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ABSTRACT: This paper develops new sufficient conditions for the stability analysis along the pass and the synthesis problem
of differential linear repetitive processes, based on application of the Kalman-Yakubovich-Popov lemma. The given results
are expressed in terms of linear matrix inequality (LMI). Theinclusion of extra design specificationsis devel oped for the case
of regional constraints on the eigenvalues of state matrix and a finite frequency range design. Simulation results demonstrate
the good performance of application in iterative learning control.
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1. Introduction

The original work of Iterative learning control has been the subject of intense research effort [1]. And an overview of thework
until 1998 isgiven by Maoorein[2]. Iterative L earning Control (1L C) isan advanced methodol ogy introduced in 1984 by Arimoto
et a. [1] ThelLC hasbeen especially devel oped to improve the performance of systemsthat operatein arepetitive manner where
thetask isto follow some specified trajectory (tracking problem) in aspecified finitetimeinterval, known also asapassor atrial
in the literature, with high precision [1]. ILC employs the knowledge of the control input and the system error in the past
executionsto modify the control input in the next trial. In particular, the aim isto improve performance from trial-to-trial inthe
sense that the tracking error (the difference between the output on atrial and the specified reference trgjectory) is stable along
thepass[3], [4], [3], [6].

Thetheory of stability along the pass to the processes produces three conditions[3], [4], [5], [6], discussed above, that can be
tested by direct application of standard, or 1D, linear systems stability tests. Two of these tests require that the eigenval ues of
the matrices which describe the previous pass profile contribution to the current pass profile and the current pass state vector
contribution to the al ong the pass dynamicsliein the open unit circle and open left-half of the complex plane, respectively. The
third test requires the computation of the eigenvalues of the transfer function matrix representation of the contribution of the
previous pass profile dynamicsto current onefor s=jw, > 0 where denotesthe L aplace transform variable. Assuming that the
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first two conditions hold, stability along the pass requires that the loci generated by the eigenvalues of this transfer-function
matrix lieinthe open unit circlein the complex plane[3], [4], [5],[ 6]

Figure 1 shows a schematic of an ILC scheme. Here the subscript k representsthe trial or repetition number, and the reference
signal y, (t) isdefined ontheinterval [0, T]. At any given repetition, k, acontrol input of u,(t) isapplied to the system to produce
output, y,(t), te [0, T] where Tisthelength of the periodic reference. Theinput and output of the k" trial are stored in memory
and used along with the fixed reference to calculate the input for the (k + 1) trial. Where the control objective for ILC can be
expressed aslime, (t) = lim (y,(t) -y, (1)) =0, Vtandlime, (t) =0, Vk.

K— oo k—> o0 k—> oo

Thusthe goal of the algorithm written by [1] isto design an update law to produce the lowest possible error ask — . In most
ILC systems, it is assumed that the plant initial conditions are reset at the start of every period (x,(0) = X).

Also, the system is assumed to be stable along the pass, or stabilized along the pass, using feedback control.

System >

U, l} y
k

< Learning
Uoq Controller < Y,

Figurel. Iterative L earning control Configuration

In arepetitive process the pass profile y, | ((t), 0 <t < o that generated on pass acts as a forcing function contributing to the

dynamicsof the next passprofiley, , ,(t). Typical iterativelearning control algorithms construct theinput to the plant onagiven
trial from theinput used on thelast trial plusan additiveincremental which istypically afunction of the past values of the output
error, that is, the difference between achieved output and desired output.

Thisnoteisorganized asfollows. In Section 2, the theoretical study of stability along the pass of adifferential linear repetitive
processisintroduced, and the Kaman-Yakubovich- Popov (K'Y P) lemmais presented. Section 3, applying the Iterative Learning
Control for differential SISO system, and a performance analysis of ILC systems by mean of aquadratic Lyapunov functionis
investigated. In Section 4, a new sufficient LMI condition is demonstrated, in order to obtain stabilizing classes of linear
repetitive systems. Then, anumerical evaluation is presented toillustrate the effectiveness of the proposed approach in Section
5. Finaly, the paper is concluded.

1.1 Notations

o (A) and p (A) denote the spectrum and the spectral radius of a given matrix A. X (respectively, ) denotes areal symmetric
positive (respectively, negative) definite matrix. AT denotes the transpose of A. Furthermore, the symbol C indicates the set of
acomplex numbersand C_the open left-half of the complex plane. To simplify the scriptures, we will usethe symbol sym{ A} =
AT+ A. * isused for the blocksinduced by symmetry. Also, theidentity and null matrix of the required dimensions are denoted
by | and O, respectively.

2. Sability Theory of aDifferential Linear Repetitive Process

In this section, we discuss the concept of arepetitive control system, and recall the main stability theorem for such systems.
The state space model, of adifferential linear repetitive process[3], [4], described by thefollowing formover 0<t< o, k= 0.

{ Xyeoy (6) =A%, (0 +BU, (1) Byy, (©),

1
Yo n(1)= %, 10+ DU, 0+ Doy, 0 W
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Hereon passk, o < + o : denotes the passlength (o : isthefinite passlength), X (t) R" isthe state vector, u e R": isthe
input vector, y, (t) € R'": isthe output or pass profile. To complete the process description, it is necessary to specify theinitial,
or boundary, conditions, i.e. the state initial vector on each pass and theinitial profile.

For adifferential linear repetitive process of the form considered here, stability along the passholdsif, and only if, the so-called

2D characteristic polynomial [3], [4]:
S-A -B
Catrire (52, (I:— zC I—QODO:D;&O'

V{s z} e {(sz):Re(s>0,|z,|<1}. @

Wherese Cisthe Laplacetransformindeterminateand z,e C arises, as before, form the use of the z-transform in the pass to-
pass direction.

©)

X (t)=sx (t+1),
X O =2x%,().

Theorem 1: [4] Adifferential linear repetitive process of the form (1) is stable along the passif and only if,

() p(Dy<1
(i) o (A) e C _, all eigenvalues of the matrix A have strictly negative,

(iii) G 4 () =C (sl -A)1 B, *+ D, <1, Vw=0all eigenvalues of G, (s) shave modulus strictly less than one.

All three conditions of the Theorem 1 have well-defined physical interpretations and, unlike equivalents [5], [6], [7], can be
tested by direct application of 1D linear timeinvariant systems.

It iseasy to show that stability along the pass guaranteesthat the corresponding limit profile of (i) isstableasa 1D linear system,
i.e. al eigenvalues of the state matrix A+ B (I — DO)*lc have strictly negativereal parts.

In terms of checking the conditions of these two results, the first two conditions in each case are easily solves.

Consider condition (i), thisis the necessary and sufficient condition for asymptotic stability, i.e. BIBO stability over thefinite
pass length.

Applying the second conditions of Theorem 1, stability of the matrix A (i.e. auniformly bounded first pass profile) is, in general,
only a necessary condition for stability along the pass.

Thelast condition for stability along the pass of the three discussed above can be computationally intensive and is, not suitable
for the synthesis of control lawsfor stability along the pass. To overcome these problems, Kalman-Yakubovich- Popov (KY P)
lemmal6], [7], [8] establish the equivalence between Frequency Domain Inequalities (FDIs) for atransfer-function matrix and
Linear Matrix Inequalities (LM1s) defined in terms of its state-spacerealization, asin[4] for 1D linear systems. The new results
in this paper start with the development of LMI based tests for stability along the pass.

The Kalman-Yakubovich-Popov (KYP) lemma [6], [7], [8], is essential and a basis idea to develop necessary and sufficient
conditionsfor stability along the pass of the SISO of thedifferential linear repetitive processes (1). TheKYPlemmal6], [7], [8]
isexpressed asfollows, for adifferential linear time-invariant system with transfer-function matrixG ( j w) and frequency response

matrix G (jo) =C(jol -A)*B,+D,.
Thefollowing inequalitiesareequivalent [ 7], [8], [9] :

o) 1§ 3] [ 19]<0 vaszosa,
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wherelIlisagivenreal symmetric matrix and o denotesthefollowing frequency ranges

LF (lowfreq.) MF (middlefreg.) HF (highfreq.)

[§ ol | [pTne “amol | [F oo
P @%Q P-jo,Q -0@,Q P -o7Q

Table 1. Frequency Ranges in the Continuous-Time Setting

A RT ‘R 2 1T = +
2. TheLMI [A BO:I = A B, +| € Do 10 [C DO:I <0. whereQ> 0, Pisasymmetric matrix, w:a% % fora
I 0 I 0 01 0 -y2] L0 | ¢ 2

[1

finite frequency range, and for an entire frequency range, that is, @ =0, @, = .

3.LMI Based IterativeL earning Control Design

In this paper, we considered adifferential linear time invariant system described by the state space { A, B, C} is considered:

Xk(t):AXk(t)'*'Buk(t),
yk(t):cxk(t)_ 0<t<a,k=0. @

Whereontria k, X, (t) € R"isthe state vector, y (e R"isthe output vector, u e R"isthevector of control inputs, and o <
~ isthetrial length. The signal desired is denoted by dy (t) then e, (t) =y, () -V, (t) isthe error on tria k, and the most basic
requirement isto forcethe error to converge ask — oo. In particular, the objective of constructing a sequence of input functions
such that the performance is gradually improving with each successive trial can be refined to a convergence condition on the
input and errorkli_>r’rl|| e ll=0.

Let acontrol law given by:
Auk+ 1 (t ) = uk+ 1(t) - uk (t) = K1rl.k+ 1 (t) + KZék(t) (5)

Where Au, , ,(t) denotesavariation of the control input, K, and K, are matrices with compatible dimensions.
Then clearly (4) and (5) can bewritten as
t
U f[ X1 (D =X (7)]dT =(A+BK) n, (1) +BK, e (1) ©
0
81 (O —x O ==Y, O+Y O=-C(x,, 1) —x(1)

8.1 (D =—C(A+BK)n,,®)+(-CBK,) e/t U]

We introduced:
A=A+BK1,BO=BK2,C=—C(A+BK1)and D0=I—CBK2 ©®

[ﬁk+1(t) ] _[ A éo] [nk+1(t)] o
&..®1 Lc o, L&

Which is of the form (1) and hence the repetitive process stability theory can be applied to this ILC control scheme (5). In
particular, stability along the pass is equivalent to uniform BIBO stability (defined in terms of the norm on the underlying

function space), i.e. independent of thetrial length, and hence it may be possible to achieve pass -to- pass error convergence
with acceptable along the pass dynamics.

Then, clearly (6)-(7) and (8) can bewritten as
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It has been proved recently that any robust control problem can be turned into an LMI dilated one, in terms of converting the
Lyapunov conditionsto be generalized in equations by mean of lemmas|[2], [3], [4].

However, it isvery difficult to provide computationally effective testsfor stability in thisway.

One of the ways to derive tractable tests is by applying Lyapunov theory associated with LMI techniques that became a
standard tool for the stability analysis of 1D system when manipulating state space models.

These Lyapunov functions must contain contributions from the current pass state and previous pass profile vectors, for
example, composed of which isthe sum of quadratic termsin the current pass state and previous pass profile respectively [8].

An aternative approach that doeslead to control law design algorithmsis[4], [8] thisapproach is devel oped by using candidate
Lyapunov function for differential models, of theform:

V(K t) =X, () Py X, o (£) + Y1) P,Y, () (10)
WhereP1> 0 and P,>0

With associated increment:
AV (k) =30, O P X, 0+ X0 O P Xy O+ %L O Py, (0 -, © P,y
Then the stability along the pass holdsif AV (k, t) < 0 for al k and t which is equivalent to the requirement that:
®'P, @ —P <0.Where: P = diag (P,, P,) (11)

The following Theorem, allows the necessary and sufficient connection for the stability along the pass of 2D/ repetitive
systems.

Theorem 2: [6] The S S0 version of (9) is stable along the passif and only if there exist matricesr > 0, X> 0, Q> 0and a
symmetric matrix P such that the following LMIs are feasible:

((1)D.rD ~r<0,
0 0

QA" X+XA<0,
< AQAT+PA'+ AP AQC '+PC' B (12)
3| CcoA'+cP cC'™-1 D, |<0.
~T ~T
i B, D, -

The difficulty with the condition of Theorem 2 isthat it is non-linear in its parameters. It can, however, be controlled in to the
following results, wheretheinequality isastrict LMI alinear constraint which also givesaformulafor computing thegain K, and
K,.

4. A New Condition for the Sablity along the Pass

In this section, enforcing the frequency attenuation as required by condition (3) of Theorem 1 over the complete frequency
rangeis either unobtainable or very restrictive[9].

Hence the subject of this section is presented, the attenuation is only required over afinite frequency range o < w < @,, where
the lower and upper frequency values are selected based on knowledge of the particular example considered, wheretheideais
avoid oscillatory timeresponsesfor |G (jo) [< 1+ eforall o < w< @, and eisvery small.

The next Theorem in this paper start with the development of LMI based testsfor stability along the pass. Thisallowsusto use
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the strong concept of stability along the pass for these processes, in an ILC setting, as a possible means of dealing with errors
transients in the dynamics produced along the trials[10], [11].

Theorem 3: The S SO version of (9) isstablealong the passif thereexist matrices X > 0, Q> 0, G, Ng, K, and a symmetric matrix
P such that the following LMIs are feasible:

(1)[‘CBK2 ° |<o 13
0 CBK,—2 :
sym(AG+BN) X+ AG+BN -GT
(2)[ 9 g <0, (14)
* -G-G'
ym{a(AG+BN)}  * P+ AG+ BNg—aGT BK,
— aCAG — aCBN -1 - CAG-CBN |- CBK,
) g g <0. 15
* * Q-G-G' 0
_ * * 0 -1

Where a> 0. If these LMIs arefeasible, the gainis computed by: K, = NgG -1

Proofs

1- First LMI: First notethat both r and, 50 arereal numbersand hencer (502— 1) <Owith Hence, using (8), it isobviousthat (1
- CBK,)*~1<0, or CBK, (CBK, - 2) <0.

Hence, werequire 0 < CBK, < 2. The value of CBK,, greatly influences the pass to pass error convergence, which is equivalent
to (13) since here CBK ,isascalar.

2- Second LM : ATX + XA < 0 by applying the projection lemma[12], we obtain:

*): [-1 1][?( );][_1]<0

215 L

Substituting (*) — (**), applying the projection lemma and the Schur complement, we obtain:
0 x] [A] [|] ToaT
+ + G'[A" 1]<0 16
[xo _p G A" 1] (16)

AG X+AG-G'
* —G—GT <0

(16) isequivalent to:

Substituting (8) inthislast LMI, we obtain (14).

3—ThirdLMI:MuItipIiedby|:| 0 A:I,therightsideof (15) and the left by its transpose.
01cC

Introducing (8), we obtain by applying the projection lemma[12] theinequality (12). Moreover, (15) follows by setting N = K,G
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5. Simulation Results

In this section, an exampleis given to demonstrate the effectiveness of the proposed method. We consider adifferential linear
time invariant systems described by the state space { A, B, C}:

{Xk(t):AXk(t)*'BUk(t),OStSa

Yi (0 =Cx ()
5.1CaseA

-2.929 -0.3186 -0.2
Where:Az[ ],B:[ ],C:[O.Q 1.2]
—0.3186 —0.8829 -152

By applying the control law (5), the system is stable along the passin the closed-loop and the conditionsin Theorem 3 provide
thefollowing gains:
K,=[-1.5062 —0.6715] andK,=-0.3193

p(A) = {_2'4896} .p(D,)=0.3601
0.0001

Here:

The three condition proposed in Theorem 3 are verified for @, < @ < @, this processis stable along the pass, and as confirmed
by the Nyquist plot of Figure 2:

Nyquist Diagram

08

06

04

02

Imaginary Axis
o

1 -08 -06 -04 -02 O 02 04 06 08 1
Real Axis

Figure 2. Nyquist plots for the stable along the pass process

5.2 CaseB
Applying the control law (5), the system
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|:—1.5 0.5] [—2] dC=[-02 0]
- A — ’B: an =1—0. A
Where: A 02 o1 o1

is stable along the pass in the closed-loop and the conditionsin Theorem 3 provide the following gains (for € = 0.001):

K,=[-4.366e" —1.763e ] andK,=-9.770e *"

p(A)=

Here: . {—2.951 0L
—2332¢01

}, p(D,)=5505 "

Thus, the resulting IL C process can be guaranteed with its tracking error converging to zero along the iteration axis. Figure 3
shows the time evolution of the referencetrgjectory y, (t) and the output y, (t) fork=1,k= 2, k=3, k= 5andk = 6. Asshown
in thisfigure, the output tracks the reference trajectory more and more accurate as the iteration number increases.

8 I
| yd(o)
6/ yio
v . + y2(t)
@ 4 / 4 “f\';‘.. | y3(t) .
{ AN
5 P o ye0
TR\ LU
H |
1] / [
x 0 4 : =
8 :
g |
>\ |
© |
& l
s 4 |
-D |
> :
i
0 05 1 15 2
Time(t)

Figure 3. Reference and output signal fork=1, k=2, k=3, k=5andk=6

Figure 4 showsthetime evolution of the output error g, (t) =y, (t) -y, (t). Asshowninthisfigure, the tracking error converging
to zero along the time and more accurate as the iteration number increases.

Thissimulation is performed with areferencetrajector y, (t) =3+ sin (2[T* t) + 5+ sin(I1+ t ), wheret € [0, 2] andt = 0.01.
6. Acknowledgment

This paper has proposed anew LM based condition for stability Along the Passaclasson 2D model differential linear repetitive
process. Here we have given a new sufficient condition for synthesis of MIMO system and a new necessary and sufficient
condition for the MISO system. A numerical example has been given to validate the effectiveness and advantages of the
proposed method. Future study will befocused on how the learning behavior and the control behavior affect the error convergence
speed and steady-state error, respectively.
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Figure 4. Tracking error with respect to theiteration number fork=1,k=2,k= 3, k=5and k=6
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