Selection of Best Comparison Based Sorting Algorithm

Wasim Abbas y {e;ﬂ
Punjab School Education Department ' 4
Pakistan ~

wasi mabbasjoyia@gmail.com

ABSTRACT: Sorting is very common problem in the fields of computer science. Many sorting algorithms are available for
sorting. Every sorting algorithm has its own advantages and disadvantages. Detailed analysis and comparison of the
performance of these algorithms provided the fact that thereis no single best sorting algorithmfor every sorting problem. All
algorithms are problem specific.

Some factors needs to be considered in choosing the best algorithm include the size of the list that needs to be sorted ,
requirements of programming efforts, availability of size of main memory and secondary memory, distribution of elementsin
thelist , duplication of elementsin the list and up to what extent list is pre-sorted.

Keywords: Sorting, complexity, stable, internal sorting, efficiency, worst case, average case, best case.

Received: 1 June 2016, Revised 5 July 2016, Accepted 15 July 2016

© 2016 DLINE. All Rights Reserved

1. Introduction

In computer science and mathematics sorting algorithm are used to arrange elements in numerical or lexicographical order.
Sorting isthe most studied problemsin computer science becauseit is combinatorial problem which has many interesting and
diverse solutions.[3].

Dueto itsimportance and diversity sorting is still remained hot topic in research field. It isaways difficult to find best sorting
algorithm, research is going on this topic.my research is also based on this topic that which one is best sorting algorithms
inevery sorting problem.

Thereare no. of sorting algorithmswhich offer varioustrades offsin simplicity and in efficiency, in speed and space. This paper
will focused only on comparison based sorting algorithmsand will present the compari son between different compari son based
sorting algorithms and will suggest that which isthe best comparison based sorting algorithms for which problem, because

56 Progress in Machines and Systems Volume 5 Number 2 September 2016




large no. of programmer use comparison based sorting algorithms. comparison based sorting algorithms are more general
purpose than non comparison based sorting algorithms, non comparison based sorting algorithms do poorly for non fixed
lengthsinputs, also non comparison based sorting al gorithms often need many assumptions about the input data (integersfrom
small range for count sort, uniformly distributed for bucket sort, etc.).

Even comparison based sorting algorithms are also in huge numbersand to find the best algorithm from them isnot an easy task
because all algorithms are problem specific. Algorithm performance is based on type of problem, for example some sorting
algorithmsdo well with small no. of elements. Where some are best in the situation where elementsarein larger numbers. Some
sorting algorithms perform well where datais duplicated.

Actually many factors need to be consider while choosing the best sorting algorithms. The remainder of this paper is structured
asfollows,

Section 2: Criteriato choose best sorting algorithm.
Section3: Classification of Sorting Algorithms.

Section 4: Famous comparison based sorting algorithms.
Section 5: comparison of different sorting algorithms.
Section 6: time performance Charts of sorting algorithms
Section 7: conclusion[1-7]

2.CriteriaTo Choose Best Comparison Based SortingAlogorithms

To define the best comparison based sorting algorithms is not simple, but we can say the best comparison based sorting
algorithmsis that one uses the minimum no. of comparisons, moves and exchanges for sorting.[2].

All sorting algorithms are problem specific means that some are best in one situation and some agorithms are best in other
situation like Insertion sort iswidely used for small data sets, where asfor larger data setsan asymptotically efficient sort isused
like heap sort, merge sort, or quicksort. Efficient implementations generally use a hybrid algorithm, combining an asymptotically
efficient algorithm for the overall sort with insertion sort for small lists at the bottom of arecursion. Highly tuned implementations
use more sophisticated variants, such as Timsort (merge sort, insertion sort, and additional logic), used in Android, Java, and
Python, and introsort (quicksort and heap sort), used (in variant forms) in some C++ sort implementationsand in .NET.

So, the criteria to choose the best algorithms is based on situation or based on problem. This paper gives the comparison
between famous comparison based algorithms and this comparison providesthe basisfor choosing best algorithm according to
thesituation. [1][2][3].

3. Classification of SortingAlgorithms

Sorting algorithms are often classified by:

e Sorting algorithm are classified on the basis on that which sorting algorithm has what Computational complexity in worst
case, average case and best case..

o Algorithms are also classified on the basis of Memory usage and use of other computer resources.
o Recursion. Some algorithms are either recursive or non-recursive, while others may be both (e.g., merge sort).

o Some algorithms are stable whether other are not stable, stable sorting algorithms maintain the relative order of recordswith
equal keys.

o Some algorithms are comparison based while other is not comparison based sorting algorithms. A comparison based sorting
algorithms uses comparison operator to compare the two values.

o Algorithms are al so categorized on the basis of method like insertion, exchange, selection, merging etc.
o Whether the algorithmisserial or parallel.

Progress in Machines and Systems Volume 5 Number 2 September 2016 57




o Adaptability: Whether or not the algorithms is adaptable. The adaptive sorting algorithms take into account that up to what
extent input is already sorted. [4-9]

4. FamousComparison Based SortingAlgorithms
Some of the famous algorithms arte asfollows.

1) Insertion sort:

Insertion sort isasimple sorting algorithm that isrelatively efficient for small listsand mostly sorted lists, and often isused as
part of more sophisticated algorithms. It is a sorting algorithm that belongs to the family of comparison sorting. . It works by
taking elements from the list one by one and inserting them in their correct position into a new sorted list. Insertion sort hasa
time complexity of O (n?) but isknown to be efficient on data setswhich are already substantially sorted. |tsaverage complexity
isn?=4 and linear in the best case. I nsertion sort is an in-place al gorithm that requires a constant amount O(1) of memory space.
Shell sort isavariant of insertion sort that ismore efficient for larger lists.

2) Merge sort:

Belongsto the family of comparison-based sorting. Merge sort takes advantage of the ease of merging already sorted listsinto
anew sorted list. It starts by comparing every two elements and swapping them if thefirst should come after the second. It then
merges each of the resulting lists of two into lists of four, then merges those lists of four, and so on; until at last two lists are
merged into the final sorted list. It has an average and worst-case performance of O(n log n). Unfortunately, Merge sort requires
three times the memory of in-place algorithms such as Insertionsort. Merge sort has gaining popularity for its practical
implementations in the sophisticated algorithm Timsort, which is used for the standard sort routine in the programming
languages Python and Java (as of IDK7. Merge sort itself is the standard routine in Perl among others, and has been used in
Javaat least since 2000in JDK 1.3.

3) Selection sort:

Belongsto the family of in-place comparison sorting. It typically searchesfor the minimum value, exchangesit with thevaluein
the first position and repeats the first two steps for the remaining list. It does no more than n swaps, and thus is useful where
swapping isvery expensive. On average Selection sort hasan O (n2) complexity that makesit inefficient onlargelists. Selection
sort typically outperforms Bubble sort but is generally outperformed by Insertion sort.

4) Bubble sort:

Isasimple sorting algorithm that bel ongs to the family of comparison sorting? Bubble sort, and variants such as the cocktail
sort, are simple but highly inefficient sorts. They are thus frequently seen in introductory texts, and are of some theoretical
interest dueto ease of analysis, but they arerarely used in practice, and primarily of recreational interest. It works by repeatedly
stepping through the list to be sorted, comparing two items at atime and swapping them if they are in the wrong order. Bubble
sort has aworst-case complexity O(n2) and in the best case O(n). Itsmemory complexity isO (1).

5) Heap sort:

Is a comparison-based sorting algorithm, and is part of the Selection sort family. Heap sort is a much more efficient version
of selection sort. It also works by determining thelargest (or smallest) element of thelist, placing that at the end (or beginning)
of thelist, then continuing with the rest of thelist, but accomplishesthistask efficiently by using adata structure called a heap,
a special type of binary tree. Once the data list has been made into a heap, the root node is guaranteed to be the largest (or
smallest) element. When it isremoved and placed at the end of thelist, the heap isrearranged so the largest element remaining
movesto theroot. Although somewhat slower in practice on most machinesthan agood implementation of Quicksort, it hasthe
advantage of aworst-case O (nlog n) runtime.

6) Quicksort belongs:

Tothefamily of exchange sorting. Quicksort isa divide and conquer algorithm which relieson a partition operation: to partition
an array an element called apivot isselected. All elements smaller than the pivot ismoved beforeit and all greater elementsare
moved after it. This can be done efficiently in linear time and in-place. The lesser and greater sub lists are then recursively
sorted. Thisyields average time complexity of O(n log n), with low overhead, and thusthisisapopular agorithm.

7) Shell sort:
58 Progress in Machines and Systems Volume 5 Number 2 September 2016




It improves upon bubble sort and insertion sort by moving out of order elements more than one position at a time. One
implementation can be described as arranging the data sequence in atwo-dimensional array and then sorting the columns of the
array using insertion sort. It isa generalization of Insertion sort. The algorithm belongsto the family of in-place sorting but is
regarded to be unstable. The algorithm performs O (n?) comparisons and exchanges in the worst case, but can be improved to
O(n log? n). This is worse than the optimal comparison sorts, which are O (n log n). Shell sort improves Insertion sort by
comparing elements separated by a gap of several positions. This lets an element take “bigger steps’ toward its expected
position. Multiple passes over the data are taken with smaller and smaller gap sizes. Thelast step of Shell sortisaplain Insertion
sort, but by then, the array. [1][2][3].

5. Comparison of Algorithms

Following table 1 shows the comparison of different comparison based sorting algorithmsin thistable, n shows the number of
recordsto be sorted. The columns Best, Average and Worst give the time complexity in each case, under the assumption that the
length of each key is constant, and that therefore all comparisons, swaps, and other needed operations would take constant
time. Memory denotes the amount of auxiliary storage needed beyond that used by the list itself, under the same assumption.
Theruntimesand the memory requirementslisted bel ow should be understood to beinside big O notation. Theseare al comparison
sorts, and so cannot perform better than O (n log n) in the average or worst case. [9]

Name Best Average Wor st Memory Sable
Insertion sort n n? n2 1 Yes
Quicksort nlogn nlogn n? log n) onaverage, | No

worst caseis(n); S
edgwick variation
is(log n)
worst case
Heapsort nlogn nlogn nlogn 1 No
Merge sort nlogn nlogn nlogn n worst case Yes
Selection sort n2 n2 n2 1 No
Shell sort n nlog?n Dependson
gap sequence, 1 No
best known is
nlog?n
Bubble sort n n n? 1 Yes
Name Method Positives/Negatives Usage suitability
Insertion sort Insertion Itisgood for small list Itisuseful wheredatais

small and easily fit into
p main memory and can

be randomly accessed and no
extraspaceisrequired to

Progress in Machines and Systems Volume 5 Number 2 September 2016 59




sort the record
(internal sorting).
It also suits when element
arerepeated in thelist,
and sort thelistin
order to maintain the
relative order of the
record with equal keys.

Quicksort

Partitioning

It uses
O (log n) space. fastest
sorting algorithm

It suits when inputs are
too large. It also suits

when element are repeated
inthelist, and sort
theelist intheir relative
order are not maintained
with equal keys.

Heapsort

Selection

It does not require
recursion and extra

memory buffer ,itis
slower than quick
and merge sort

It suits when inputs are
too large. It also suitswhen

element are repeated
inthelist, and sort the

listintheir relative

order are not maintained
with equal keys

Merge sort

Merging

It fast recursive

sorting algorithm

whichisbest for
largelists

It suits when inputs
aretoo large. It also suits
when element are repeated
inthelist. , and sort the
listin order to maintain

the relative order of
the record with egqual keys.

Selection sort

Selection

Itisslow Algorithm;
it improves the performance
of bubble sort.

Itisuseful where datais
small and easily fitinto
p main memory and can
be randomly accessed
and no extraspaceis
required to sort the record
(internal sorting It also suits
when element are repeated
inthelist, and sort the
listintheir relative order
are not maintained
with equal keys

Shell sort

Insertion

Small code size, no use of
call stack, reasonably fast,
useful where memory is
at apremium such as
embedded and older

It suits when inputs are too
large. It also suitswhen
element are repeated in the
list, and sort thelistin
their relative order are
not maintained with

equal keys

60

Progress in Machines and Systems Volume 5 Number 2 September 2016




Bubble sort

Exchanging

Straight forward,
simple and slow,
Small code size.

Itisuseful wheredatais
small and easily fitintop
main memory and can be
randomly accessed and no
extraspaceisrequired to sort
the record (internal sorting.
It &l so suits when element
arerepeated inthelist.
, and sort thelist in order
to maintain the relative order
of the record with equal keys.

Table 2. Shows advantages and disadvantages and also show in which situation which is the best sorting algorithm and
which method is used for sorting. [2][9]

6. Time performance Chartsof SortingAlgorithms

Following Charts Charl, chart 2 and chart 3 showsthetime performance of different sorting algorithm. [1-9].

Time Performance of Sorting Algorithms

g00
500 4
400
A
-
=
g8
o
v 300
£
-2}
E
[~
200
100 /.
o —% = = - N
1000 5000 10000 50000 100000 200000 300000
== BLbhle Sort 0.145 06 14.05 56.0 22044 513.34
== |nsertion Sort 0.045 018 4325 17.62 £2.12 154.22
Cuick Sort 0 0 0 0.01 0.02 0.05 0.065
Chart 1.

Progress in Machines and Systems Volume 5 Number 2 September 2016




Milliseconds=s

Sorting speed of array of 180688 items

Random

Hlmos
Blmost
Hith ra

o -
]
o
=3
-
.
Shell Heap Merge Quick Quicka
Chart 2
Sorting Effectiveness — hillirectionalBubhleSort
—— bubbleZorter
A500 combo=ort11
A000 ¢ -doublestorageMergesart
3800 X —fastCluickSorter
< 3000 fj/:r —— heapSart
S 2500 /ff —— inFlacelergeSart
[x] 7
.E 2000 X/:I —— insertionSort
E 1500 %f —— oddEvenTransportSorter
1000 jy gquickSorter
s00 gquickSon\WithBubbleSon
0 selectionSont
100 200 a0 1000 2000 shakerSort
Element Counts S:Eﬁ'r;':'”er
shellzor

Chart 3

62

Progress in Machines and Systems Volume 5 Number 2 September 2016




7.Conclusion

Theoverall goal of my researchisto discussthe best comparison based algorithm for specific sorting problem. | have given the
comparison of different sorting algorithm in tabular form, in chartsform and in text form. From this comparisonit isvery much
clear that we cannot pick single best algorithm for every sorting problem. These al algorithm are problem specific, we haveto
choose the algorithm on the basis of type of the problem, which sorting algorithm efficiently performs in which situation
depends on many factors like size of list, distribution of elementsin list and up to what extent list is pre-sorted etc.

References

[1] Sultanullah Jadoon, Salman Faiz, Salim ur Rehman, Hamid Jan “ Design & Analysis of Optimized Selection Sort Algorithm”
[2] AdiytaDev., Deepak Graig*“ Selection of Best sorting Algorithm”

[3] Christian Bunse, Hagen H opfner, Essam Mansour, Suman Roychoudhury “Exploring the Energy Consumption of Data
Sorting Algorithmsin Embedded And Mobile Environments’

[4] Demuth, H. Electronic Data Sorting. PhD thesis, Stanford University, 1956.

[5] Huang, B. C.; Langston, M. A. (December 1992). " Fast Stable Merging and Sorting in Constant Extra Space”. Compute.
J. 35(6): 643—

[6] http://www.al golist.net/Algorithms/Sorting/Selection_sort
[7] Kagel, Art (November 1985). “ Unshuffled, Not QuiteaSort”.

[8] Franceschini, G. (June 2007). “ Sorting Stably, in Place, with O(nlog n) Comparisonsand O(n) Moves'. Theory of Computing
Systems 40 (4): 327-353. doi:10.1007/s00224-006-1311-1.

Progress in Machines and Systems Volume 5 Number 2 September 2016 63






