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A Cooperative Co-evolutionary Method with Consistency Coordination Mechanisms
and its Application to Complex Layout Problem

ABSTRACT: Complex spatial layout design problems contain mutual conflicting objectives and constraints. These types
of problems can be divided into several layout sub-problems based on their structure or assemble component. The main
difficulties in solving these problems lie in combinational explosion of computational complexity, engineering complexity,
and pragmatic approaches in engineering practice. Recently, cooperative co-evolutionary algorithms (CCEA) have
proven to be an efficient way to solve complex engineering problems. CCEAs decompose the problem into several sub-
problems using a cooperative co-evolutionary multi-population architecture. Based on the framework of CCEA, this
paper presents a cooperative co-evolutionary method with consistency coordination mechanisms for a complex layout
design problem. This method extracts objectives from all technical requirements by analyzing the nonlinear coupling
relations among the sub-problems. The method then coordinates consistency among the sub-populations during a co-
evolution process, and ensures all sub-populations converge on a global consistency objective.  Compared with a
traditional CCEA method, results show that the proposed method can improve the computational accuracy of solutions.
The proposed consistency coordination mechanisms can better reduce the conflicting of the sub-populations and make
all the sub-populations sustained coevolve within short runtime.
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1.Introduction

Spatial layout designs have been widely applied to various fields. Different layout problems usually have different theoretical
bases or engineering complexities. Dowsland and Cagan point out that the spatial layout problem concerns the placement of
components in an available space such that a set of objectives can be optimized while satisfying optional spatial or performance
constraints (Dowsland 1991, Cagan 1998). According to the constraints, spatial layout problems can be divided into layout
problems that have no performance constraints and layout problems that have performance constraints. The introduction
section should provide a context for your manuscript. When preparing the introduction, please bear in mind that some
readers will not be experts in your field of research.

Recently, spatial layout problems of different fields have been studied more widely. This mainly consists of three kinds of
research: First, the layout algorithms or methods; Second, the solving strategies or frameworks of layout problems. Third,
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the professional layout system; considering a three-dimensional component layout problem, Cagan and Dowsland systematical
reviewed the present layout approaches and classified them into different categories according to search strategies (Cagan
2002, Dowsland 1992). These classifications were as follows. First, traditional optimization algorithms (e.g. liner
programming methods); Second, heuristic rule-based algorithms (e.g. octree representation approaches); Third, stochastic
algorithms (e.g.  hybrid approach of heuristic rules and neural network algorithms).

With an increase in layout problem size and complexity, it is not sensible to pursue a general all-purpose packing method in
the near future. There is a need for solving strategies from an in-depth the study of complex layout problems, such as co-
evolutionary methods, and human-computer cooperation methods. This paper studies a co-evolutionary method for solving
spatial layout problems.

The co-evolutionary method is an evolutionary method which simulates competition and cooperation based on the notion of
symbiosis among natural species and their co-evolution (Hillis 1990). According to biological models, co-evolutionary
methods can be divided into the competitive co-evolutionary algorithm; the predator based co-evolutionary algorithm and
the cooperative co-evolutionary algorithm (CCEA). It is essentially similar to the process used to solve complex layout
problems. That is, to pursue the global optimum via decomposing the problem into several sub-problems. Therefore, this
paper adopts the CCEA to solve complex layout problems. Potter proposed a CCEA that adopted multiple cooperating sub-
populations to coevolve subcomponents of a solution (Potte 1990).  Bergh proposed a cooperative particle swarm optimization
(CPSO) algorithm based on the CCEA (Bergh 2004). In addition, Jansen only provided a formal proof for a very specific case
of the CCEA (Jansen 2004).

It can be concluded that research on the CCEA mainly focus on problem decomposition and the fitness evaluation of sub-
populations. Coordination among the sub-populations is maintained only by cooperative fitness evaluation. It is an implicit
coordination mechanism and very sensitive to the degree of coupling between sub-populations. The objectives and the
performance constraints of complex layout problems couple with each other. This study presented a cooperative co-
evolutionary method with consistency coordination mechanisms for solving the satellite module layout problem.  This
method extracts objectives from technical requirements by analyzing nonlinear coupling relations among sub-problems. A
global coupling state vector then coordinates a search among sub-populations during a co-evolution process. This ensures
that all sub-populations converge on a global consistency objective.

2. A Cooperative Co-evolutionary Method with Consistency Coordination Mechanisms (CCMCCM)

In order to solve the complex layout problems efficiently using a CCEA, four aspects of CCEA should be solved. First,
decompose the problem into sub-problems represented by sub-populations. Second, coordinate the sub-populations. Third,
select the cooperative individuals. Fourth, evaluate the individual fitness of each individual.

For the decomposition of the original problem, Potter used a static decomposition strategy that took every variable as a sub-
problem to solve a function optimization problem (Potte 1990). In our study, the number of the variables for the complex
layout problem is about 150. If a static decomposition strategy is used, the complex layout problem will be decomposed into
about 150 sub-problems, and a huge amount of computing time would need to be invested. The basic rule of problem
decomposition is to reduce the coupling complexity among the sub-problems (Bergh 2004).

The two driving mechanisms of sub-population interaction in CCEAs are competition and cooperation. Traditional evolutionary
algorithms mainly simulate competition and less so cooperation (Liu 2004). For an engineering complex layout problem,
competition and cooperation co-exist. It is important for an evolutionary algorithm to balance the cooperation and competition
among the populations and thus reach a global state of balance.

We use the cooperative individuals to exchange information among the sub-populations. The individual of each sub-population
is one part of a solution of the problem. Individual fitness evaluation of each sub-population requires individuals provided by
other sub-populations. Suppose that xij  denotes the jth individual of the ith sub-populations. When calculating the fitness
value of xij , first a cooperative individual set (k = 1,2,…, i-1, i+1, …, q)  is selected from other sub-populations, where q =
the number of sub-population. The individual xij and the cooperative individual set form a whole solution X of the problem. A
whole solution X denotes a complete scheme that can be evaluated to obtain a fitness value. This fitness value is used as the
fitness value of individual xij.
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Figure 1. The coordinate procedure based on the shared state vector

In order to evaluate the individual of each sub-population, the cooperative individuals of other sub-populations need to be
selected. Selection methods include the random selection method, the best selection method and the cooperative population
selection method (Zhong 2000, Sharpe 1985). A random and a best selection method are used to evaluate individuals every t
generations during the optimization process.

Coordination among the sub-populations is maintained only by the method of fitness evaluation. This is an implicit coordination
mechanism and very sensitive to the degree of coupling among sub-populations. The coordination mechanisms are closely
related to the complex layout problem studied in this article. It is hard to find a general coordination mechanism for the
complex problem. Ryoo studies the genetic exchange mechanisms for co-evolution (Ryoo 2002). This method is only suitable
to solve problems with two sub-problems. In addition, the mechanisms of individual fitness calculation are based on the
differences of the variables, so computational times increase sharply with problem size.

Moreover, many researchers have studied the multidisciplinary coordination methods, such as the response surface model
and the global sensitivity equation. However, usually, complex layout problems belong to a multimodal class of problems.
The derivative information does not exist in some searching area, so it is hard to construct the response surface model and
the global sensitivity equation. Moreover, the system level would use more times to coordinate the objective of the subsystem
level. However, the heuristic coordinate strategies do not need the derivative information and can combine the engineers’
experience with the solution methods to solve the problem efficiently. This paper studies mechanisms to couple constraint
based coordination mechanisms, where the goal is to coordinate sub-populations such that the sub-populations converge to
a global optimum.

First, this study defines a shared state vector for representing the global coupling constraints.

2.1 The Definition of the Shared State Vector of the Global Coupling Constraints
In the context of a CCEA, Wiegand defines the incompatible criteria between the sub-problems’ objectives and the system
objectives. Based on this definition, the incompatible constraints can be found from all the constraints (Wiegand 2003).
These are called the global coupling constraints. The shared state vector is then abstracted by analyzing the global coupling
constraints since contains important information and should be stated earlier. This vector can be formulated as:

where, n = the dimensions of state vector U. The shared state vector U is an independent set of variables set that can fully
describe the global coupling constraints.

2.2 Coupling Shared State Vector-Based Coordination Mechanism (CSSVCM)
The coordinate procedure based on the coupling shared state vector is presented in Figure. 1.

Begin

Select the source subpopulation;

Select the compared guiding individual I(C) from

the source subpopulation;

For each individual I(i) of each subpopulation P(i)

Calculate the difference DM(U) of the share

state vector between I(i) and I(C)ÿ

Modify the fitness value of individual I(i)ÿ

End For

End

(1)
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where α(i) denotes the weight of the ith state vector. The difference DM was applied as a penalty to the objective function of
individual Indm. Suppose Fm0 denotes the original fitness value of individual Indm, the modified fitness value of individual
Indm can be calculated by Equation 9.

                                                                 (3)

Compared with related methods (Ryoo 2002), the proposed method based on a shared state vector has the following differences.
First, the CSSVCM can be used to solve the problems with more than two sub-problems; second, the CSSVCM is based on a
shared state vector which guides each individuals evolution according to the constraints of a complex layout problem. During
evolution, CSSVCM only maintains the shared state vector which denotes a set of constraints.  The solution flowchart of
CCMCCM in this study is shown as Figure. 2.

Figure 2 .The solution flowchart of CCMCCM

3. A Satellite Module Layout Design Problem

The optimal layout problem of a simplified international commercial communication satellite can be described as follows.
A total number of n objects must be located within a cylindrical satellite module shown in Fig. 3. The upper and lower
surfaces of the two bearing plates attached on a standing column in the module are used to fix all the objects. The design
objective here is to optimize the moments of inertia of the whole module, subjected to the following constraints: (a) All the
objects should be contained within the module, with no overlap among the objects and no clash between the module wall and

Given the shared state vector, when calculating the fitness value of individual (I) of any sub-population, select the compared
guiding individual (J), calculate the differences value of the shared state vector between two individuals, then apply the
difference value as a penalty to the objective function of individual (I). This coordination mechanism continuously guides all
the sub-populations toward the global searching directions.

The weighted generalized distance between the vector U1 and U2 is formulated as:

(2)



                                  Progress in Computing Applications   Volume   5   Number  1    March 2016                         5

For the satellite module layout problem, this paper adopted another decomposition strategy. As shown in Figure.3, a simplified
satellite module can thus be divided into three layout subspaces that include four bearing bases. Two methods were used to
solve the satellite layout problem and each of them ran 50 times with random initialization. The two methods were CCGA and the
proposed method CCMCCM. The parameter settings of each method are shown in Table. 1.

        CCGA CCMCCM

Parameters Setting  Real code; the maximize generations is 10000;   Same to CCGA: the principal angles
                                  each sub-population size is 200. two-point              constraints are used as the
                                  crossover0Gaussian mutation operation,                   global coupling constraints
                                  linear ranking selection; the number of
                                  sub problem is 3

Table 1. the parameters setting of the two methods

Experiment results for the number of success solutions are reported in Table. 2. The compared running times and successful
times of the two methods were shown in Table. 3. The fitness values of the two methods are illustrated in Figure.4. The layout
patterns obtained by the CCMCCM are illustrated in Figure. 5. The 3D layout pattern of the whole module by the CCMCCM is
emulated on the CAD platform Pro/Engineer and illustrated in Figure. 6.

The CCMCCM was compared with the CCGA according to the objectives, the constraints, the success probability, and the
running times (Table. 2 and Table. 3).

(1) The objectives: the sum of the best inertia and the average inertia of the whole system solved by the proposed CCMCCM
was lower than those of the CCGA.

each object; (b) The position error of the centroid of the whole system should not exceed an allowable value, and the smaller
the better; (c) The equilibrium error of the system should be as small as possible.

Sixty objects need to be located on four bearing surfaces in the satellite module. Their dimensions and masses of the module
can be found in the reference (Sun 2003). The technological requirements for a final layout scheme of the whole module are
given with parameters of the centroid of xc= 0 , yc= 0, and zc= 552; The moments of inertia of the whole module are:

. The allowable error of the centroid is: δxc= δyc= 3mm. The allowable errors of the principal angles
are: δθx = δθy = δθz = 0.03 rad. The basic problem is to optimize the moments of inertia of the whole module while
satisfying the technological constraints (the total amount of overlapping, the principal angles and the position of the centroid).

Figure 3. Layout subspace partition
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Table 2. The performance indexes of the optimal layout scheme

Table 3. Statistical data of 50 runs results of each algorithm

As shown in Figure 4, CCMCCM kept a high fitness value throughout the optimization process.  This indicates that CCMCCM
could reduce conflicting sub-problems and coordinate the sub-populations such that they converged upon a global optimum.
It can be concluded that the CCMCCM is superior to CCGA in accordance with satisfying the objectives of the optimal. The
proposed CCMCCM can continually transform the layout patterns to keep diversity in each sub-population. The consistency
coordination mechanism can keep the consistency searching direction of each sub-population and improve the computational
precision and the success probability. Compared with the traditional CCGA, the proposed CCMCCM can better balance the
conflicting local and global searches, and encourages diversity and convergence.

(2) The constraints: the total amount of overlapping of the best solution solved by the two methods is zero; the smallest
amount of overlapping and the average amount of overlapping solved by CCMCCM for the 50 running times is lower than
those of the CCGA; results are comparable with angles and the position of centroid.

(3) The probability of success of the CCMCCM is 66% higher than that of the CCGA.

(4) Compared to CCGA, the average running times of CCMCCM was between 0.8 and 2.38% less than the CCGA.
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Figure 5. Layout scheme acquired from CCMCCM

Figure 6. Communication satellite assembly diagram of the optimal scheme solved by CCMCCM

Figure 4.  Fitness value curves

(a) The Average Fitness value curves (b) The best Fitness value curves
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4 . Conclusions

For solving complex spatial layout problems, this paper presented a cooperative co-evolutionary method with consistency
coordination mechanisms. This method extracted the global coupling constraints or objectives from all technical requirements
by analyzing the nonlinear coupling relations among the sub-problems, and constructed the global coupling state vector to
coordinate a search in each sub-population. This enabled all sub-populations to converge on a global consistency objective.
Experimental results showed that:

(1) The proposed CCMCCM was superior in the CCGA to the objectives and the success probability for the optimal layout
design of the satellite module;

(2) The proposed CCMCCM can continually transform the layout patterns to keep the diversity of each sub-population by the
consistency coevolution of the sub-populations; +

(3) It also can be concluded that the complex layout problems cannot be fully solved only by the algorithms.

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51375001, 51309045), the Major
State Basic Research Development Program of China (973 Program) (Granted No. 2013CB035400).

References

[1] Dowsland, W. B. (1991). Three-dimensional packing-solution approaches and heuristic development. Int. J. Prod. Res.
29, 1673-1690.

[2] Cagan, J., Degentesh, D., Yin, S. (1998) . A simulated annealing-based algorithm using hierarchical models for general
three-dimensional component layout. Comput. Aided Design. 30, 781-796 .

[3] Cagan, J., Shimada, K., Yin, S. (2002). A survey of computational approaches to three-dimensional layout problems.
Comput. Aided Design, 34, 597-603.

[4] Dowsland, K. A., Dowsland, W. B. (1992). Packing Problems. EUR J OPER RES, 56, 2-18 .

[5] Hillis, D. W. (1990). Co-evolving parasites improve simulated evolution as an optimization procedure. Physica. D. 42,
228-236.

[6] Potter, M. A., De Jong, K. A. (1994). A cooperative co-evolutionary approach to function optimization, In: Proc of the 3rd

Conf on Parallel Problem Solving from Nature. Jerusalem, Israel .

[7] Van den Bergh, F., Engelbrecht, A. P. (2004). A Cooperative Approach to Particle Swarm Optimization. IEEE. T. Evolut.
Comput. 8, 225-237 .

[8] Jansen, T., Wiegand, R. (2004). The Cooperative Coevolutionary (1+1) EA. Evolut. Comput. 12, 405-434.

[9] Liu, J. (2004). Coevolutionary Algorithms and Their Applications: (PhD dissertation). Xian: Xidian University .

[10] Zhong, Q. X. (2000). Task Matching and Scheduling in Network Computing Environments Based on Genetic Algorithms:
(PhD dissertation). Changsha: National University of Defense Technology.

[11] Sharpe, R., Marksjo, B. S., Mitchell, J. R., Crawford, J. R. (1985). An Interactive Model for the Layout of Buildings.
Appl. Math. Model. 9, 207-219.

[12] Ryoo, J., Hajela, P. (2002). Genetic Exchange Mechanisms for Co-Evolution in Decomposition-Based Design. 43rd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. Denver, Colorado

[13] Wiegand, R. P. (2003). An Analysis of Cooperative Coevolutionary Algorithms: (PhD dissertation). Fairfax, Virginia:
George Mason University.

[14] Sun, Z. G., Teng, H. F. (2003). Optimal layout design of a satellite module. Eng. Optimz. 35, 513-518.


