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ABSTRACT: In telemedicine, the transmission of the cardiac signal or for the diagnosis of an automatic Holter, it is important
to model the heartbeat. Our aim in this work is the modeling of the ECG data by polynomial transform. We have developed an
algorithm that allows the modeling of the ECG signal with the Chebyshev polynomial. The principle of ECG data modeling
is presented and the relevant examples for the capability of the method are provided. The modeling algorithm is evaluated
using the database of MIT-BIH. The first results obtained exhibit the faithfully reproduction abnormalities included in the
ECG signal.
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1. Introduction

ECG signal represents electrical changes on the skin that are caused by the heart muscles, and is usually measured by the
electrodes placed on body surface. In signal processing, modeling is used mainly to produce a classification of the observed
signals using the model parameters.

Due to high importance of accurate modeling several ECG modeling approaches applicable for different purposes like heartbeat
synthesis, analysis, compression, and filtering were introduced. Modeling with Hermite functions is widely used in the literature
for the classification of QRS complexes [1, 2] and [3]. There are also Markov models to facilitate the automatic interpretation of
the ECG [4]. Polynomials of maximum degree 3, including splines functions have been proposed for ECG interpolation in [5] and
[6]. In [7] Nygaard et al studied the representation of ECG signals using second degree quadratic polynomials. High degree
polynomial approximations of a signal is similar to spectral methods since the signal is decomposed into a set of orthogonal
polynomials basic functions, the same way to Fourier Transform and Wavelets Transform. Although Chebyshev polynomials
are widely used in mathematical interpolation and in spectral methods for solving differential equations systems, propositions
for ECG modeling through Chebyshev polynomials are hardly encountered in the literature [8]. In this paper we have developed
an algorithm that allows the modeling of the ECG signal, normal and pathological, with the Chebyshev polynomial.

The rest of this article is organized as follows: in the next section, we give a few reminders on the theory of the orthogonal
polynomials a brief introduction to Chebyshev polynomials. The implementation in order to achieve ECG modeling is described
in section 4. The results obtained are presented and discussed in section 5. At the last section, conclusions are provided.

Generate Synthetic ECG Signal Normal and Pathological using Mathematical Model
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2. Theory of Orthogonal Polynomials

Orthogonal polynomials are usually defined by reference to the notion of integral with a weight function ω (x), positive on the
interval of integration [a, b]. These are families of polynomials {yn}n∈N such that:

yi (x) yj (x) ω (x) dx = Kijδij∫
a

b

With δij  =
1    if   i = j
0    if    i ≠ j⎩

⎨
⎧

Kij is a constant which depends on i, j and standardization adopted for the family of polynomials. The interval [a, b] can be
infinite. That ω (x) is a positive function on [a, b] ensures the existence and uniqueness of the sequence of polynomials {yn}n∈N
from a normalization has been chosen [9].

There are three major families of classical orthogonal polynomials:

2.1 The Jacobi Polynomials
The Jacobi polynomials  Pn        (x) defined on the interval [−1, 1] with the weight function

(α, β )

ω (x) = (1− x)α (1 + x) β

Two particular classes of Jacobi polynomials are respectively the Legendre polynomials Pn (x) = Pn    (x) and Chebyshev
polynomials of the first kind Tn (x) = (n!Γ (1/2) / Γ(n + 1/2)) Pn                (x) where Γ(x) is the gamma function defined by:

(0, 0)

(−1/2, −1/2)

∫
∞

0
e− tt x− 1dt

Weight functions for the Legendre polynomials and Chebyshev polynomials are deduced from (2) and (3) ω (x) = 1 and ω (x) =
1/ (1− x)2

2.2 The Laguerre Polynomials
The Laguerre polynomials Ln   (x) defined on the interval [0, +∞] and their weight function is:∞

ω (x) =  xα e−x

2.3 Hermite Polynomials
Hermite polynomials Hn (x) defined on [−∞,  +∞] with the weight function

ω (x) = e− x 2

Hermite functions are deduced from the Hermite polynomials by the expression (6)

hn (x) = Hn (x)  e− 1/2x21

2n n! π

Hermite functions form a complete orthogonal family.

2.4 Series of Orthogonal Polynomials
Development in Fourier series can be generalized and applied in the theory of orthogonal polynomials according to a theorem
stated and proved in [10] which states that is  f (x) for a continuous function a < x < b and assuming a piecewise continuous
derivative on [a, b], let {yn (x)}orthogonal polynomials relative to classical weight ω (x), if the integrals:

f 2(x) ω (x) dx∫
a

b

 Γ(x) =

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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(f − (x))2 σ(x) ω(x) dx∫
a

b

are uniformly convergent, then the function f (x) has a development following polynomials {yn (x)} and the series:

f (x) = ∑
n = 0

∞
cn yn (x)

is uniformly convergent in x on any segment [x1, x2] included in [a, b] with

f (x) yn(x) ω(x) dx∫
a

b

yn (x) ω(x) dx∫
a

b
2

cn =

We will propose later in this article, modeling by Chebyshev polynomials.

3. Chebyshev Polynomials

Chebyshev polynomials are orthogonal set of functions recursively defined on the interval [−1, 1]. In two kinds. The Chebyshev
polynomials of the first kind are defined by the recurrence relation T0(x) = 1, T1(x) = x, respectively

Tn+1(x) = 2xTn(x) −Tn −1(x), for n  ≥ 1

Chebyshev polynomials of second kind are defined by U0(x) = 1, U1(x) = 2x, respectively

Un+1(x) = 2xUn(x) − Un −1(x), for n  ≥ 1

In this paper, we will use the Chebyshev polynomials of first kind, whose interesting properties make them very attractive for the
design of filters and for optimal polynomials interpolation. They form a complete orthogonal set in the interval [-1, 1] with respect
to following the weighting function:

ω (x) = 1
1− x2

In figure 1 are plotted curves of some first kind Chebyshev polynomials.

The Chebyshev polynomials also satisfy a discrete orthogonal relation. If  xk (k =1, 2,...m) are the m zeros of Tm(x), and if i, j < m,
then

∑
k = 1

m
Ti (xk ) Tj (xk ) =

0           if    i ≠ j
m / 2     if   i = j ≠  0
m           if   i = j = 0⎩

⎨
⎧

Figure 1. Curves of some Chebyshev polynomials of first kind
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The trigonometric form of the Chebyshev polynomials of first kind is given by

Tn(x) = cos(n cos−1(x))

These polynomials are closely related to cosine trigonometric functions [11]. The zeros of Tn(x) are derived from as (14) Tn(xj) =
cos (arccos (xj)) = 0 as which implies the following:

xj = cos π2j − 1
2n

, 1 ≤ j ≤ n⎛
⎝ ⎠

⎞

There are exactly n distinct zeros of Tn (x) in [−1, 1]. The Chebyshev polynomials also satisfy a discrete orthogonality relation.
If xk =  (k = 1, 2,...m) are the m zeros of Tm(x), and if i,  j < m, then

∑
k = 1

m
Ti (xk ) Tj (xk ) =

0         if    i ≠ j
m / 2  if   i = j ≠  0
m        if i = j = 0⎩

⎨
⎧

The extreme of Tn(x) are also derived from equation (14) as Tn(yj) = cos (arccos (yj) = ± 1, thus

yj = cos (π j
n ),     0 ≤ j ≤ n

At all of the maxima, Tn(x)  = 1 while at all of the minima, Tn(x)  = −1. This is the property that makes the Chebyshev polynomials
extremely useful in polynomial approximation of functions. Many other properties of Chebyshev polynomials can be found in
[12].

Let us expand a signal s(t) in terms of Chebyshev polynomials series, that is,

∑
k = 0

n
ckTk (t)s(t) =

The coefficients ck are calculated as follow:

ck =
〈s, Tk〉

〈Tk , Tk〉
=

s(t) Tk (t)∫
−1

1

dt
1− t2

Tk (t)

1− t2
dt∫

−1

1

s(t) Tk (t)∫
−1

1

dt
1− t2

= 1
d2

k

where d 2  =
π          if   i = j
π / 2    if    i ≥ j⎩

⎨
⎧

n

Gauss-Laboto method is a powerful tool for numerical integration, especially dedicated to orthogonal polynomials [12]. Gauss
quadratures method for numerical integrations easy the evaluation of coefficients ck. It stipulates that for a given family of
orthogonal polynomials (yn(x)) in a real interval [a, b], with respect to weight function ω (x), the following approximation holds:

f (x) ω (x) dx ≈∫
a

b
∑

j = 1

M
Gi  f  (xj)

Where f (x) ∈ L2[a, b], xj are roots of  ym(x) and Gj are called Christoffel numbers. Equation (20) is Gauss quadratures formulae;
it is exact for all polynomials of degree inferior or equals to 2M−1. Applying Gauss-Lobatto integration method on Chebyshev
polynomials let to

z (t)

1− t2
dt∫

−1

1
= π

n ∑
j = 1

n
z (xj)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Where xj are roots Tn (t) given by (15) and all the Christoffel numbers are equal to π / 2. To compute ck in (1913), we use zeros of
Tn+1 .

4. Modeling Approach

The block diagram in Figure 2 shows the general principle of decomposition and synthesis of the ECG with the orthogonal
polynomials. In the decomposition phase, the ECG signal is first divided into portions (windows) that we call blocks, in addition,
a signal that is decomposable within Chebyshev base polynomials must be a function of L2 [−1,1] to satisfy the above condition.
Each block s(t), t∈[0, tB] is of finite energy and should be transposed into [−1,1] domain by a simple linear transformation as
follows:

x = −1 + 2
tB

t

Where tB is the duration of the sampled (into blocks) of signals.

Figure 2. The signal processing chain for a complete transmission session

The polynomial transformation consists in determining the polynomial coefficients for each signal segment. All methods of
polynomial decomposition of the ECG signals proposed so far segment the signal into blocks that coincide exactly with the
cardiac cycle [13]. In such schemes, a preliminary step, that consists in the detection of QRS complexes is necessary to achieve
correct segmentation. For Discrete Chebyshev Transform instead, it is possible to use blocks signals made of multiple cardiac
cycles.

There is no requirement on the positions of the ECG’s characteristic waves inside a block. Thus, the segmentation can be carried
out blindly; only the duration of blocks must be specified. The next stage is the modeling mechanism consisting in the certain
steps: segmentation, decomposition into the basis of Chebyshev polynomials and the calculation of coefficients.

The signal reconstruction stage consists in two steps the synthesis of the signal and the blocks assembling.

5. Results and Discussions

As the validity of the method is depending on the efficiency of the signal approximation with the polynomial we provide in the
following some evaluations for Chebyshev polynomials and the Discrete Chebyshev Transform.

Original Signal

Div. Signal into BLOCS

Coefficients

Transp. Blocks into [-1, 1]

Synthesis with 12

Block Assembling

Reconstructrd Signal

(22)
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Figure 3. Applying DChT algorithm to record ref. 100, channel 1 using Chebyshev polynomials up to degree 2000.

We conducted our numericexperiments in Matlab environment, using signals from the MIT - BIH arrhythmia database [14], and
also records available online [15]. Each record consists of two channels of signals. These signals are sampled at a rate of 360 Hz
and use 11 bits/sample resolution. The modeling efficiency is measured using the mean square error (MSE), which is expressed
as follows:
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MSE = 1
n (Sn− Sn)

2 × 100

For instance, we show on figure 3, the original and reconstructed of 5 seconds (i.e. 1800 samples) signals of record number 100,
channel 1 from the MIT-BIH data base. On the top is the original signal, in the middle is the reconstructed signal and the
spectrum of polynomial coefficients is plotted at the bottom. Chebyshev polynomials up to degree 2000 were used for that
matter.

Both the original signal shown in figure 4 correspond to medically abnormal ECG. We can appreciate the strength of Discrete
Chebyshev Transform as to faithfully reproduce the abnormalities included in the ECG signal. We applied the Discrete Chebyshev
Transform over 40 signals from the MIT database [14] [15]. The method is proven sufficiently robust in all circumstances.

Figure 4. Examples of Discrete Chebyshev Transform compression of ECG signals (Signals ref. 207)

It is shown in Figure 5, the variation curves of the MSE as a function of the order n of Discrete Chebyshev Transform. It should
be noted that the signals with high values of n are those incorporating very sharp impulses in their QRS complexes. As already
highlighted in Figure 5, these regions of the QRS complexes contribute much more than other parts of the signal in the formation
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of the reconstruction errors. For which the values of thenare very large, the reconstructed signals remain faithful to the originals,
the changes occur only at the amplitudes of QRS complexes.

Figure 5. Variation curves of the MSE as a function of the order n
of Discrete Chebyshev Transform for different reference signals

Figure. 6. Zoom on the original and reconstructed signals of signal referenced
100 for different values of order n: a)n = 20, b)n = 200 c) n =1000, d) n = 2000.
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Zooming the graphics in the case of signal referenced 100. It can be seen in figure 6(c) that the coincidence of the reconstructed
signal with the original signal is acceptable for n very great, It can be seen in Figure 6(d) that the coincidence of the reconstructed
signal with the original signal is almost perfect (n = 2000).

6. Conclusions

Mathematical methods of polynomial interpolation and polynomial approximations inspired us to develop a modeling algorithm
for ECG signals. This is based on the principle of signal expansion in series of Chebyshev polynomials.

The principle of ECG data modeling is presented and the relevant examples for the capability of the method are provided. The
first results obtained exhibit the faithfully reproduction abnormalities included in the ECG signal. As future works, we would like
making the implementation of algorithm in micro-system.
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