| dentification of a Fractional Order Model by a Least Squares Technique: H Model

Abir KHADHRAOQUI?, Khaled JELASSI?, Jean-Claude TRIGEASSOU? ~
1|_aboratoire des systémes Electriques (L SE) C==
Ecole Nationale d’ Ingenieursde Tunis "
Tunis, Tunisia

2|_aboratoire Intégration du Matériau au Systeme (IMS-APS)

Université Bordeaux 1

France

{abbir_k2007, jelassi_2000} @yahoo.fr, jean.claude.trigeassou@ims-bordeaux.fr

ABSTRACT: Wereport on fractional modeling and identification of non-integer systems by least squares method (LS). A new
approach to identify fractional differentials equations (FDE) is proposed. Such a technique presents a linear model to
estimate system parameters, aswell as non-integer orders fromtemporal data (Hn model). The identified parameters provide
original solution to the Output Error method initialization (OE), and demonstrate validity and effectiveness of the proposed
approach.
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1. Introduction

Fractional calculus has attracted agreat deal of attention of researchers and mathematicians and there has been arapid grow in
the number of applications where fractional calculus has been used. Indeed, this technique has been applied to physics and
engineering science problems and has been widely studied in different fiel ds of science such asthe el ectrotechnical, automation,
image processing, and chemicals whether for modeling problems of identification or control.

Thehigh quality of the description of physical phenomena, provided by the fractional modeling compared to the entire modeling
for asynchronous machinesis the main motivation of thiswork.

In this context, we present a new identification approach that extend the method of least squares to non-integer order systems
after determining alinear model with respect to parameters, based on repeated fractional integration. The obtained parameters
constitute an original solution to theinitialization of Output Error Method problem. A comparative study with arbitrary initialization
was also proposed to highlight the interest of the present study.

Inpart 2, 3and 4, werefer to more details and results about the fractional integration operator, FDE simulation. Then the least
squares method (L S) is used to identify the FDE after model linearization (part 5, 6 and 7). Results of LS method are used to
initialize the OE techniquein part 8 and demonstrate the improvement of thistechnique compared to the arbitrary initialization
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parameters. Finally, we achieve by the numerical simulation to justify validity and effectiveness and validity of the proposed
method.

2. Fractional Integration
Then™ fractional order Riemann—Liouvilleintegral (nreal positive) of afunction f (t) isdefined by therelation (1):
1 tre  yn-1
L= Fo ING) @)
Where I'(n) isthe gammafunction.
r(n=J;x""tedx @)

I, (f (1)) isthe convolution of the function f (t) with the impul se response:
t n-1

- 3
hn(t) - F(n) ( )
Of the fractional integration operator whose L aplacetransformis:
_ _1
1,8 =L{h (1)} =57 @

Noticethat intheinteger order case (n= 1), theintegral ischaracterized by h, (t) = H (t) (unit step function or Heaviside function)
and

L©=L{h®} =5 ®
Fractional differentiation isthe dual operation of fractional integration.
x®=1_(v(t)) or X(s)zéV(s) ©
Reciprocaly, v (t) isthe nth order fractional derivative of x (t) defined as:
v(t)=D, (x(t)) or V(s)=s"X(s) @

whereD (s)=s " representsthe Laplace transform of the fractional differentiation operator (for initial conditionsequal to zero).

Thisfractional derivative definition isbased on the operator | _(s), without analytical formulation of D_ (x (t)): it istheimplicit
definition of thefractional derivative.

3. Synthesisof theFractional | ntegration Oper ator

Simulation and identification of fractional differential equations (FDE) model isfundamentally based on the fractional integration
operator | . At the end to synthesize this key operator acomparative study is presented between two different approachesinthe
frequency and temporal domain.

However, therealization of | _(s), either inanalog or numerical form, isnot asimpletask, asin theinteger order case. The reader
will refer to [3 and 4] for amore detail ed presentation.

3.1 Diffusiverepresentation of thefractional integrator
Theimpulse response h (t) can be expressed by:

= — Wt
h(t)= ], u(w)e ™ dw ®
Where 1 (w) isthe diffusive representation of | _(s) (or function of frequency representation).

Laplacetransform of h (t) isgiven by:
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H©= & =L{h(t)},0<n<1 ©)
Equation (8) isequivalent to:
h®=Yr_ ce ™ (10)
Where:
C=uW)A,, (11

Many approaches can be used to define the conventional fractional operator. In practice, the model which simplifies the
numerical simulation of theintegrator isused. Thefractional order integrator isan infinite dimensional system. The state space
theoretical model of the integrator can be expressed as[1, 5, and 6]:

aX(i;t'W):“"’X(W-t)JfU(t) (12)
y(t) =g mw)x(w,t) dw (13
p(w) = Sin,(rm)w‘”,0<n<l (14)

Where u(t): input, y(t): output, x (w, t): continuously distributed state of | (s).

3.2Frequency discretized distributed model

In practice, in order to obtain afinite dimensional approximation, one proceed to afrequency discretization of the distribution
function u (w) as reported in Figure 1. Such solution is related to the impossibility to use directly the continuous frequency
weighted model given by relations 12, 13 and 14.

1 (w) *‘*f A

Aw

A

W, W2 W, w

Figure 1. Frequency discretization of i (w)

By replacing x (w) by amultiple step function (with K steps) x (w, , t) in Equation 12 and 13, one obtain after discretization[1, 2
and7]:

—

o __
= kak(t)+u(t)

dt =)
K
:ZCka(t)
k=1

-

For an elementary step, itsheightisu (w, ), and itswithis Aw,. Let ¢, bethe weight of the k" element:
C=u(W)A, (16)
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Or equivalently to:

{>_<'(t):A>_<(t)+5u(t) )
y(t)=CX(t)
Where:
X, ] -w; 0 i
X(t)= XK A= ; i ;BT=[1 1..1];C"=[c, .. ¢]

This approach is characterized by the simplicity of its state representation. w, represents modes of the state representation.
These modesareranging fromw, (<< 1) uptow, (>>1).

TheInfinite State representation can be schematized by the graph of Figure 2, where the frequencies o, , ranging from @;=0to
o, arethemodes of thefractional integrator which act in parallel. Notice that theinteger order integrator is characterized by only
onemodel located in @, =0.

X/
1 2 ¢
s
1
B “
u(t) .
-w, : y(t)
—>—] :
X/
K
K

Figure 2. The modal representation (Infinite State representation) of fractional integrator

4. FDE Smulation

Before resolving identification problem of fractional systems, we should firstly takeinto account both modeling and simulation
of FDE. Fractional integration (order n) is based on representative state system with n-ordinary differential equations. This
approach will be generalized for FDE based on fractional integrator, considered asakey for fractional system simulation [8 and
9.

For this purpose, let consider following elementary FDE (18) corresponding to non-integer system given by Equation 19:

L0 42y 0=bou ) (49
Y b
U—(S): aof§ PourO<n<1 (19
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In that case the corresponding state representation is given by:

{ ddtxn(t) +a x () =u(t) 20
y(t)=b,x(t)

Based onfractional integrator | (s), simulationwith block representation scheme (see Figure 3) are performed [10, 11 and12].

u(® = : y(t)
9@ vy > |n Xlnt bO 9

Figure 2. Block representation scheme of non-integer system (0<n<1)
5. Least SquaresM ethod and FDE

The least squares method (LS) applied to the identification consider the linear model with respect to parameters (LP Model)
given by equation (21):
5.0=0'0 (21)

Where: ¢ T, 9and Y, are regression vector, estimated parameters and estimated measure respectively.

By minimizing the quadratic criterion function J, estimation of 6,, . can be obtained (Equation 23) [13].
3= (%Y, )
K - K *
OMC:(Z:L (pk(ka) 121 ng yk (23)

Wherey, represents the measure (k varies from 1 to K).

Alternately, theleast squares method (L S) handleswith linear models, which isnot the casefor fractional differential equations.
To overcome such restriction, the FDE waslinearized in order to estimate parameters model with mentioned method (L S).

6. Determination of LP M odel with FDE

The idea proposed in this section is to determine a linear model with respect to parameters, based on repeated integration.
Indeed, the fractional system for the Hn model can be expressed by:

D,() +a,y=hyu (24
Then by integration of the differential equation one obtains:

1,(D, ) +a,l, (y)=b,l, (u) (25

By considering Laplacetransformof D, (y) expressed by Equation 26, weobtainL (I D, (y)) (Equation 27).

o z(w,0)
LD, () =s"Y (95" [ Hy(@) =g 7 do (29)
L - “u () 229 doy (27)
(1,0, =Y(9—f; (@~

Where z(w, 0) istheinitial condition of FDE referred asy (0) for ordinary differential equation. Then, the inverse Laplace
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transformisgiven by:
L1, D, () =y (t)- jgun(w)z(w,O)e“"‘dw (28)

Where: . .
Io U, (@) z(w,0)e” " do (29

isthefractional equivalent of y (0).

It issupposed that the systemisat rest at al frequencies, which can approximate z (w, 0) = 0, whatever the value of the pulsation
.

Thisallowsusto write:

1,(D, )=y (® (30)
Consequently:
y(t) +ayl () =b,l, (u) (31)
The corresponding matrix transformation isgiven by:
YO=[-1,00 1,01 2)=pTe (3
L0

Equation 32 shows that we get a linear model with respect to parameters, based on repeated integration. These results allow
applying the L S method and estimating parameters model.

7.Numerical Simulation

The estimated parameters 8 (n) corresponding to each imposed value nis determined by LSmethod. Then the quadratic criterion
relative J is deduced. The 6,,. values containing a,,. and by, corresponding to the minimum value of J are the estimated
parameters. The sampling period of nis0.1 and it can berefined further. M easurement datafor identification is considered firstly
noiseless and then as a noisy signal generated by superposition of the Gaussian white noise. Simulations are performed with
Matlab software.

7.1 Noiselessidentification resultsof fractional model (H, )
Inthispart, results of noiselessidentification results of Hn model areinvestigated by L S method. Simulated fractional model are
performed by the following parametersa; = 2, b, = 1, n = 0.6. These sel ected parameters must ensure system stability.

Thefractional integrator issimulated for anumber Nb_sim cells, valid in afrequency band [wb_sim, wh_sim], and a sampling
period Te_ simwhereNb_sim=15,wb_sim=10"3rd/sandwh_sim=10°rd/s.

Thefractional integrator of regression calculation issimulated for anumber of cellsNb_reg, validin afrequency band [wb_reg,
wh_reg] and asampling period Te_reg.

The systemisexcited by a pseudo-random binary signal (PRBS) (amplitude equal to 3). The sampling periodissettoTe sim=
105,

M easured output of the system and those estimated by L Smethod, excited by the sasmeinput are shown in Figure (3). Theinsert
infigure 3 represent the area of zoom.

Figures (4) and (5) respectively represent the variation of the mean sguares error as afunction of the order n of the system and
thevariation inthe error between the exact response and the estimated models. Theinsert in figure 4 represent the area of zoom.

Results of theidentification of H model are presented in Table (1) for Te_reg=Te_simand Te_reg=5Te_sim.

Theparametersa and b estimated for thetwo tests (for Te_reg=Te simand Te_reg=5Te_sim) arerelatively closeand accurate,
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Figure 3. Measured output of the system and those estimated
by LSmethod Te reg=Te simandTe_reg=5Te sim
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Figure 4. Variation of the mean squareserror, Te reg=Te simandTe_reg=5Te sim
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Figure 5. Error variation between the exact response and
theestimated models: Te_reg =Te simetTe reg=5Te sim
Te reg=Te sim Te reg=5Te sim
Parameters a0 b0 n a0 b0 n
Simulation 2 1 0.6 2 1 0.6
Estimation 1.994 | 0.997 | 0.6 2.008 | 1.004 | 0.6
Quadraticerror 001 1.3165

Table 1. Noiseless Identification of H Model Estimated by the
Least SquaresMethod for Te Reg=Te SimAndTe Reg=>5te Sim

itissimilar to the order n. In addition, the temporal response of both simulated and estimated model revealsagreat similarity.

Commitantly, we observe asmall periodic error in the range of 0.05 and — 0.05, due to modes truncation. On the other hand, the
quadratic error increases gradually as one move away from the exact order and rapidly decreases when it approaches.

7.2 Noisy identification resultsof fractional model (H, )

In this section we introduce a white Gaussian noise to the measurement data and we will take over the identification. The
identification of Hn model is carried out of 100 noisy realizations. The output of the exact model and the estimated model are
shown in Figure (6). Results show good agreement between the two models.

Table (2 and 3) shows the average of each identified parameter and the standard deviation (distribution of Monte Carlo) for
Te reg=Te simand Te_reg =5Te_sim respectively.
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Figure 6. Output of the exact model and the estimated model: Te_reg=5Te simand SB =30

SB=30 SB=20
Parameters|  a, by n g, by n
Simulation 2 1 0.6 2 1 0.6
Average | 19940 09975 0.6 1.9937 | 0.9973 0.6
Variance | 00029 | 00010 | 8.926°- 16 | 0.0085 | 0.0032 | 8.926°-16
Table 2. Noisy Identification of H Model Estimated
by the Least Squares Method for Te_ Reg=Te _Sim
SB=30 SB=20
Parameters| g, b, n 3 by n
Simulation 2 1 0.6 2 1 0.6
Average |20090 | 1.0040 0.6 2.0037 | 1.0021| 0.5990
Variance | 00063 | 00025 | 8.926°-16 | 0.0477 | 0.0164 0.01

Table3. Noisy Identificationof H Model Estimated
by the Least SquaresMethod for Te_Reg=5te Sim

8. linitialization of output Error Method

As afirst step, we will proceed to the identification by the output error method of H mode! associated to the Levenberg-
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Marquardt optimization procedure which considering adirect initialization (arbitrary initialization) [6]. The measurement data
used in the identification is assumed noiseless. Thereafter, it will take over the identification using the values provided by LS
method for parameter initialization.

The simulation evidences that the direct initialization method of the model is very delicate, and highlightsthe utility of the LS
initialization. Before addressing the identification procedure by the output error method.

The H model (Equation 19) is simulated with the parameters found in paragraph (7), and we verified model stability. The
identification by output error method iscarried out at the beginning, with arbitrary initial values. Thereafter, wewill extract initial
parametersrange of ai, bi and ni that permit estimated val ues convergenceto the correct one. Accordingly, we giveasimulation
example

Theinitial value (a) is fixed among the three parameters to be estimated, the second one (b)) is varied, and the range of last

parameter (n) is determined to ensure algorithm convergence of output error toward the correct value. Tables 4 summarize
simulation results.

Parameters Initial valuesof a, b, and n,
a 5 5 5
b, 0.2 1 4
n [0.17;1.2] | [0.13;1.1] | [0.13;0.89]

Table4. Rangeof Initial Parameter N,

As it can be seen that a slight variation in the value of one parameter modify the range of the other one. Indeed, we cannot
identify initialization parametersrange separately, but we are talking about adomain combination.

The problem here is simple, but it is accentuated when the system order increases. In addition, the range which ensures the
convergence criterion becomes very close when it comes to a three or four fractional integrators. This prevents any manual
initialization especially when ignores all exact orders.

For this reason, the H model is identified using the initialization parameters provided by the LS method. The output y(t) is
considered firstly. Identification results are shown in Figure 7.

a estimation
2.005 | r
2 I ‘
| /
19%— —————— — e T — — —
1.99 | *
0 5 ,_ 10 15
b estimation
1.005 i '
| |
1— ——/j’/—/i
|
0.995 ; |
0 5 10 15
n estimation
0.6005 | I
0.6— ] '

N Ty
059%%—————— — — — — - T —
0599 | l

0 5 iterations 10 15

Figure 7. Initialization by the least squares method
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Initialization by the least squares method avoids the arbitrary initialization that does not always offers good results. It
simplifiesvery well processinitialization, which is considered as difficult problem especially when the order of the system
increases.

9. Conclusion

To summarize, we report on non-integer integration operator to modeling and simulation of fractional systems. Based on
repeated fractional integration, anew identification approach that extends | east squares method to non-integer order systemsis
proposed. This allowsidentifying, not only the coefficients of the system, but also non-integer orders from Hn temporal data.
On the other hand, estimated parameters constitute an original solution to theinitialization of Output Error Method problem. A
comparative study with arbitrary initialization is also performed in order to underline the interest of the present study.

Finally, simulation results show good agreements between the exact model output and the estimated model and demonstrate
validity and effectiveness of the proposed approach. Future work will address parameters identification of an asynchronous
machine.

References

[1] Trigeassou, J. C., Maamri, N., Oustaloup, A. (2013). The Infinite State Approach: Origin And Necessity, Computers and
Mathematicswith Applications, 66, 892-907

[2] Trigeassou J. C., Maamri, N., Sabatier, J., Oustaloup, A. (2012). State Variablesand Transients of Fractional Order Differential
Systems, Computers and Mathematicswith Applications, 64 (10), November, p. 3117-3140.

[3] Trigeassou, J. C. (1999). et Al. Modelling and Identification of a Non-Integer Order System, In: Ecc’ 99 European Control
Conference, Karlsruhe, Germany.

[4] Trigeassou, J. C., Oustaloup, A. (2011). Fractional Integration: A Comparative Analysis of Fractional Integrators, In: leee
Ssd' 11, Sousse, Tunisia.

[5] Jelloul, A., Jelassi, K., Trigeassou, J. C., Melchior, P. (2011). A Fractional Order Approach to the Modeling of Induction
Machines, IremosJournal, 4 (4) 1522-1532.

[6] Jloul,A., Jeass, K., Trigeassou, J. C., Méelchior, P. (2011). Comparison of Fractional Identification Techniquesfor Rotor Skin
Effect in Induction Machines, |JCS International Journal of Computer Science Issues, 8 (3), May.

[7] Hartley, T. T., Lorenzo, C. F,, Trigeassou, J. C., Maamri, N. (2013). Equivalence of History Function Based and Infinite
Dimensional State Initializations for Fractional Order Operators, Journal of Computational and Nonlinear Dynamics Asme, 8
(4),041014, June10.

[8] Benchellal, A. (2008). Modelisation Des Interfaces De Diffusion A L’ aide D’ operateurs D’ integration Fractionnaires. These
De Doctorat, Universite Des Poitiers, France.

[9] Jalloul, A. (2012). Modelisation Et Identification Des Effets De Frequence Dans La Machine Asynchrone Par Approche
D’ordre Non Entier. Thése De Doctorat, Ecole Nationale D’ ingénieurs De Tunis, Tunisie.

[10] Trigeassou J. C., Benchellal, A., Maamri, N., Poinot, T. (2009). A Frequency Approach to the Stability of Fractional Differential
Equations, Transactions on Systems, Sgnalsand Devices, 4 (1) 1-26.

[11] Trigeassou, J. C., Maamri, N., Tenoutit, M. (2011). State Space Modelling Of Fractional Differential Equationsand thelnitial
Condition Problem, Transactions on Systems, Sgnalsand Devices, 6 (1) 1-20.

[12] Trigeassou, J. C., Maamri, N. (2011). Initial Conditionsand I nitialization of Linear Fractional Differential Equations, Sgnal
Processing, 91 (3) 427-436, March.

[13] Trigeassou, J. C. (1988). Recherche Des M odel es Experimentauix Assistee Par Ordinateur. Lavoisier-Tec et Doc Paris.

Progress in Computing Applications  Volume 2 Number 2 September 2013 101




