
 42 Progress in Machines and Systems Volume 4 Number 2 October 2015

Pattern Matching based on Boyer Moore Algorithm, A New Method

Julio C. Rivera , Paul M. Di Gangi , James L. Worrell , Samuel C. Thompson , Allen C. Johnston
Management, Information Systems, and Quantitative Methods Department
The University of Alabama at Birmingham
Birmingham, AL 35294, USA
(205) 934-8890
jrivera@uab.edu

ABSTRACT: Pattern matching actually is consisting of searching a pattern inside of a text. It is a fundamental challenge in
the field of computer science. It is important to any string matching algorithm to be able to locate quickly some or all
occurrences of a user-specified pattern in a text. Although There had been presented many algorithms in this field. Boyer
More Algorithm (BM), among them, is one of the most efficient algorithms that has used in many applications. In this study,
we had proposed a new pattern matching technique rely on utilizing Boyer More Algorithm, based on its second order. The
proposed method uses matched partition in the previous step in order to avoid unnecessary comparisons. Afterwards, the
proposed algorithm has been implemented and also has been compared with existing algorithms. The comparison results
show that our proposed method has less time complexity than other existing techniques, especially than Boyer Moore
algorithm.

Keywords: Pattern matching, Knuth-Morris-Pratt Algorithm, Boyer Moore Algorithm, Naive Algorithm

Received: 2 June 2015, Revised 30 June 2015, Accepted 5 July 2015

© 2015 DLINE. All Rights Reserved

1. Introduction

Pattern matching is a fundamental challenging problem in computer science. It has been extensively studied and many techniques
and algorithms have been designed to solve this problem. These algorithms are mostly used in information retrieval, bibliographic
search, computational biology and question answering applications [10, 11].

A string-matching algorithm uses a window to scan the text. The size of this window is equal to the length of the pattern. It first
aligns the left ends of the window and the text. Then, it checks if the pattern occurs in the window, otherwise it shifts the window
to the right. This procedure repeats again until a matching occurs or the right end of the window goes beyond the right end of
the text (Amintoosi et al., 2006). The primary way to decrease the time needed is tio decrease the number of comparisons made
by each algorithm.

It is consisting of searching a predefined pattern P of length m inside of a text T of length n. A pattern matching algorithm aligns

 Progress in Machines and Systems Volume 4 Number 2 October 2015 43

the pattern with the beginning of the text and keeps shifting the pattern forward until the end of the text or a match is reached.
It seems to be a very simple problem but it is not.

Finding a pattern inside of a long text at least possible time is implicated to utilize algorithms that have least possible time and
space complexity. Therefore, there have been various algorithms presented to minimize time and space complexity in different
text pattern. Some exact string matching algorithms are Brute force algorithm, Naïve algorithm, Boyer-Moore algorithm [3],
Knuth-Morris-Pratt (KMP) Algorithm [7]. In this paper, we present a brief literature review of these algorithms.

The rest of the paper is organized as follows. We briefly present the Background and related work in section 2. Section 3 deals
with the proposed model. We make some concluding remarks from the experiments in Section 4.

2. Background and Related Work

To check whether the given pattern is present in the sequence or not we need an efficient algorithm with less comparison time
and low complexity.

Brute Force Algorithm
The worst algorithm for string matching is brute force algorithm. It enumerates all match character of the pattern with the text at
the same position, and we succeed if and only if its value is equal to the pattern size. Then, after each attempt, it shifts the pattern
by exactly one position to the right.

The C++ code for brute force method:

for (i = 0; i < n - m; i ++)
{

num = 0;
for (j = 0; j < m; j ++) ;
if (t [i+j] == p [j])
num++;
if (num = = m) return i;

}
return -1;

Where a text string t of length n, and a pattern string p of length m are given as inputs. Therefore, the running time of this
algorithm is O (mn), where m is the length of the pattern and n is the length of the text and the expected number of text character
comparisons is 2n. We could easily improve it by sliding the pattern over one character when a mismatched occur- naïve
algorithm.

Naïve Algorithm
The naïve algorithm searches for a pattern in a text by matching the first character of the text with the first character of the
pattern, and if we succeed, try to match the second character, and so on[1]; if we hit a mismatch, slide the pattern over one
character and try again. When we find a match, return its starting location. It always shifts the window by exactly one position
to the right.

The C++ code for naïve method:

for (i = 0; i < n-m; i ++)
 {

 for (j = 0; && j < m && T [i + j] = = P [j]; j ++) ;
 if (j == m) return i; // found a match
 }
return -1 // not found a match

 44 Progress in Machines and Systems Volume 4 Number 2 October 2015

In practice this works better than brute force algorithm- not usually as bad as O(mn) at the worst case. This is because the inner
loop usually finds a mismatch and shifts the pattern over the text as long as one character without going through all m steps. But
this algorithm still take O(mn) at the worst case analysis.

The advantage of aforementioned methods is that they don’t need of pre-processing stage and they don’t require extra space.
But their important weakness is their huge time complexity. So that when we are facing with a long text, they lose their
performance. Therefore, we have to use some methods that can afford of huge time complexity in facing with a long text, that we
are going to search a pattern inside it.

Knuth-Morris-Pratt

Knuth-Morris-Pratt (KMP) [2] algorithm is proposed in 1977 to speed up the procedure of exact pattern matching by improving
the lengths of the shifts (the amount of jumping along the text in one comparison level).
It compares the characters from left to right of the pattern as same as naïve algorithm.

Before starting
When a mismatch occurs, the pattern itself embodies sufficient information to determine where the next match could begin(the
amount of jumping level the pattern along the text).

The key to not examining every character in the text is to use information learned in failed match attempts to decide what to do
next. This is done in Knuth- Morris-Pratt algorithm [2], as we will see shortly. Although, the Knuth-Morris-Pratt algorithm has
better worst-case running time than the other efficient algorithm such as BM, the latter is known to be extremely efficient in
practice (Watson and Watson, 2003).

The Knuth-Morris-Pratt idea is, in this sort of situation, after you’ve invested a lot of work making comparisons in the inner loop
of the code, you know a lot about what’s in the text. Specifically, if you’ve found a partial match of j characters starting at
position i, you know what’s in positions T[i]...T[i+j-1]. You can use this knowledge to save work as you can skip some
iterations for which no match is possible. The value of jumping characters (j) is just a function of the value of matched characters
(i) and does not depend on other information.

The entire KMP algorithm consists of overlap computation followed by the main part of the algorithm in which we scan the text
(using the overlap values to speed up the scan). The first part takes O(m) and the second part takes O(n) time. Therefore, the
whole KMP algorithm runs in time O(n + m), which is much better than the simple quadratic time algorithm.

Figure 1. Knuth-Morris-Pratt Matching Method

The KMP algorithm works by turning the patterns given into a machine, and then running the machine. It takes
O(m) space and time complexity in pre-processing phase, and O(n+m) time complexity in searching phase (independent of the
alphabet size). KMP is a linear time string matching algorithm. [14]

 Progress in Machines and Systems Volume 4 Number 2 October 2015 45

Boyer-Moore Algorithm
Since 1977, with the publication of the Boyer-Moore algorithm, there have been many papers published that deal with exact
pattern matching and in particular discuss and/or introduce variants of Boyer-Moore algorithm. It performed character
comparisons in reverse order from right to the left of the pattern and did not require the whole pattern to be searched in case of
a mismatch.

Boyer-Moore algorithm holds a window containing pattern over the text, much as the Knuth-Morris-Pratt algorithm does except
that searching process is from right of the pattern instead of left to right. This window moves along the text, however, its
improved performance is based around two clever ideas:

• Inspect the window from right to left Perhaps the most surprising feature of this algorithm is that its checks to see if we have
a successful match of p at a particular location in t work backwards. So if we are checking to see if we have a match starting at
t [i], we start by checking to see if p[m] matches t [i + m], and so on.

• Recognize the possibility of large shifts in the window without missing a match. Actually, it is not necessary to examine every
character in the text in order to locate the pattern. The key is to use information learned in failed matched attempts to decide what
to do next. This is done with the use of precomputed tables.

Although Knuth, Morris, and Pratt were able to achieve a much better algorithm than naïve algorithm, they were still unable to
achieve a sub linear algorithm in the average case.

The idea behind the Boyer-Moore algorithm is information gain. All of the previous approaches attempted to solve the problem
by examining the first characters in the pattern. Boyer and Moore believed that more information was actually gained by
beginning the comparison from the end of the pattern instead of the beginning. The Boyer-Moore algorithm was successful at
performing the string searching task in sub linear time in the average case, something that no other algorithm at the time could
accomplish. The algorithm has stood the test of time and is still used as a comparison/benchmark when new algorithms are
introduced trying to improve on the running time.

In this algorithm, as like as KMP algorithm, we have two steps: the preprocessing step and the searching step. At the processing
step, we determine the length of jump for any possible mismatch position. In order to maximize the length of jump, this approach
uses the match characters as shown as Figure2. As we can see, the shift amount for a mismatch calculate so that the position of
match characters before jumping (are shown as grey level) have to equal to their corresponding character after jumping.
Afterwards, at the searching step, upon the occurrence of the first mismatch at a position of the pattern, the pattern shifts
somewhat forward along the text. The magnitude of this shift is based on the position of mismatch in the pattern, that is
calculated in the preprocessing step.

Figure 2. Boyer Moore Method

 46 Progress in Machines and Systems Volume 4 Number 2 October 2015

As we can see from Figure3, Match (p, i) is assigned to compute the jumping length of the pattern along the text, where i is
position of mismatch along the pattern. As it is figure out in Figure3, assume that we have had (m-i) matches from the right, the
(i-th) next character when compared is a mismatch. We can shift down our pattern to the next occurrence such that p[r-m+i] isn’t
equal to x[i] and also x[i], …, x[m] are as same as p[r-m+i],…, p[r] respectively.

Usually the numbers of matched characters in every matching search attempt are very small. In other words, the mismatch
position probably is in the last of the pattern. Therefore, the amount of jump in Boyer- Moore Algorithm is usually very small.
In this paper, we have solved this problem. Our proposed method uses two last searching attempt of Boyer-Moore algorithm
instead of one in Boyer-Moore algorithm. Actually, we not only use the last searching attempt as Boyer-Moore algorithm, but
we also use the searching attempt before that. The implementation of the proposed method has described in the following
section.

3. The Proposed Method

In order to reduce the processing time of the BM algorithm,

The proposed algorithm improves the length of the shifts of the BM algorithm. The extensive testing of the proposed algorithms
yields to speeding up the BM algorithm.This algorithm performs best when preprocessing of the text is not possible or not
desired.

In this algorithm, firstly, we determine the length of jump (Long_Jump[i]) for every possible mismatch along the pattern, by using
of Boyer-Moore algorithm. Then, we compute the length of two step jump (Long_Jump2[mba, mna]), where mna is the position
of a mismatch at the current searching attempt and also mba is the positin of a mismatch at before that- the one before current
searching attempt. In order to develop our algorithm, we consider three possible observations for to consequence searching
attempts:

Observation 1:
All of the matched characters in two consequences searching attempts are aligned the pattern (see Figure 4). The next searching
attempt must consider these two consequences in order to figure out the jumping length of the following shift.

Figure 3. Computation of jumping amount in Boyer-Moore Algorithm for ith mismatch position.

 Progress in Machines and Systems Volume 4 Number 2 October 2015 47

Figure 5. Just some part of the before searching attempt and are aligned the current searching attempt

Figure 4. matched characters in two consequences searching attempts

Observation 2:
Just some part of the matched characters in before searching attempt and all of the matched characters in this searching attempts
has aligned the pattern (see Figure 5). The next searching attempt must consider these two consequences in order to figure out
the jumping length of the following shift.

Figure 6. None of the before searching attempt and all of the matched characters in this searching attempts are aligned the
pattern. mba is the before matching and mna is the current matching attempt

Observation 3:
None of the matched characters in before searching attempt and all of the matched characters in this searching attempts has
aligned the pattern (see Figure 6). The next searching attempt must consider just last attempt in order to figure out the jumping
length of the following shift.

Computation of jumping amount for every mismatch position in the pattern has shown in Figure 7.

 48 Progress in Machines and Systems Volume 4 Number 2 October 2015

Figure 7. Computation of jumping amount for every mismatch position in the pattern. mba is the before matching attempt
and mna is the current matching attempt

For simplicity, assume that we have the following text and pattern and we want to find all occurrences of the pattern in the text:

Text is : = “cdamdpbbcabd?????????”
Pattern is:=”bbc b bcabc”

Where (?) indicates an arbitrary character. In the searching phase, the BM algorithm will make (3 matching attempts to search
for the pattern in the text, as follows:

First attempt (3 character comparisons, 2 matches and 1 Mismatch):

Text is : = “cdamdpbbcabd?????????”
Pattern is:= “bbc b bcabc”

In this paper, the matched characters have determined by blue color and the mismatched characters have demonstrated by red
color.

By using BM algorithm, the jumping length(Long-Jump) is 3 characters(locations) as follows:

Second attempt (1 character comparisons, 0 matches and 1 Mismatch):

Text:= “ cdamdpbbcabd?????????”
Pattern is:=”b bcbbcabc”

The jumping length after these two matching attempts is 6 characters as follows:

Text:=” cdamdpbbcabd?????????”
Pattern is:= “bbcbbcabc”

Whereas by using proposed method, after one matching attempts, the jumping length is 9 characters as follows:

Text: = “ cdamdpbbcabd?????????”
Pattern is: = “bbcbbcabc”

As we can see from this example, the proposed method improves significantly the jumping length is comparison with Boyer-
Moore algorithm.

Computation of jumping length of our proposed method for every mismatch position along the pattern has demonstrated in
Figure 7. In this table, P.Lenght is the length of pattern characters that has varied between 15 to 100.

 Progress in Machines and Systems Volume 4 Number 2 October 2015 49

 P.Lenght=15 P.Lenght=20 P.Lenght=30 P.Lenght=40 P.Lenght=50 P.Lenght=100

Algorithm

Boyer Moore 39.3 313.6 171 322 167.3 269

Kunth-Morris- Pt 277 352 274 274.5 315 297

Proposed 285 322 165 189 175 262

 Algorithm

We run our experiments using randomly generated patterns and text over a four characters alphabet. We slightly modified the
algorithms to find all matches of the pattern.

Figure 8 shows a comparison between execution times of the KMP, BM, and proposed algorithms for each patterns sample of
each pattern length from 15-100.

As we can see, It is clear that our proposed algorithm enhance the execution time of string matching as compared to the BM and
KMP algorithms. This enhancement is calculated by considering the differences in execution times of the algorithms to search
for several patterns samples as recorded in Table 1.

Tabel 1. Running Time evaluation of BM, KMP, and proposed method

Figure 8. Comparison of different algorithms with the proposed method

4. Conclusion

Pattern Matching is a fundamental challenge in the field of computer science. Innovation and creativity in string matching can
play an immense role for getting time efficient performance in various domains of computer science.

This study introduced a new exact pattern-matching algorithm based on the Boyer Moore algorithm. The proposed method uses
matched partition in the previous step in order to avoid unnecessary comparisons. Afterwards, the proposed algorithm has been
implemented and also has been compared with existing algorithms.

By analyzing string-matching algorithms, it can be concluded that Boyer-Moore string matching algorithms is more efficient
than other proposed method such as KMP. Practice shows that BM Algorithm is fast in the case of larger alphabet. KMP
decreases the time of searching compared to the Brute Force algorithm.

Since, the amount of jump in Boyer- Moore Algorithm is usually very small, In this paper, we have tried to solve this problem.

 Pattern
Length

 50 Progress in Machines and Systems Volume 4 Number 2 October 2015

Our proposed method uses two last searching attempt of Boyer-Moore algorithm instead of one in Boyer-Moore algorithm.
Altough time complexity of our proposed method in preprocessing step (computation of jumping length) is more than Boyer-
Moore algorithm. But the seaching time of our proposed method is less then other method, in overal.

From the experimental results had shown in Table 1, it can be seen that our proposed algorithm gives better performance
compared with some of the other popular methods like, KMP and Boyer Moore string search techniques. Also, as we can see
from Figure. 7, the proposed algorithm gives very good performance related to the other popular methods.

References

[1] Besta, M. (2002). Mechanization of String-Preprocessing in Boyer Moore pattern Maching Algoritm, Detroit.

[2] Sheik, S. S. et al, (2004). A FAST Pattern Matching Algorithm, J. Chem. Inf. Comput. Sci., 44 (4) 1251–1256.

[3] Lecroq. T. (1995). Experimental Results on String Matching Algorithms, SOFTWARE-PRACTICE AND EXPERIENCE, 727–
765.

[4] Lecroq, T. (2000). New experimental results on exact string-matching, Rapport LIFAR 2000.03, Université de Rouen.

[5] Knuth, D. E., Morris, J. H. Pratt, ,V. R. (1974). Fast pattern matching in strings. TR CSp74-440, Stanford University, Calif.

[6] Boyer, R. S., Moore, J. S. (1977). A Fast String Searching Algorithm, Association for Computing Machinery.

[7] Cantone, D., Faro, S. (2003). Fast–search: a new efficient variant of the boyer– moore string matching algorithm. Lecture
Notes in Computer Science, 2647:47–58.

[8] Tarhio, J. (1996). A sublinear algorithm for two-dimensional string matching. Pattern Recognition Letters, 17:833–838, July.

[9] Baeza-Yates, R. A. (1989) . String searching algorithms revisited. Lecture Notes in Computer Science, 382. 75–96.

[10] Wu, Y. C., Yang, J. C., Lee, Y. S. (2007). A weighted string pattern matching-based passage rankinjg algorithm for video
question answering, J. Expert Systems, 2588-2600.

[11] Rami Mansi, H., Jehad Odeh, Q. (2009). On Improving the Naïve String Matching Algorithm, Asian Journal of Information
Technology, 8. 14-23.

[12] Amintoosi, M, Fathy, M., Monsefi, R. (2006). Using pattern matching for tiling and packing problems, Eur. J. Operat. Res.,
183 (3): 950-960.

[13] Devaki-Paul. (2011). Novel Devaki-Paul Algorithm for Multiple Pattern Matching , International Journal of Computer
Applications (0975 – 8887) 13(3) , January .

[14] A- Ning Du., Bin- Xingfang., Xiao-Chun Yun., Ming-Zenghu., Xiu- R ong Zheng. (2003). Comparision of String Matching
Algorithms: An Aid To Information Content Security In : Proceedings of the Second International Conference on Mache
Learmng and Cybernetics, xi, 2-5 November, 2996-3001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

