Editorial

We present the next Progress in Signal and Telecommunication Engineering issue with the papers below.

In the opening paper, "An optimal approach to reflected signal model in airborne radar systems," the authors developed an optimal approach for implementing the reflected signal model in airborne radar systems. It integrates various established and improved mathematical models for radar signals, terrains, and objects of different sizes, among others, to create an effective radar scene. Finally, the authors offered required recommendations for the proposed models.

In the next paper, "Designing a clutter suppression algorithm for synthetic aperture radar," the authors designed a clutter suppression algorithm for synthetic aperture radar. It uses the knowledge of static objects to detect signals from nearby clutter sources.

In the last paper, "Close-range radiation region surrounding a ferrite antenna using HFSS model," the authors addressed this issue. This work detailed the HFSS model of the ferrite antenna, which includes a ferrite core, multiple wire coils, and a port for excitation. The authors explained how ground-penetrating radar applications can be derived from the setup of the ferrite magnetic antenna. We hope that these papers addressed the signal communication research with enhanced antennas.

Editors