the commercia and open-source BP-NNA software packagesinclude: 1. MathWorks Neural Network Toolbox [2] -- it
has built-in featuresto view theintermediate resultsto explore the BP-NNA. One needsto consider its price-tag on licensing; 2.
Back-propagation neural network softwarefrom soft112[2] -- it isamatlab code specific application —face recognition; 3. BP-
C#-program by McCaffrey [4] -- it has all features that you look for in e-Learning tool. It describes step-by-execution of the
overall Bp-architecture and the corresponding C#-code. Only thing one might look for isthe mathematical descriptions of each
of these steps; 4. Neural network C#-librariesfrom codeproject [5] -- the applications are GUI-based and provide text and chart
displays, the display system dynamic equations used in theindividual stepswill be nicer to have. Thetool devel oped generates

Progress in Computing Applications Volume 2 Number 2 September 2013 55

an output simulation trace similar to the Griiffith’ s-trace [6]. Wikipediahas excellent review on neural network software[7]. This
isapartial list of tools one finds frequently in aweb-search. It is hard to compare one tool with the other, as each hasits own
uniquefeatures. One needsto generate afigure of merit index, asthe weighted sum all itsfeatures, to compare onetool with the
other. Some of the features onelooking for include: Numeric trace generation; context sensitive display of the system dynamic
equations; GUI-interface; learning-mode and application development mode; if it is conducive for test generation; language
used to devel op the tool; and finally open source or licensed. Thetool presented in this paper excelsfor learning and teaching.
The following sections describe the BP-architecture and the simulation system.

2. Back-Propagation Neural Network Architecture

Figure 1 shows the architecture of the back-propagation neural network architecture with one hidden layer. One can have any
number of hidden layers in the back-propagation network [1]. Typically there are two hidden layers, but one is sufficient for
majority of the applications. In this software we have used one hidden layer to simplify overall network complexity. As shown,
itisamulti-layer, fully-connected, feed-forward network. Thethreelayersare: theinput layer (in), the hidden-layer (hl), and the
output-layer (al).

Theweight-matrices of theinput-layers, hidden-layer, and the output-layer are correspondingly denoted asWin, Whl, and Wout.
Initially all itsweight matricesareinitialized with small adaptive random weights (Ad-Rnd-Wts) between + 0.1. A bias-elements
B (the Oth-element) is added to the input and the hidden-layer. How information is processed within each of the neural elements
is specified by their neurodynamics. The neurodynamicsis a combination of a summation function SF followed by atransfer
function TF. All of the layers use the weighted summation function (weighted-sum). The transfer function, however, can be
different for each layer. Input and the hidden-layers can have sine or sigmoid or tanh transfer functions (SG/T). Output layer can
also have abovethreetransfer functions; however, we havefixed it as sigmoid to simplify the complexity of the network training
algorithm. One can have any number of elementsin each layer (INmax, HLmax, OLmax). Thiseducational version of the software
number of elements is limited to 25. For each layer the internal activations are denoted by | or sum (lin, 1hl, lout) and the
corresponding output activations denoted as Y or act (Yin, Yhl, Yout).

TYOI (continuous)

OLmax _ S = Weighted Sum
Output Layer: OL TF = Sine/SiGmoid/Tanh
lol, Yol, Wol LR=DedtaRule

: Fully connected,
Ad-Rnd-Wts(-0.1, +0.1)

Yhl (continuous)

HLmax SF = Weighted Sum
Hidden Layer: HL TF = Sine/SiGmoid/Tanh
[hl, Yhl, Wh LR=DetaRule

:l Fully connected,
Ad-Rnd-Wts(-0.1, +0.1)

Yin (continuous)

Inmax SF = Weighted Sum
Input Layer: HL TF = Sineg/SIGmoid/Tanh
lin, Yin, Win LR=DedtaRule

:L Fully connected,
Ad-Rnd-Wts(-0.1, +0.1)

@ X (N, Primary Inputs: PI)

Figure 1. Back-propagation Neural Network Architecture

56 Progress in Computing Applications Volume 2 Number 2 September 2013

3. BPNetwork Training Procedure
Thetraining of BP-network involvesthe following steps:

la. Initializethe networ k weightswith small random weights:

W =1 and (-01,+0))
where, kisthelayer number: k=0, isthe primary input layer PI; k=1, istheinput-layer IL; k=2, isthe hidden layer HL; and k
= 3, istheoutput layer OL. V\/ij" , istheweight fromi-thelement in (k— 1)-th layer to thej-th-element in k-th layer.

1b. Set initial values: Initialize the training cycle number to zero: n = 0; and tolerable error-level to adesirable value: TssTh =
typically 0.1.

2. Setinitial valuesfor each epoch of training cycle: Initiaize pattern number to zero: p=0; Global and local error-flagsto zero:
flagG =0, flagL = 0. An error occurs when the computed value is different from the desired value.

3. Doaforward-pass: Apply the primary input vector Xp to the network and compute the corresponding output vector Yout. The
generalized equations to compute internal activations I's and corresponding output activations Ys for any layer is given by:

K

j T4

i=0

I =W x k- @
1

k
= k 3
Vi = TR, ©)

Here, X0 represents primary input vector X; TF3isthe TF for the output layer whichisfixed assigmoidin this software; and TF1
and TF2 are the TFsfor the input and the hidden layer TFs which can be any one of sine or sigmoid or tanh. Individual layer
internal activations corresponding outputs are given by the following sets of equations.

Input layer sums |s and acts Ys are given by:

PImax
lin, = ;anij #Xpi)
Yin =TF = lin ®
With TF1 = sigmoid, Yinisgiven by:
1
ij'1+e— (lin*G) ©
where G isthe gain factor which usually vary between 1 and 10.
Hidden layer sums and acts are given by:
ILmax
Ihlj:;JWhIij*ymi)
YhIj =TF,* IhIj ®
Output layer sums and acts are given by:
HLmax
YoIj =TF* IoIj (10)

Inthis software TF, is sigmoid.

4.Com puteTssp: find the mean square error of the current pattern:

Progress in Computing Applications Volume 2 Number 2 September 2013 57

_ /1 3 32

Here, Dp and Y are desired and the correspondingly computed values at the output layer.
If (Dp3j —Yj3 >TssThx, for any j=1,..N3

then set flagL = flagG =1,

else Goto step 6.

5a. Find error functions, weight-changes; and new weights|f flagL = 1, compute error functions dsfor each element; theweight-
changes DWs; and the new weights W'’ s. The error functions are needed to find wei ght-changesto the network. Error functions
at the output-layer, with sigmoid TF, are given by:

8j3 = Y].3(1 - Y3 (Df— Y2) (12)
Here, 3istheoutput-layer number. Theerror functionisaproduct of gradient * error. In (12) thegradientisY (1-Y), and theerror
is(D-Y). Thegradient for different TFsisdifferent, for sgmoiditisY (1—Y)[1]. Theerror inknown at the output-layer, asthe

desired value D and correspondingly computed value Y are known. For other lower-level layers Ysare known but not the desired
values Ds. The generic error functions for the other-layers are computed as:

Nk+1
k_ vkeq % k+1 sk+1
8 =Y ij) mzz:lwim X (13

That is, error-functions of the lower-level layers are computed from the upper-level layers.

The error functions for the hidden layer elements are computed as:

OLmax
&hl,=Yhl, (1= Yl) = Z,lv\ujmamm (14)
Here, the error of ahidden layer element is computed as the weighted summation of the output-layer error-functions.

The error functions for the input layer elements are computed as:

HLmax

6inj:Yinj(1—Y1nj)* m2:1\/\lhljm<‘5hlm (15
Here, the error of an input layer element is computed as the weighted summation of the hidden-layer error-functions.

5b. Find weight changes: Find weight changesfrom primary inputsto the input-layer elements, DWin:
DV\Anij =o* (Sinj X, (16)

Here, aisthetraining coefficient ranging from0.1t01.0;i=0,.., Pimax; andj = 1,.. ILmax.
Find weight changes from input-layer-elementsto the hiddenlayer elements, DWh:
DVVhIij=oc* 5hlj>l<\f1ni i)
Here, i =0,.., ILmax; andj = 1,.. HLmax.
Find weight changes from hidden-layer-elementsto the output-layer elements, DWol:
D\/\blij:a* 60Ij>thIi (189
Here, i =0,..,HLmax; andj = 1,..OLmax.

5c. Find new weightsW (n + 1):
New weights W (n + 1) are computed as the old weights W (n) plus the weight-changes DW (n), n being the previous cycle and
n+ 1listhe current cycle:

58 Progress in Computing Applications Volume 2 Number 2 September 2013

V\An(n+1)ij=V\An(n)ij+DV\An(n)ij (19

Whi (n+ 1)”. =Whi (n)ij +DWhl (n)ij (20)

Wol (n+ 1)ij =Wol (n)i]. + DWol (n)ij (21
6. Gotonext patterntotrain:
Setp=p+1;if (p<pmax) goto Step 3.
7a. ComputeTssC:
Normalized cumulativeerror, in cyclen, of all patternsisgiven as:

_ 1 pmax — 1
TC) = pmax z‘s Tssp, 22

7b. Gotonext epoch-training:
If flagG = 0; then Goto Step 8.

Else Set n=n+ 1; then Go to Step 2.
That is, repeat Steps 2 through 7 until all patterns are trained with acceptable error.

8. Writetrained network to afile; Write cumul ative network error TssC to afile; End network training.
4. BP Recall Procedure

In recall or test mode, for given test input X, the network response Yout is estimated. This is by successively computing
activation vectors Yin, Yhl, and Yout. The response will be nearest output-match corresponding to the entered input. You can
enter into therecall mode only after the network istrained. Inthismode, first the trained network isread from bp-ckt.txt filewhich
is generated at the end of training mode. For atest input X it finds the corresponding output Yout. The activation vectors Yin,
Yhl, and Yout are computed as:

Yin =Y, "= TF * lin = TF » Fi’lgmi/mnij X i)
ILmax

Yhl, = Y2=TF, Ihl, = TF ;J\Nhlij + Yin, (24)
HLmax

Yout = Y, = TF ol = TF 3, ol Y, (25)

In(23),j=1,..ILmax; in(24),j =1,.. JLmax; andin (25),] = 1,.. OLmax.
5. The BP-SoftwareAr chitecture

Figure 2 showsthe overall architecture of the BP-software.

bp-infile.txt

BP-NNA Simulator
Back-Propagation Neural Network Architecture Simulator

¢bp—outfi le-recall-mode.txt

bp-outfile-TssC
p-outfile-ckt.txt

bp-outfile-training-mode.txt - learning modetrace and application

Figure 2. The BP-Software Architecture

Progress in Computing Applications Volume 2 Number 2 September 2013 59

InFigure 2, bp-infile.txt istheinput datatext file; bp-outfiletraining-mode.txt isthe output simulation trace generated during the
network training; bp-outfile-ckt.txt isthe output file that containsthe trained bp-network; bp-outfile-recallmode. txt isthe output
simulation trace generated during the network testing.

6. TheBP-Simulator: Output Simulation Trace: Training M ode

Tables 1 through 7 are the input datafiles or the generated output filesin different BP-simulator modes of operation. Table 1is
theinput datafileto run the network in learning mode. Theinput datafile contains: network specification—number of elements
in each layer of the BP-network; their transfer functions; level of weight changesto makein each successive cycle of training;
training termination criteria; and the patternsto train. Table 2 isthe corresponding output simulation trace while network isin
learning-training-mode; thistraceisuseful for learning about the BP-network; it can a so be used for test generation —formulation
of numeric problemson BP-NNA. Mgjor phases of training include: 1. the forward-pass—where activations of each element of
the network are computed for agiven input vector X; 2. find the error functionsfor each element of the network; 3. Find weight-
changesto the network weights; 4. find new weights of the network; and 5. find cumulative network error TssC. Table 3 contains
the trained BP-network. The network specification include: the number elementsin each layer; each-layer’stransfer functions;
and thetrained network weights. Table 4 givesthe cumulative RM S-error in successive cyclesof training. Thisisalso shownin
achart-form in Figure 3. The network is continues to be trained until the network’s cumulative error TssC is less than the set
threshold error TssTh. For the trained network shown in Tables 2; it took 61 cyclesto train with aninitial error of 0.51. Table5
containsan input-datafile to use BP-network in application-devel opment mode. Table 6 isthe corresponding output simulation
while the patters are trained. Here the details of training are disabled; the emphasisis placed on the application development.
Table 7 containsthe output simul ation while BPisin recall mode or test mode. Various phases of network recall include: 1. Read
and print thetrained network; 2. For agiveninput vector X, do theforward-passto find Yout; and 3. Prompt the way to terminate
recall session.

01 1 1 1]
0 20 40 60 80 100 120

Cycles

Figure 3. Cumulative network RM S-error in successivetraining cycles: TssC

7. Conclusions

This paper presentsan e-L earning tool that can aid in depth understanding of the Back-Propagation Neural Network Architecture.
The tool is developed for class teaching and test generation.

60 Progress in Computing Applications Volume 2 Number 2 September 2013

-
Table 1. Input Data

File (bp-infile.txt) Delta Weight Matrices of the Network:
PI: O PI: 1 PI: 2 PI: 3 PI: 4
bp-infile.tx IL: 1 -0.000006 -0.000006 -0.000000 -0.000000 -0.000006
4 : PImax, Number of PIs IL: 2 0.000022 0.000022 0.000000 0.000000 0.000022
3 ILmax, Nuber of elemnets in IL IL: 3 0.000004 0.000004 0.000000 0.000000 0.000004
3 : HLmax, Nuber of elemnets in HL
3 : OLmax, Nuber of elemnets in OL IL: 0 IL: 1 IL: 2 IL: 3
0.1 alpha, Training coefficient HL: 1 -0.000180 -0.000095 -0.000093 -0.000083
G iltf & hltf: S/T/G: sime/tan/sigmoid HL: 2 -0.000075 -0.000040 -0.000039 -0.000035
G oltf, TF for OL HL: 3 0.000191 0.000101 0.000099 0.000088
2.0 Gain for all TFs: I' = I * Gain
0.2 Tssth, Threshold error: 0.3 => 30% HL: 0 HL: 1 HL: 2 HL: 3
1 Pmax & the Pattern associations: Yi, Xi OL: 1 0.013253 0.007287 0.006120 0.007001
1001 OL: 2 0.012696 0.006980 0.005863 0.006706
110 OL: 3 -0.012142 -0.006676 -0.005607 -0.006414
CYCLE: 2
Table 2. BP-Simulator Output simulation trace - in learning Weight Matrices of the Network:
mode (bp-outfile-traning-mode). PI: O PI: 1 PI: 2 PI: 3 PI: 4
IL: 1 -0.018006 0.033994 -0.032000 -0.100000 0.037994
dhkhkkhhhkhhhhkhkrhkhkhkhkhkhkhkhkhhkhkhkhhhhhhkhkhhhhhhhhhhhhbhdbhhdd IL: 2 -0.051978 0.056022 0.016000 0.024000 0.028022
** Back-Propagation Neural Network Simulator *x IL: 3 -0.089996 -0.009996 0.062000 -0.046000 0.022004
** Traning mode: Output Simulation trcae okl
KKK KRR AK A KA AR A AR AR AR AR AR AR Ak A Ak Ak hdk IL: 0 IL: 1 IL: 2 IL: 3
Reading input data from: bp-infile.txt HL: 1 0.081820 0.089905 -0.016093 -0.046083
BP NETWORK - TRAINING MODE: HL: 2 -0.028075 0.081960 -0.092039 -0.096035
of PEs in PI/IN/HL/OL: 4 3 3 3 HL: 3 0.006191 0.084101 0.064099 -0.057912
LR for IN, HL, and OL: Delta Rule
Training Coefficient (alpha): 0.10 HL: 0 HL: 1 HL: 2 HL: 3
TF Input/Hidden Layers (hltf): Sigmoid OL: 1 -0.054747 -0.056713 0.096120 0.001001
TF of Output Layer (oltf): Sigmoid OL: 2 -0.035304 0.048980 -0.018137 0.044706
Gain factor for the TFs: 2.00 OL: 3 -0.088142 0.027324 0.092393 -0.036414
Error Threshold (TssTh): 0.20
of pattern associations (pmax): 1 Forward-pass: Activations of each PE in the Network:
0 1 2 3 4 IL: 0 IL: 1 IL: 2 IL: 3
X[0] 1.00 1.00 0.00 0.00 1.00 sum 0.000 0.054 0.032 -0.078
D[0] 1.00 1.00 0.00 act 1.000 0.527 0.516 0.461
Network training starts here:
CYCLE: 1 HL: O HL: 1 HL: 2 HL: 3
Weight Matrices of the Network: sum 0.000 0.100 -0.077 0.057
PI: 0 PI: 1 PI: 2 PIL: 3 PI: 4 act 1.000 0.550 0.462 0.528
IL: 1 -0.018000 0.034000 -0.032000 -0.100000 0.038000
IL: 2 -0.052000 0.056000 0.016000 0.024000 0.028000 OL: 1 OL: 2 OL: 3
IL: 3 -0.090000 -0.010000 0.062000 -0.046000 0.022000 sum -0.041 0.007 -0.050
act 0.480 0.503 0.475
IL: 0 IL: 1 IL: 2 IL: 3 Tssp: rms errors: p0...pmax: 0.50
HL: 1 0.082000 0.090000 -0.016000 -0.046000 TssC[cycle]: Cumulative-Tssp rms error (before)-: 0.50
HL: 2 -0.028000 0.082000 -0.092000 -0.096000
HL: 3 0.006000 0.084000 0.064000 -0.058000 CYCLE: 61
Tssp: rms errors: p0...pmax: 0.20
HL: 0 HL: 1 HL: 2 HL: 3 TssC[cycle] : Cumulative-Tssp rms error (before)-: 0.20
OL: 1 -0.068000 -0.064000 0.090000 -0.006000
OL: 2 -0.048000 0.042000 -0.024000 0.038000 i i
OL: 3 -0.076000 0.034000 0.098000 -0.030000 Table 3. Trained network (bp-outfile-ckt.txt)
Forward-pass: Activations of each PE in the Network: 4 3 3 3 6 62
IL: 0 IL: 1 IL: 2 IL: 3
sum 0.000 0.054 0.032 ~0.078 -0.010052 0.041949 -0.032000 -0.100000 0.045949
act 1.000 0.527 0.516 0.461 -0.051681 0.056319 0.016000 0.024000 0.028319
-0.095006 -0.015006 ©0.062000 -0.046000 0.016994
HL: 0 HL: 1 HL: 2 HL: 3
sum 0.000 0.100 -0.077 0.057 0.107394 0.103536 -0.002890 -0.034394
act 1.000 0.550 0.462 0.528 -0.003866 0.094858 -0.079541 -0.084966
0.042027 0.103176 0.082598 -0.041517
OL: 1 OL: 2 OL: 3
sum -0.065 -0.016 -0.028 0.344648 0.165523 0.283310 0.216568
act 0.468 0.492 0.486 0.344183 0.260153 0.159735 0.249546
Tssp: rms errors: p0...pmax: 0.51 -0.450879 -0.174549 -0.077649 -0.232241
TssC[cycle] : Cumulative-Tssp rms error (before)-: 0.51
CYCLE: 1 Pattern: 0 Table 4. Cumulative error TssC (bp-outfile-TssC.txt)
Delta—FnI:::)rleach PE ;::tl;e Networl;]-:-.: 3 Tssc: Cumulative error at each cycle
-6.31e-005 2.20e-004 4.40e-005 fyde' 'gs:f'
HL: 1 HL: 2 HL: 3 2 0:50
-1.80e-003 -7.50e-004 1.91e-003 3 0.49
OL: 1 OL: 2 OL: 3
L 1.33e-001 1.27e-001 -1.21e-001 61 0.20
Progress in Computing Applications Volume 2 Number 2 September 2013 61

-
Table 5. Input Data File (bp-infile.txt): application mode

bp-infile.txt

: PImax, Number of
: ILmax, Nuber of

Nuber of

PIs
elemnets in IL
elemnets in HL
Nuber of elemnets in OL
6 : alpha, Training coefficient

: iltf & heltf: S/T/G: sime/tan/sigmoid
: oltf, TF for OL
0 : Gain for the TF: I'
Tssth, Threshold error:

: HLmax,
: OLmax,

= I * Gain
0.3 => 30%

COHKFHOOFMOUDHOWWW
N
v

CYCLE:574

YOL[0]-: 0.10 0.87 0.00

YOL[1]-: 0.81 0.00 1.00

YOL[2]-: 0.79 0.07 0.05

YOL[3]-: 0.23 0.01 0.84

Tssp: rms errors: pO...pmax: 0.09 0.11 0.13 0.16
TssC[cycle] : Cumulative-Tssp rms error (before)-: 0.12
Network Training Complete: Cycles: 574

Writing Network into the File bp-ckt.txt...

application mode (bp-outfile-training-mode.txt)

e d de o de e e de % ok d gk o g e ok o e ok ok ok ok e o ok ok e e ok ok e e ok o e e ok e e e e e

** Back-Propagation Neural Network Simulator bl
** Traning mode: Output Simulation trcae kal
e g e g g e e ok ok ok ok ok ke ke ok vk ok ok ok ok o ok ok o e ok ok e o ok ok ok e ok ok e ok ok ke ok

Reading input data from: bp-infile.txt

BP NETWORK - TRAINING MODE:
of PEs in PI/IN/HL/OL: 4 3 3 3
LR for IN, HL, and OL: Delta Rule
Training Coefficient (alpha): 0.60
TF Input/Hidden Layers (hltf): Sigmoid
TF of Output Layer (oltf): Sigmoid
Gain factor for the TFs: 5.00
Error Threshold (TssTh): 0.25
of pattern associations (pmax): 4
0 1 2 3 4
X[0] 1.00 1.00 0.00 0.00 1.00
D[0] 0.00 1.00 0.00
X[1] 1.00 0.00 1.00 1.00 0.00
D[1] 1.00 0.00 1.00
X[2] 1.00 1.00 1.00 1.00 0.00
D[2] 1.00 0.00 0.00
X[3] 1.00 0.00 1.00 1.00 1.00
D[3] 0.00 0.00 1.00
Network training starts here:
Weight Matrices of the Network:
PI: O PL: X PI: 2 PI: 3 PI: 4
IL: 1 -0.018000 0.034000 -0.032000 -0.100000 0.038000
IL: 2 -0.052000 0.056000 0.016000 0.024000 0.028000
IL: 3 -0.090000 -0.010000 0.062000 -0.046000 0.022000
IL: 0 IL: 1 IL: 2 IL: 3
HL: 1 0.082000 0.090000 -0.016000 -0.046000
HL: 2 -0.028000 0.082000 -0.092000 -0.096000
HL: 3 0.006000 0.084000 0.064000 -0.058000
HL: 0 HL: 1 HL: 2 HL: 3
OL: 1 -0.068000 -0.064000 0.090000 -0.006000
OL: 2 -0.048000 0.042000 -0.024000 0.03B000
OL: 3 -0.076000 0.034000 0.098000 -0.030000
CYCLE: 1
YOL[0]-: 0.41 0.49 0.46
YOL[0]+: 0.28 0.66 0.31
DOL[0] : 0.00 1.00 0.00
YOL[1]-: 0.28 0.66 0.31
YOL[1]+: 0.47 0.46 0.50
DOL[1] 1.00 0.00 1.00
YOL[2]-: 0.47 0.46 0.50
YOL[2]+: 0.64 0.31 0.34
DOL[2] 1.00 0.00 0.00
YOL[3]-: 0.64 0.31 0.34
YOL[3]+: 0.45 0.24 0.53
DOL[3] 0.00 0.00 1.00
Tssp: rms errors: p0...pmax: 0.46 0.69 0.50 0.56

TssC[cycle] :
"

Cumulative-Tssp rms error (before)-: 0.55

Pmax & the Pattern associations: Yi, Xi Writing TssC into the File bp-outfile-TssC.txt...
001
10 END BACK-PROPAGATION SIMULATION: TRAINING SESSION
110
01
110
00
111
01
Table 6. BP-Simulator Output simulation trace - in Table 7. BP-Simulator Output simulation trace - in Recall

mode (bp-cutfile-recall-mode.txt)

BACK-PROPAGATION NETWORK - RECALL MODE:
Reading Network Weights from: bp-outfile-ckt.txt
Trained BP Network:

Number of Elements: PI/IL/HL/OL: 4 3 3 3
Transfer Function for the IN, HL: G
Transfer Function for the OL: G
Gain factor for Sine/siGmiod/Tanh TFs: 5.0
Weight Matrix WIL:
0 1 2 3 4
1 -0.117929 0.373708 -0.169350 -0.237350 -0.004736
2 -0.290731 1.331819 -0.518565 -0.510565 0.278290
3 -0.305431 0.594064 -0.425380 -0.533380 1.221188
Weight Matrix WHL:
0 1 2 3
1 0.095929 -0.120610 -0.397326 -0.594480
2 0.319776 -0.298146 -0.848796 -0.394399
3 -0.021513 0.066980 0.139034 -0.572369
Weight Matrix WOL:
0 1 2 3
1 -0.588324 0.765280 -0.185429 1.184759
2 0.436281 -1.127587 -1.576824 -0.380790
3 -1.586459 1.415305 2.336450 0.023212

BACK-PROPAGATION NETWORK: Reacll Mode:
Back-Propagation Network: Results of Testing:
Enter 9 9 9 9 9 to Terminate Testing:

Enter a Test Input: x1..x4
0 1 2 3 4
PI: 1.000 1.000 0.000 0.000 1.000
IIL: 0.251 1.319 1.510
YIL: 1.000 0.778 0.999 0.999
IHL: -0.989 -1.154 -0.403
YHL: 1.000 0.007 0.003 0.118
IOL: -0.444 0.379 -1.566
YOL: 0.098 0.869 0.000
Enter a Test Input: xl..x4
0 1 2 3 4
PI: 1.000 0.000 1.000 1.000 0.000
IIL: -0.525 -1.320 -1.264
YIL: 1.000 0.068 0.001 0.002
IHL: 0.086 0,298 -0.018
YHL: 1.000 0.606 0.816 0.478
IOL: 0.290 -1.716 1.189
YOL: 0.810 0.000 0.997

Enter a Test Input: xl..x4
END BACK-PROPAGATION SIMULATION: RECALL SESSION

62

Progress in Computing Applications Volume 2 Number 2 September 2013

References

[1] Stephen T. Welstead. (1994). Neural Network and Fuzzy Logic Applicationsin C/C++, Wiley.
[2] MathWorks.com, Neural Network Toolbox, Novi, Michigan, (2013).

[3] Soft112.com, Backpropagation neural network, (2013).

[4] James M cCaffrey. (2013). Neural Network Back-Propagation Using C#.

[5] Codeproject.com, Andrew Kirillov, Neural Networks on C#, November, (2006).

[6] Niall Griffith. (2013). Backpropagation algorthm, MIT Computer Scienec andArtificial Intelligence, CIS, Tutoria 10.

[7] Wikipedia.org, Neural network software, July, (2013). Update 2.5, 11/1/13

Progress in Computing Applications Volume 2 Number 2 September 2013

63

