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ABSTRACT: We consider an unslotted primary channel with alternating on/off activity and provide a solution to the
problem of finding the optimal secondary transmission power and duration given the sensing outcome. The goal is to
maximize a weighted sum of the primary and secondary throughput where the weight is determined by the degree of protection
and the minimum rate required by the primary terminals. Two sensing schemes are considered: perfect sensing in which the
actual state of the primary channel is revealed, and soft sensing in which the secondary transmission power and time are
determined based on the sensing metric directly. We use an upper bound for the secondary throughput assuming that the
secondary receiver tracks the instantaneous secondary channel state information. We justify the upper bound on information-
theoretic grounds and also provide a lower bound on secondary throughput. The weighted sum throughput objective
function is non-convex and, hence, the optimal solution is obtained via exhaustive search. Our results show enhanced
throughput by allowing the secondary to transmit even when the channel is found to be busy. The enhancement increases as
the channel gain between the secondary transmitter and primary receiver decreases. For the examined system parameter
values, the throughput gain from soft sensing depends on the “distance” between the likelihood functions of the received
primary signal at the secondary transmitter. Further investigation is needed to quantify the potential of soft sensing.
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1. Introduction

Static spectrum allocation has been the major approach to limit the interference between different wireless systems and support
their coexistence. Most of the licensed spectrum resources are under-utilized, however [1]. This observation has encouraged
the emergence of cognitive radio technology and opportunistic spectrum access concepts. In cognitive radio networks, two
classes of users coexist. The primary users are the classical licensed users, whereas the cognitive users, also known as the
secondary or unlicensed users, attempt to utilize the resources unused by the primary users following schemes and protocols
designed to protect the primary network from interference and service disruption. There are two main scenarios for the primary-
secondary coexistence. The first is the overlay scenario where the secondary transmitter checks for primary activity before
transmitting. The secondary user utilizes a certain resource, such as a frequency channel, only when it is unused by the primary
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network. The second scenario is the underlay system where simultaneous transmission is allowed to occur so long as the
interference caused by secondary transmission on the primary receiving terminals is limited below a certain level determined by
the required primary quality of service. There is a significant amount of research that pertains to the determination of the optimal
secondary transmission parameters to meet certain objectives and constraints. The research in this area has two main flavors.
The first takes a physical layer perspective and focuses on the secondary power control problem given the channel gains
between the primary and secondary transmitters and receivers. In [2], for instance, the focus is on maximizing a weighted sum
rate of secondary users with constraints on the maximum secondary transmitted powers and the maximum tolerable interference
level at primary terminals. The traffic pattern on the primary channel is typically not included in this approach save for a primary
activity factor such as in [3] and [4] .

The second line of research concentrates on primary traffic and seeks to obtain the optimal time between secondary sensing
activities in an unslotted system, or the optimal decision, whether to sense or transmit, in a slotted system. Usually under this
approach the physical layer is abstracted and the assumption is made that any two packets transmitted in the same time/
frequency slot are incorrectly received (e.g., [5], [6], [7], and [8]).

In this paper, we combine aspects of both the overlay and underlay schemes. As in the overlay systems, the secondary
transmitter carries out sensing to detect primary activity. However, we adopt a potentially more efficient cognitive transmission
model and allow for secondary transmission even when the channel is perfectly sensed to be busy. The rationale behind this is
clear from the extreme case of having a very small channel gain between the secondary transmitter and primary receiver enabling
the transmitter to work at maximum power without hurting the primary link. We assume that the primary system operates in an
unslotted fashion with the primary terminal switching its state of activity at random times. Unslotted primary systems are
studied in [9–11].

Our objective is to find the optimal sensing-dependent powers and transmission durations in order to maximize a weighted sum
of primary and secondary rates. The weight used is specified according to the minimum guaranteed primary rate and the degree
of protection needed by the primary link. Though in actual systems, the primary network would have higher priority (reflected
in a weight close to unity in our formulation detailed below), we present the general case to account for other possible operation
scenarios involving networks with no clear priority structure, such as all-secondary networks. Note that the weighted sum-rate
concept has already been employed in the cognitive radio context, such as in [12–15]. However, it mainly concerns the sum-rate
of multiple secondary users with constraints on the inference level inflicted on the primary receiver. The interference power level
constraint does not take into account the primary link quality as it focuses only on the interference power at the primary receiver.
It is more reasonable, albeit more difficult, to impose the constraint on the primary signal-to-interference-plus-noise-ratio (SINR)
or primary rate because a high-quality primary link can withstand more interference power given some guaranteed primary SINR,
thereby allowing more secondary throughput gains relative to the “interference temperature” or power constraint.

We consider two sensing schemes in this work: (a) perfect sensing and (b) soft sensing, introduced in [3], where secondary
transmission parameters are determined directly from some sensing metric. We jointly optimize the transmission time and power.
This is in contrast to previous works [4, 18] and [19]. In [4], although the secondary is allowed to transmit even if the primary
channel is busy, there is no optimization of the transmission or inter-sensing time because the authors assume that the primary
network follows a slotted manner of operation. Also, the notion of soft sensing is not investigated. In [18], sensing is carried out
periodically and the secondary transmitter remains silent if the channel is sensed to be busy. In [19], only the transmission time
is optimized.

We make the following contributions in this paper. We obtain the optimal power and transmission time for operation with an
unslotted primary network given the sensing metric. In the case of conventional sensing, if the channel is sensed to be free, a
certain transmit power is used and the channel is re-sensed after a specific time. A possibly different power and transmission
time are used if the channel is busy. Optimizing the transmit power and transmission periods makes use of primary traffic
parameters in addition to the physical channels between the transmitters and the receivers. We extend the power and transmission
duration control to the soft sensing case. Moreover, we investigate the scenario of continuous transmission by the secondary
user. This means that the secondary transmitter performs no sensing and its optimization parameter is the transmit power only
as in underlay networks. The objective is to determine the situations in which a pure underlay strategy performs almost the same
as the sensing-dependent power and transmission time scheme. (Our results are presented in bullet form in Subsection 5.2.)

In addition, we provide an information-theoretic justification for the expression we employ for the secondary throughput. In the
literature, the ergodic capacity is often used without justification (see, for example, [19, 20] and [21]). In this paper we derive an
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upper and lower bounds on the mutual information between the input and output of the channel between the secondary
terminals. This mutual information is then used to obtain an expression for secondary link throughput. We also provide a lower
bound on the capacity of the secondary link which is below the upper bound by a maximum of one bit.

The paper is organized as follows: in Section 2 the system model is introduced. The optimization problem of maximizing the
weighted sum rates is provided in Section 3. We present an information-theoretic analysis for the formulas used for secondary
throughtput in Section 4, in addition to a lower bound on secondary capacity. In Section 5, we provide simulation results.
Section 6 concludes the paper.

Figure 1. System model involving one primary and one secondary links, where PT denotes the
primary transmitter, PR: primary receiver, SR: secondary receiver and ST: secondary transmitter

2. System Model

We consider a system composed of one primary and one secondary links assuming an unslotted primary channel with alternating
on/off primary activity similar to the model employed in [6]. This implies that the primary transmitter switches between the active
and inactive states at random times. For simplicity, we assume that the probability density function (pdf) of the duration of the
on period is exponential and is given by:
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 is the mean of the off duration. The channel utilization factor u is given by
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We assume no cooperation between the primary and secondary terminals. It is the responsibility of the cognitive users to
estimate the primary traffic parameters and to adjust their transmission parameters taking into account the primary average rate
that should not be disrupted by secondary operation.

The traffic parameters of the primary network can be learned by probing the channel for a specified learning period while keeping
silent. The sensing outcome can be used to estimate the unknown parameters. In the case of perfect sensing, a maximum
likelihood estimator can be employed [6]. The parameters λ

on
 and λ

off 
 are obtained via maximizing the likelihood function

where L is the number of sensing outcomes obtained during the learning phase, and S
i
 is the i th sensing outcome which has one

of two values: S
i
 = 0 if the channel is sensed to be free, and S

i
 = 1 for a busy sensing outcome. Using the Markovian property,

the likelihood function (6) can be written as

where f (S
i 
= v | S

i−1
 = w) is the transition probability Pwv (τ

L
) defined above with v ∈{0, 1}, w ∈{0, 1}, and τ

L
 is the time  between

two sensing events. In the simulation section, we compare the throughput when the learned rather than the true primary traffic
parameters are used to optimize the secondary transmission parameters. When sensing is not perfect, which is the real world
situation, the true state of the channel becomes hidden. Under such situation, a hidden Markov model (HMM) can be employed
for learning the traffic parameters. Please refer to [23] and the references therein for more information about learning in the
context of cognitive radio networks. It is important to mention that parameter learning is not the main focus of this work.

The primary transmitter sends with a fixed power P
p
 and at a fixed rate r

o
. A secondary pair tries to communicate over the same

channel utilized by the primary terminals. As seen in Figure 1, we denote the gain between primary transmitter and primary
receiver as g

pp
, the gain between secondary transmitter and secondary receiver as g

ss
, the gain between primary transmitter and

secondary receiver as g
ps

, and finally the gain between secondary transmitter and primary receiver as g
sp

. We assume Rayleigh

fading channels and, hence, the channel gains are exponentially  distributed with mean values: g
sp

, g
ss

, g
ps

 and g
pp

. The channel
gains are independent of one another, and the primary and secondary receivers are assumed to know their instantaneous values.
In practice, the channels need to be estimated. This can be done through conventional channel training methods, or via
exploiting channel reciprocity in systems operating in time-division duplex (TDD) mode. More sophisticated techniques are
required by the secondary user to estimate the primary link channel state information utilizing the widely used automatic repeat
request (ARQ) feedback from the primary receiver to the primary transmitter [16] and [24], or through cooperation between
secondary nodes that could be present close enough to the primary receiver [25].

The secondary transmitter is equipped with a single antenna and does not transmit while sensing the channel. It senses the
channel for a constant time t

s 
assumed to be much smaller than transmission times T

on
 and T

off
. This assumption guarantees that

the primary is highly unlikely to change state during the sensing period. Based on the sensing outcome, the secondary
transmitter determines its own transmit power and the duration of transmission after which it has to sense the primary channel
again.

3. Optimal power level and transmission time

We formulate the cognitive power and transmission time control problem as an optimization problem with the objective of
maximizing a weighted sum of the primary, R

p
, and secondary, R

s
, rates. Specifically, we seek to find the transmission powers and
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where E {.} denotes the expectation operation over the sensing outcome and primary activity. The constant α ∈[0, 1] is chosen
on the basis of the required primary throughput. In order to protect the primary user from interference and service interruption,
parameter  should be close to one. In the sequel, however, we study the full range of α  so that our results account for other cases
where there is no clear priority among the users.

The constraints of the optimization problem are that the secondary power lies in the interval [0, P
max

], where P
max

 is the maximum

power level available to the secondary transmitter, and that the time between sensing operations exceeds t
s
. The problem is

generally non-convex and, consequently , we resort to exhaustive search to obtain the solution when the number of optimization
parameters is small.

In this paper, we consider two sensing scenarios: 1) perfect sensing, and 2) soft sensing where the cognitive transmitter uses
some sensing metric γ, say the output of an energy detector, to determine its transmission parameters. Under the soft sensing
mode of operation, the range of values of  γ is divided into intervals and the transmission power and time are determined based
on the interval on which the actual sensing metric γ lies. The optimization parameters are the transmission powers and times
corresponding to each interval, as well as the boundaries between the intervals.

We investigate as well a no-sensing scenario with a constant transmitted secondary power in order to examine when the
secondary user can make the decision not to sense and to use only one power level when it transmits. The no-sensing
optimization problem is significantly easier to solve. Note that the no-sensing outcome is a special case of the sensing scenarios.
If we solve the optimization problem and get the same optimal transmit power regardless of the sensed channel state, then
sensing is superfluous and the optimal strategy is continuous transmission using one power without the need for channel
probing. In reality, of course, the traffic and channel parameters are time-varying and, hence, the no-sensing situation may be
transient (for example, at periods when the link between the secondary transmitter and the primary receiver is in deep fade).

E {(1 − α) R
s
 + α R

p
}

We assume that the primary link is in outage whenever the primary rate r
o
 exceeds the capacity of the primary channel.

The primary outage probability when the secondary transmitter emits power p is given by:
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Figure 2. System operation in time. The two levels indicate primary activity. Due to the unslotted nature of
the primary network, there are times with concurrent primary and secondary transmission (shaded intervals).
The cognitive terminal transmits with power P

F 
for a duration T

F 
if the channel is found free. If busy, the

transmit power is P
B
 for T

B
 units of time. In either case the channel is re-sensed after transmission ceases.
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where σ
p  

 is the noise variance at the primary receiver. The expression of P
o
 (p) for Rayleigh fading channels is given in Appendix

A. We assume that the channel gains vary slowly over time and are almost constant over several epochs of primary and
secondary transmission.

For the secondary rate, we assume that the secondary receiver tracks the instantaneous capacity of the channel and, hence, the
maximum achievable rate is obtained by averaging over the channel gains and interference levels [26, equation 7]. The ergodic
capacity of the secondary channel when the cognitive transmitter emits power p and the primary transmitter is off is expressed
as

where σ
s  

 is the noise variance at the secondary receiver. When there is simultaneous primary and secondary transmissions, the
ergodic capacity of the secondary channel becomes

We provide expressions for C
o
 (p) and C

1
 (p) in Appendix A. In Section 4, we provide an information-theoretic analysis for

secondary throughput justifying the employed formulas and also presenting a lower bound on secondary link capacity. Now we
present the formulation of the problem for the three cases of perfect sensing, soft sensing, and no sensing.

3.1 Perfect Sensing
We mean by perfect sensing that the state of the channel, whether vacant or occupied, is known without error after the channel
is sensed. The four parameters used to maximize the weighted sum throughput are P

F 
and T

F
 defined as the power and

transmission time when the primary channel is free, and P
B
 and T

B
 corresponding to the busy primary state. Refer to Figure 2 for

an illustration of system operation over time. Before formulating the optimization problem under perfect sensing, we need to
introduce several parameters that pertain to the primary traffic. The probability, π

m
, that the mth observation of the channel

occurs when the channel is free can be calculated using Markovian property of the traffic model.

Another parameter is P ss which is the steady state fraction of time the channel is free when sensed according to some scheme.

In the perfect sensing scheme, the channel, when sensed free, is sensed again after t
s 
+ T

F
. When sensed busy, it is sensed again
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s
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The average time between sensing times is given by:
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quantity by δ 0(t) and is given by (from [8])
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On the other hand, if the channel is sensed to be busy, the average time the channel is free during a period of t units of time is
given by

The secondary throughput averaged over primary activity is given by

The first two terms in the above expression are the secondary throughput obtained if the primary is inactive when the channel
is sensed. When the sensing outcome is that the channel is free, the secondary emits power P

F
 for a duration T

F 
. During the

secondary transmission period, the primary transmitter may resume activity. The average amount of time the primary remains idle
during a period of length TF after the channel is sensed to be free is obtained by using t = T

F
 in (14). This is the duration of

secondary transmission free from interference from the primary transmitter. On the other hand, the primary transmits during
secondary operation for an average period of T

F
 − δ 0 (T

F
). The last two terms in (16) are the same as the first two but when the
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 and the transmission time is T
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, of which a

duration of δ 1 (T
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) is free, on average, from primary interference. The primary throughput is given by
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than T
on

 and T
off 
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3.2 Soft Sensing
We now re-formulate the weighted sum throughput optimization problem assuming quantized soft sensing, where the sensing
metric, from a matched filter or an energy detector for instance, is quantized before determining the power and duration of
transmission. Let γ be the sensing metric with the known conditional pdf’s: f

o 
(γ ) given that the primary is in the idle state and

f
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where k = 1, 2, ... (S + 1). On the other hand, The probability that γ is between γ 
k −1

 and γ 
k 
 when the primary channel is busy is

given by

thth

υ
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 = Pr {

 
γ 

k −1 
≤ γ ≤ γ 

k 
 | channel is busy}th th

f
1 
(γ ) dγ

γ
k −1

γ
k
th

th

 =∫     (19)

When γ is between γ 
k −1

 and γ 
k
 , the secondary transmitted power is P

k
 and the duration of transmission is T

k
. The case of one

threshold corresponds to the imperfect sensing case where the primary is assumed to be active when γ exceeds some threshold
and inactive otherwise. The false alarm probability in this case is given by ε

2
, whereas the miss detection probability is ϑ

1
.

As in the perfect sensing case, the probability that the mth observation of the channel happens when the channel is free,
denoted by π

m
, can be calculated using Markovian property of the channel model.
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3.3 No Sensing
In the previous subsections, we investigated the problem of using potentially different transmit powers and transmission times
based on the sensing outcome. The question arises as how much performance is lost if the secondary transmitter, given the
channel gains, adopts a pure underlay strategy transmitting with only one power level and doing no sensing. Note that the
optimization problem here is considerably more manageable than that corresponding to the perfect and soft sensing cases
because we just have one optimization parameter, p. The scheme of no sensing and continuous transmission is indeed important
to demonstrate the gain in weighted sum throughput as a result of solving the more complex problem detailed in Subsections 3.1
and 3.2. In this case, the secondary throughput is given by

^

R
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1 
( p )^ ^

_
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The optimization problem can be formulated as
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We emphasize again that the no-sensing policy is a special case of perfect and soft sensing that emerges when the solution to
the weighted sum throughput optimization problem yields power levels that are the same regardless of the sensing metric or the
hardened sensing outcome. Take, for instance, the case of perfect sensing. If when the channel is sensed to be free, the optimal
transmission power P

F
 = p, and if when the channel is sensed to be busy, the optimal transmission power P

B
 = p, then the optimal

strategy for the secondary transmitter is to use p and to stop sensing. In time-varying environments, the situations that render
the no-sensing scheme optimal will be transient. This actually applies to all sensing scenarios where the optimization problem
to maximize weighted sum throughout should be re-solved when the channel and traffic parameters change significantly.

4. Secondary Link Capacity

For the secondary throughput we have used equations (9) and (10). In this section we derive an upper bound on the mutual
information between the input and output of the channel between the secondary terminals, and show that it is equal to our
expressions for secondary link throughput. We also derive a lower bound that is a maximum of one bit below the upper bound.
The focus here is on the perfect sensing case. It is important to note that all mutual information expressions below are
conditioned on the channel gains, which are assumed to be perfectly known at the secondary receiver.

4.1 Upper Bound
We consider a genie-aided secondary receiver with knowledge of the exact pattern of primary activity. We assume that the
transmitter sends two codewords, both interleaved in time. One codeword is sent successively when the channel is sensed to
be free, whereas the other is sent when the channel is sensed to be busy. The analysis of the mutual information between
secondary channel input and output is the same for the two codewords with appropriate use of traffic and transmission
parameters. Hence, we focus here on the codeword sent successively when the channel is sensed to be free. We further assume
that the time parameters, such as T

F
 and δ 0 (T

F
) are all integer multiples of codeword inter-sample duration, τ

s
, which is assumed

to be very small relative to T
on 

, T
off 

, T
F
 and T

B
. Assuming the codeword is sent over m blocks each composed of  T

F 
 / τ

s
 samples,

the total number of codeword samples, n, is equal to mT
F 

/ τ
s
.

The average number of interference-free samples within a transmission block is equal to δ 0 (T
F
) / τ

s
. Applying the law of large

numbers as m goes to infinity, the number of samples in the codeword that suffer from primary user interference is

n                        . Let δ 0 = δ 0 (T
F
) /T

F
. The number of different possible patterns for the primary activity is

^

^

^

T
F 

− δ 0 (T
F 

)

T
F

    (26)

    (P3)

_
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S =
n

n (1 − δ 0 )⎝
⎛ ⎞

⎠
where the notation means “n choose k.”

n

⎝
⎛ ⎞

⎠k

Let I (X
F 

 ; Y
F 

 ) be the mutual information between the input sequence of length n, X
F 

, to the secondary channel when the primary

is sensed to be inactive, and the output Y
F
 . Mutual information I (X

F 
 ; Y

F  
) is bounded by the mutual information conditioned

on primary activity pattern I (X
F 

 ; Y
F 

 | s) [27]. That is,

n n n

n nn

n n

I (X
F 

 ; Y
F 

 ) ≤ I (X
F 

 ; Y
F 

 | s )n n n n

I (X
F 

 ; Y
F 

 | s) =Σ P (s = l ) I (X
F 

 ; Y
F 

 | s = l)
l

n n n n

where the summation is over the possible interference patterns. Since the number of samples that suffer from primary interference
as m goes to infinity is the same for all possible activity patterns, the term I (X

F 
 ; Y

F 
 | s = l )is constant ∀l. Assuming Gaussian

inputs,

n n

det (σ2  I
n
 + P

F 
g

ss 
I
n
 + P

p 
g

ps 
A

l 
)

det (σ2  I
n
 + P

p 
g

ps 
A

l 
)

s

s
I (X

F 
 ; Y

F 
 | s = l) = logn n

Matrix I
n
 is the n × n identity matrix, whereas A

l
 is an n × n diagonal matrix with ones in places corresponding to received samples

during primary activity and zeros elsewhere. Recall that the number of zeros on the diagonal of A
l
 is n                = nδ 0. Combining

(27) and (29), we obtain

δ 0 (T
F 

)

T
F

I (X
F 

 ; Y
F 

 ) ≤ nδ 0  log
P

F 
g

ss
1 +

σ2
s

⎝
⎛ ⎞

⎠ + n (1 − δ 0 ) log 1 +⎝
⎛ P

F 
g

ss

P
p 

g
ps 

A + σ2
s

⎞
⎠

n n

4.2 Lower Bound
In this subsection we obtain a lower bound on the mutual information I (X

F 
 ; Y

F 
) following the analysis in [27].n n

I (X
F 

 ; Y
F 

 | s) − I (X
F 

 ; Y
F 

 ) = h (X
F
 | s) − h (X

F 
 ; Y

F 
 | s)  − h (X

F
 ) + h (X

F 
 | Y

F  
)

n n n n n n n n n n

where h (z) denotes the entropy of the random variable z. Given that the input is independent of the primary interference
pattern, h (X

F
 | s) = h (X

F
 ) and

n n

I (X
F 

 ; Y
F 

 | s) − I (X
F 

 ; Y
F 

 ) = h (X
F 

 ; Y
F 

 ) − h (X
F 

 ; Y
F 

, s)  = I (X
F 

 ; s |Y
F 

) = h (s | Y
F
 ) − h (s | X

F 
 | Y

F  
)

n n n n n n n n nn n

Since h (s | X
F 

 ; Y
F 

 ) ≥ 0,
n n

I (X
F 

 ; Y
F 

 | s) − I (X
F 

 ; Y
F 

 ) ≤ h (s |Y
F 

 ) ≤  h (s)
n n n n n

I (X
F 

 ; Y
F 

) ≥  I (X
F 

 ; Y
F 

| s ) − h (s)
n n n n

Note that the term I (X
F 

 ; Y
F 

 | s) is the upper bound on the mutual information, which is the right-hand-side of inequality (30). The
term h (s) represents the gap between the upper and lower bounds.

4.3 Link Capacity
When the channel is sensed to be free and codeword X

F
 is transmitted, the capacity conditioned on the channel gains is given

by I (X
F 

 ; Y
F 

) / n as n → ∞. The upper bound on ergodic capacity, C
F
 , is obtained from (30) by averaging over the channel gains

n n

n

Un n

C
F
 = δ 0 C

o
 (P

F
) + (1 − δ 0) C

1
 (P

F
)U

    (27)

    (28)

    (29)

    (30)

    (31)

n n     (32)

    (33)

    (34)

    (35)
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Figure 3. (a) Perfect sensing weighted sum throughput versus weight α for channels A (g
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= 2) and B (g
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= 0.2). (b)

Rate region, which is the secondary throughput R
s
 vs. primary throughput R

p
 for channels A and B. Both plots

also include the weighted sum throughout and rate region for channel B when the traffic parameters are learned.

__

where C
o
 (P

F
) and C

1
 (P

F
) are given by (9) and (10), respectively.

The lower bound on capacity depends on the entropy of the interference pattern h (s). From (34), the capacity of the channel
when sensed to be free and X

F
 is transmitted isn
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C
F
  ≥ C

F
  − D

F
U

where D
F
 represents the gap between the upper and lower bound of capacity of the secondary link when the channel is sensed

to be free. The least lower bound can be obtained by maximizing h (s) assuming that all interference patterns are equally likely.
Hence D

F
 is given by

h (s)
n

= lim 1
n

logD
F 

 =  lim
n  → ∞ n  → ∞

n

n (1 − δ 0 )⎝
⎛ ⎞

⎠

Applying Stirling’s approximation to the previous equation and taking the limit, we obtain

D
F 

 = H (δ 0 )

where H (z) = − z log z − (1 − z) log (1 − z). The maximum value of  D
F  

occurs when δ 0 = 0.5 and is equal to one bit. Doing the same

steps when the channel is sensed to be busy and the second codeword X
B
  is transmitted with power P

B
, the upper bound on

the capacity, denoted by C
B
 , has the exact expression as (35) replacing P

F
 by P

B
, and δ 0 by δ 1 = δ 1 (T

B
) / T

B
. If the output of the

channel at the secondary receiver is Y
B
 when X

B
 is sent, the capacity of the channel, C

B
, when the channel is sensed to be busy

is given by

U

n

n n n

C
B
 ≥ C

B
 − D

B
U

where D
B
, assuming equally likely interference profiles, is equal to H (δ 1).

The channel capacity C is then

C = Pss
T

F

µ
T

B

µ
C

F
 + (1 − Pss) C

B

≥ Pss
T

F

µ
C

F
  + (1 − Pss)

T
B

µ
C

B  
− DU U

where the gap D between the upper and lower bounds on ergodic capacity is given by

D = Pss
T

F

µ
T

B

µ
D

F
 + (1 − Pss) D

B

We provide in Section 5 a graph showing the dependence of the gap D on the utilization factor u. Note that the upper bound

, after minor manipulation, is the expression (16) used for secondary throughput in the case ofPss
T

F

µ
C

F
  + (1 − Pss) µ

C
B

U U
T

B

perfect sensing.

5. Numerical Results

In this section we present simulation results for the perfect, soft sensing and no sensing schemes. The weighted sum rate
maximization problem is non-convex, hence, we do exhaustive search to obtain the optimal parameters. The parameter range of
values is finely discretized and the global optimal is obtained via exhaustive numerical search. Since the exhaustive search is
infeasible for a large number of parameters, a gradient descent algorithm can be employed to find the solution. However, there
would be no guarantees that the obtained solution is the global optimum. All the results presented in this section are obtained
via exhaustive numerical search.

In addition, we try to elaborate the impact of this joint optimization for the powers and transmission times as well as the reward
in terms of rate from allowing simultaneous transmission of the primary and the secondary. In the simulations the parameters
used are: T

on
 = 4, T

off
  = 5, t

s
 = 0.05, r

o
 = 4.5 nats, σ

s  
 = σ

p  
 = 1, P

p
 = 100, P

max
 = 10, g

ss
 = 2, g

pp
 = 3, and g

ps
 = .03. In order to do the

exhaustive search, we have imposed an artificial upper bound on transmission time equal to 20 units of time. The parameters for

22

    (36)

    (37)

    (38)

    (39)

    (40)

    (41)



Signals and Telecommunication Journal    Volume  3    Number  1   March    2014                          13

channels A and B used in the analysis are the same except for average channel gain between secondary transmitter and primary
receiver g

sp
. We assume g

sp
  is equal to 2 for channel A, 0.2 for channel B. Finally, we present results pertaining to the capacity

gap explained in Section 4.

5.1 Sensing-based

5.1.1 Perfect Sensing
We report here some results for the perfect sensing case. In Figure 3a, the weighted sum throughput versus α is shown for
channels A and B. Though in the cognitive context α would be closer to one, we present the results for small α ’s for completeness.
The rate region depicting the variation of secondary with primary throughput is provided in Figure 3b. Note the enhanced
throughput of channel B relative to channel A as a result of the lower g

sp
 value. We also include here the curve for the weighted

sum throughput for channel B when the traffic parameters λ
on

 and λ
off

 are estimated during a learning phase. For this curve, the

learning parameters (explained in Section 2) are L = 25 and τ
L
 = 0.5. The weighted sum throughput curve for the learning case is

22

obtained via averaging over 100 simulation runs. It is clear from the figure that there is a degradation in weighted sum throughput
due to the uncertainty regarding the traffic parameters. As we have emphasized earlier, learning is not the main focus of this
paper, but will be the subject of future investigation.

The optimal transmission power and time parameters for channel A are given in Figure 4. For small α values, the secondary
transmitter transmits at full power P

max
 whether the channel is sensed to be free or busy. The transmission time for both sensing

outcomes are the maximum possible. Recall that this maximum is artificial and is imposed by the exhaustive search solution. As
we have previously explained regarding the no-sensing scenario, if the optimal P

F
 = P

B 
, then sensing becomes superfluous

because the exact same power would be used to transmit regardless of the sensing outcome. In this situation we get the no-
sensing solution even if we solve the full optimization problem to obtain the sensing-dependent parameters. As α increases, the
power transmitted when the channel is sensed to be busy is reduced below Pmax. In addition, the transmission times are reduced
for more frequent checking of primary activity. As α approaches unity indicating exclusive emphasis on primary throughput, the
secondary transmitter is turned off and the channel is not sensed. Figure 5 gives the optimal transmission parameters for
channel B. It is evident from the figure that as the level of interference from secondary transmitter to primary receiver is
decreased, PB becomes lower than Pmax at a higher α compared to channel A.

In Figure 6 we compare our scheme, giving the secondary user the ability to transmit even if the channel is sensed to be in busy
state, with the traditional overlay scenario where the secondary transmitter remains silent when the primary occupies the
channel. The figure highlights the gain in the weighted sum throughput for small values of α and for both channels A and B. It
is evident that the mean value of the cross channel gain g

sp
 is the key parameter controlling the amount of throughput gain.

Figure 6 illustrates that, for limited interference to the primary receiver represented by channel B, the objective function shows
enhanced weighted sum throughput when the secondary terminal is allowed to transmit during the busy primary state. For
higher values of interference to the primary receiver represented by channel A, the optimal power policy when the channel is
sensed to be busy approaches the conventional overlay model with PB = 0. Note that if the secondary transmitter is given the
freedom to transmit at a higher maximum level, the throughput gap between the two models increases in favor of ours.

5.1.2 Soft Sensing
For the soft sensing case, the optimization parameters, mentioned in details in Section 3.2, are 2 (S + 1) transmission powers and
times corresponding to each quantization level. There are also S thresholds defining the boundaries of the quantization levels,
which are optimization parameters as well. This makes a total of 3S + 2 optimization parameters. If the primary is inactive, the
signal at the secondary transmitter/sensor is due to noise only. Without loss of generality, we use the following chi-square
distribution for likelihood function of the received signal at the secondary transmitter given that the primary is off

f
o 
(γ ) =

M M γ M − 1 exp (−Mγ )

(M −1 ) !

where γ  here is the average energy of M samples. This distribution results fromuse of a conventional in-phase/quadrature (I/Q)
receiver [28] with the noise variance normalized to unity. For the likelihood function given that the primary is active, we examine
two cases. The first case is that of a fixed sensing channel gain between the primary transmitter and the secondary transmitter.
The likelihood in this case is given by the following non-central chi-square distribution

    (42)
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f
1 
(γ ) = M

γ
γο⎝

⎛ ⎞
⎠ exp ( − M [ γ + γο ]) IM −1 

(2M

M −1

2   γ γο )

where I
M −1

 is the (M − 1)th order modified Bessel function, and γο is the average signal energy. We also consider a Rayleigh
fading sensing channel. The likelihood function of the average energy of the received M samples can then be obtained by
averaging (43) over the fading gain pdf. In this case, the conditional distribution is

f
1 
(γ ) =

1 + γο h⎝
⎛ ⎞

⎠
M M γ M −1 exp

M γ

(1 + γο h ) M (M −1 ) !

where h is the average sensing channel gain. The results for one and two thresholds with M = 1 are presented in Figure 7 which
shows the weighted sum throughput using one and two thresholds for channel B. For the fixed gain sensing channel, parameter

γο = 3, whereas for Rayleigh fading sensing channel, η = 1/3 where η =             . The two-threshold scheme shows slight

improvement for the weighted sum rates over a range of α values above α = 0.6. The figure also shows that a lower weighted sum
throughput is achieved when the sensing channel is Rayleigh. This is expected as a fixed gain sensing channel is more reliable
than a fading channel with the same average received energy. Figure ?? gives the optimal threshold when using two quantization
intervals as a function of α and for γο = 3. As is evident from the figure, the optimal threshold decreases with α. Recall from

Subsection 3.2 that the one threshold case corresponds to imperfect sensing with a false alarm probability of ε
2
 and a miss

M
1 + γο h

    (43)

    (44)
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Figure 5. Perfect sensing power and transmission time results for channel  B (g
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detection probability of υ
1
. Under this imperfect sensing interpretation, the trend of the threshold versus weight α can be

explained as follows. When α increases putting more emphasis on the primary rate, the required false alarm probability is
increased while the miss detection probability is decreased to reduce the chance of collision with the primary user.

Another question arises as to how much performance is lost if we solve the weighted sum throughput optimization problem
assuming we have no uncertainty about the sensing decision while in fact sensing is not perfect. The motivation here is that if
the loss in throughput is tolerable, the secondary terminal may solve the easier perfect sensing problem that has only four
parameters. Figure ?? provides the weighted sum throughput for channel B when the soft sensing optimization problem with
one threshold is solved versus the throughput obtained by solving the perfect sensing problem and using its optimal parameters
in the throughput formula for soft sensing with one threshold. Note that since the soft sensing problem has an additional
parameter, which is the threshold, we optimize the throughput for this parameter given the power and transmission time results
from perfect sensing problem. The figure shows a loss in performance above about α = 0.6. This demonstrates the tradeoff
between throughput performance and computational complexity needed to obtain the optimal transmission policy. As is evident
from the figure, this tradeoff depends on the value of α at which the system is operated in order to guarantee a certain quality
of service for primary link. From the above investigation, we can state the following. When the sensing channel gain is low in
value, sensing becomes highly unreliable. The low gain means that the “distance” between the likelihood functions corresponding
to the primary on and off states is small. (The distance between two probability distributions can be quantified using Kullback
ÝU-Leibler divergence, Kolmogorov ÝU-Smirnov statistic, deflection coefficient, etc.) Whether one or more thresholds are used
in this case, the performance in terms of weighted sum throughput is almost the same. On the other hand, if the sensing quality
is very high and the likelihood functions given that the primary is on and off are “far apart”, then sensing is needed and yields
reliable results. Since in this case the distance between the likelihood functions is large, the threshold position is not very critical
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Figure 7. Soft sensing weighted sum throughput versus α using one and two thresholds for channel
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channel B using one threshold and assuming a Rayleigh fading sensing channel is also included.
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Figure 6. Comparing perfect sensing weighted sum throughput and rate regions using
conventional overlay scheme with P

B
 = 0 with that achieved by allowing simultaneous

primary and secondary transmissions. Comparison is done for channel A and B.

in determining the performance of the system. That is, the threshold can take a range of values that all produce almost the same
weighted sum throughput. Our preliminary conclusion is that soft sensing may be important and beneficial in the cases between
these two extremes. More investigation is needed to specify in quantitative terms the region where soft sensing complexity pays
off as a significant improvement in the weighted sum throughput.

5.2 Sensing vs. no-sensing
Figure 8a shows the weighted sum throughput versus α and the corresponding rate regions for channel B. The result from
perfect sensing acts as an upper bound on the throughput. It is expected that the no sensing scheme has a worse performance
relative to the case when sensing is employed. However, it is interesting to point out that their exist situations where no sensing
behaves almost the same as revisiting the channel to sense it. This is clear from both the weighted sum throughput of the
network in Figure 8a and the rate region in Figure 8b. This case is usually for very limited interference from secondary to primary
receiver when there is no need to waste time to sense unless the channel conditions have changed. Combining the results from
this and the preceding subsections:

• When the mean channel gain between the secondary transmitter and primary receiver, g
sp

, is high, sensing is important. The
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soft sensing with one threshold is used and when the
transmission parameters are obtained via solving the perfect
sensing problem. The latter case is dubbed “perfect in soft”
in the legend. These results are for channel B.
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Figure 8. Sensing versus no-sensing weighted sum throughput and rate regions for channel B

perfect sensing acts as an upper bound on the throughput. It is expected that the no sensing scheme has a worse performance
power transmitted when the channel is found busy approaches zero as in the conventional overlay schemes. Soft sensing may
provide throughput gains depending on the sensing channel between the primary transmitter and the secondary transmitter/
sensor.

• As g
sp

 decreases, it is better, from a weighted sum throughput point of view, to allow the secondary terminal to transmit even
when the channel is sensed to be busy. Again, soft sensing may be employed depending on the sensing channel.

• If g
sp

 is very low, the optimal transmit power when the channel is sensed to be busy approaches that when the channel is found

Perfect sensing

Soft sensing, one threshold, γ0 = 3

No sensing

Perfect sensing

Soft sensing, one threshold, γ0 = 3

Soft sensing, one threshold, γ0 = 0.5

No sensing
Rayleigh, one threshold, η = 1/3
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Figure 9. Gap D between lower and upper bounds as a function of u. For the case T
F

= 20 and T
B
 = 15, the gap is almost H (u). For T

F
 = 1 and T

B
 = 2, the gap is smaller.

weighted sum throughput objective function transmit power with a constraint on the minimum acceptable primary rate.

Note that Figure 8b can be used to obtain the weight needed for a certain constraint on the primary throughput. The rate  region
is obtained by sweeping the weight from 0 to 1 obtaining for each weight the achievable primary and secondary throughputs.
If the primary throughout is required to exceed 1.4 nats and soft sensing with one threshold is employed, then the secondary
system operates with the weight corresponding to the point on the curve of the implemented sensing mode with the desired
primary throughput.

5.3 Secondary link capacity
We provide here some numerical results for the gap between the upper and lower bounds on the capacity derived in Section 4.
We use T

off 
= 5 units of time and sweep the value of u from 0 to 1. We present here two cases corresponding to small and large

T
F
 and T

B
, namely, T

F
 = 1 and T

B
 = 2 for first case, and T

F
 = 20 and T

B
 = 15 for the second. It is shown in Figure 9 that the gap is

lower than H (u) for small values of transmission times. On the other hand, when T
F
 and T

B
 are large in value, the gap is exactly

equal to H (u). It can be easily shown that both δ 0 and δ 1 converge to 1− u as T
F
 and T

B
 go to infinity. The maximum of the gap

free. This indicates that a no sensing strategy, which is equivalent to the conventional underlay scheme, would be optimal. Our

in this case is 1 bit per channel use when u = 0.5.

6. Conclusion

We have investigated the problem of specifying transmission power and duration for a cognitive terminal operating with a
primary link that follows an unslotted mode of operation. We have used an upper bound for the secondary throughput, justified
it on information-theoretic grounds, and provided also a lower bound. The optimal secondary transmission power and duration
that maximize a weighted sum of the primary and secondary throughputs are obtained numerically. Our results have shown that
an increase in the overall weighted throughput can be obtained by allowing the secondary to transmit even when the channel
is found to be busy.

We have extended our formulation to the soft sensing case where the decision of the secondary transmission power and
duration depends on the quantized value of the sensing metric, rather than on the binary decision of whether the channel is free
or not. Our preliminary results, however, show that the gain of using this scheme, and for the range of parameters we have
simulated, is marginal. The throughput gain from soft sensing depends on the “distance” between the likelihood functions of
the received primary signal at the secondary transmitter. If the distance is small, sensing becomes unreliable and indeed a no-
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Appendix

∫ We provide here expressions for primary outage probability in the presence of secondary transmission, and the
ergodic capacities of the secondary in the absence and presence of primary transmission. Assuming the channel gains g

pp
 and

g
sp

 are independent and exponentially distributed with means g
pp

 and g
sp

, the outage probability (8) can be written as

P
o
 (p) = Pr r

o 
> log 1 +

a g
pp

b
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sp 
+ 1⎩

⎨
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⎭
⎬
⎫

⎝
⎛ ⎞

⎠

sensing strategy may perform almost as good as soft sensing. If the distance is large, sensing is beneficial for the system but
using more than one threshold yields marginal throughput gains.

The benefit of soft sensing is discernible in the cases between these two extremes. Further investigation is required to identify
the range of system parameters for which soft sensing produces considerable gains in throughput. Future work may also
address the exact evaluation of h (s), discussed in Section 4, given the considered renewal model for primary activity. This may
lead to more technically sound expressions for secondary throughput with proven achievability.
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) − 1. Given an exponential distribution for g
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, the ergodic capacity  when
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Defining Ψ (x) = ∫ 
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  exp(− µ) /µ  dµ, it is straightforward to show that
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Assuming that g
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 and g
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 are independent and have means g
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 and g
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, respectively, when pg
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We provide here a proof for the expressions (25) and (26) of primary and secondary throughput when no sensing is employed
and the secondary terminal transmits continuously using a certain power level. This scheme can be viewed as the perfect
sensing scheme with P

F
 = P

B
 = p and T

F
 = T

B
 = ∞. From equations (4) and (5), for large t^

P00(t) = P10(t) = 1 − u

Using this in the expression (12) for Pss, we get Pss = 1 − u. Similarly, for large t, using expression (14) and (15) we get δ 1(t) = δ 0

(t) = (1 − u) t. Expressions (25) and (26) can then be readily obtained. For example, the factor multiplied by C
o
 ( p) in (25) is^

(45)

(46)

(47)

(48)

(49)

(50)
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Pss δ 0 (t)

t
+ (1 − Pss )

δ 1 (t)

t
= 1 − u
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