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ABSTRACT: The paper proposes an analytical method for determining basic traffic characteristics of systems servicing
multi-rate overflow traffic streams generated by a finite number of sources. In particular, we describe an optimum sol ution for
theimplementation of telephony system. Analytical results of blocking probability cal culated using the presented methodol ogy
has been compared with the data obtained from the system simulation process.
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1. Introduction

Private Automated Branch Exchange or (PABX) is an intelligent electronic equipment used to make connections amongst the
internal telephones of a private organization or in the different institutes, Those are generally used for business oriented
application. The PABX system are al so connected with a public switched telephone network through trunk lines. In practicaly
it is called PSTN line. As they inter connected telephones, fax machines, modems, and many other parts, the usual term
“extensions’ that is given is referred to the ending point on the branch.

Themain advantage of PABX isthat it essentially takesthe place of the phone company’s Central Officewithin the company by
acting asthe exchange point, routing calls. With aPABX in place, each phone only needs an extension, not aphone number, and
the PABX handlesall calls made from desk-to-desk within the company.

Normally atelephone line is connected to the phone company’s local Central Office through the trunk. The Central Officeis
responsiblefor routing incoming and outgoing calls. It also provides other serviceslike voice mail, call forwarding, caller ID and
so on. For this service the phone company receives a monthly fee. If a company requires dozens or even hundreds of phone
lines, thiswill quickly incur avery large phonebill.

For thisreason, aPABX reduces cost because the company only paysfor the number of linesliableto be connected at any given
timeto the outside. For example, if acompany has 200 telephones, it’sunlikely that all userswill be making an outside call at the
sametime. If we assumethat 10% will require an outside line at any given time, then, the company would only need to lease 10
linesfrom the telecom company rather than 200.
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The loss model can be used to find the optimum solution of the PABX system. Based on the PABX switching techniques and
itsloss system, amathematical model isdeveloped to simulate the grade of service (GoS) of the PABX system with respect to the
number of cables provided.

Waiting lines or Queues, are a very common occurrence both inn everyday life and in a variety of business and industrial
situations. Queuing theory originated in the research of a Danish engineer, A.K. Erlang in 1913, who studied the fluctuating
demands on telephone service[1]. Theformation of waiting lines occurs whenever the demand for servicefrom afacility exceeds
the capacity of that facility.

Waiting line analysisis characterized by the following:

1. Customers, or arrivals, that require service

2. Uncertainty concerning t he demand for service, and the timing of the demand for service of he customers.
3. Servicefacilities, or servers, that perform the service.

4. Uncertainty concerning the time duration of the service operation.

5. Uncertainty concerning the behavior of the customer as they arrive for service and/ or wait in the queue.

Based on these five characters the objective of queuing theory becomes the provision of adequate but not excessive service.
Thus, the goal of waiting line modeling is the achievement of an economic balance between the cost associated with the wait
required for that service. Three major components are vital to analyze thewaiting line as shown in figure 1 bel ow.

They are:

1. The arrivals or inputs to the systems;
2. Thewaiting line, or queue, itself;

3. Theservicefacility;

Queue
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Process acility

Figure 1.Components of Waiting Line
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This paper isorganized asfollows. The next section presents theissue of multiple channel swaiting line with respect to Poisson
arrival and Exponential servicetime and indicates some assumptionsthat are necessary for the solution of the problem at hand.
It describes the modeling idea based on M/M/m/K/S multi-server queue but without buffer (i.e. aspecial finite case whereK =
m), which isthe main backbone of our problem. The concepts of Erlang B formulaand traffic intensity were also explained. The
issue of dimensioning circuit-switched networksis presented in section 3. Section 4 summarizesthefinding and finally section
5 concluded the paper.

2.Moddling

Data networks, and server-based services such as Internet bureaux and telemarketing bureaux are examples of queuing with
bounded buffer or call-waiting systems. A buffer minimizes, and may even eliminate, any loss of offered traffic. In the case of
operator servicesor call-in telemarketing bureaux, incoming callerswait in aqueue listening to music or recorded message until
a human operator becomesfree.

2.1 Numerical Example

We have assumed aPABX system for telephone line that hasto support 600 userswherein average, during office hour, 20 users
need to talk to each other with average call holding time of 3 min per user. To devel op an optimum model, we need to consider
tothefollowing:
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» The numbers of needed cables versusthe grade of service (GoS) or blocking probability (say from 0.001 to 0.00001).

» The number of needed cables versusload (when the load is variable or not fixed).

» The arrival and service time are assumed to be Poisson and exponential distribution respectively.

In our model no buffering takes place (though thistypically occursin older telephone switches). Whenever an arriving job does
not find afree server, itislost. Thistypically occursin telephone switcheswhere the number of lines equal sthe maximum number
of customersthat can be coped with. In case all mlines are busy, no further queuing can occur and the request is not accepted,

or queued. We assumed we have afinite population of Scustomers, each with an arriving parameter A. In addition, the system
has m servers, each with service rate 1. The system has no buffer or storage room, therefore K = m.

The chosen queuing model describe the following properties and is shown in Figure 2.

service

Arrival _,M/*,I(rm/f/g

Number of server storage
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m
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Figure 2. Simulation Model

The state transition diagram for thistype of queuing model isillustrated in Figure 3. Thisleads to the following birth-death
coefficients. It isaspecial case of the general birth-death model with the following parameters:

{A(M—k) 0<k<m-1
k:
0 Otherwise
ku 0<k<m
He= .
0 Otherwise
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2u (m Hu

Figure 3. State Transition Rate
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Theorem 1: PASTA proper — (A well-known and often applied result of queuing theory called Poisson Arrival See Time
Averages). The theorem states that, the distribution of jobs in a queuing station at the moment a new job of a Poisson arrival
process arrives is the same as the long-run or steady-state job distribution.

A probability P_signifiesthe probability that all serversarein use. Dueto the PASTA property, this probability equalsthelong-

term probability that an arriving packet is lost. The formulafor P was established by Erlang in 1917 and is therefore often
referred to as Erlang’slossformulaor Erlang’s B formulaand denoted asB (m, A /p) = B (m, A):

or ingeneral form:

From this description any P_ may be found by the following:

_ _ ! m-n
Pn—ll(m n)!(‘u)Pm

or
k
_ A
P =UK! (“ )Pm

Where mrepresentsthelimit of thefinite set and k equal sthe number of machinesin operation. From figure 3 and general formula
we consider thefollowingrangeO<k< _ . Therefore,

()i o
89

Since k= mwe have:

To ensure the stability of the designed system, the utilisation factor, denoted by p should belessthan 1,i.e. p < 1.

p isgiven by theratio of A If the number of servers, misassumed to be finite, then
u

n’]p:

2.2 System Design
The simulation is designed based on the flow chart described below, MATLAB was used to generate the output.

Signals and Telecommunication Journal Volume 3 Number 1 March 2014 25




Sart

!

Initialize: Counter,k=0
Population of servers
storage capacity

|«
v

Compute: Utilization

factor
Change
i Server number
I's System stable? no A
yes
h 4 h 4
Compute Compute
—> P(blocking) Traffic Load -
K++ K++
store: store:
no number of cables number of cables no
(P Blocking) (P Blocking)
B IsP (blocking) < ~
“ 0.00001? - <k<— ser Ver"/ o—
\|/ Plot traffic load vs k
yes ——p> P(Blocking) vs k y
‘ Stop )
N /

7

Figure 4. Flowchart of thesimulation

The number of server chosen will influence the stability of the system. The traffic load of the system can be computed using
the utilisation factor. Sincethisisafinite server case, thetraffic load, A is given by:

A

H
where misthe number of server and k is the number of needed cables.
2.3Thesystem stability

For exampl e, the number of usersisset at 600, if the number of serversand the storage capacity isequal to 20, then the obtained
results are shown in Table 1.

TrafficLoad, A=mp =

2ATrafficIntensity

2.4.1 Definition 1
Trafficintensity of acircuit-switched network (such astelephone) is defined to be the average number of calls simultaneously
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The Utilisation Factor vs. Number of Cables
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Figure 5. The Utilisation Factor vs. Number of Cables

in progress during a particular period of time. It is measured in Erlangs. Thus an average of one call in progress during a

particular period would represent atraffic intensity of one Erlangs[2].

2.4.2 Definition 2

Offered traffic — measure of the unsuppressed traffic intensity that will betransported on aparticular routeif all customers' calls

were connected without congestion (it is simply the demand).

2.4.3 Definition 3
Carried traffic —resultant from the carried calls, it isthe value of traffic intensity actually measured.

For anetwork without congestion the carried traffic isequal to the offered traffic. However, if thereis congestion in the network,
then the offered traffic will be higher than the carried, the difference being the call swhich cannot be connected. Traffic intensity

can be expressed as:
the sum of the circuit holding times

Traffic intensity =
Y the duration of the monitoring period

Now then
A=thetrafficintensity in Erlangs
T = the duration of the monitoring period
h, = the holding time of theithindividual call
¢ =thetotal number of callsin the period of mathematical summation

Then, from above c

zh,
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Number of Cables, k Utilisation factor, p

Inf

0.9500
0.4500
0.2833
0.2000
0.1500
01167
0.0929
0.0750
0.0611
0.0500
0.0409
00333
0.0269
00214
0.0167
17 00125
18 0.0088
19 0.0056
2 0.0026

Table 1. Utilisation Factor vs. Number of Cables

Where h = average call holding time, and therefore
A=ch/T

Itisinteresting to calculate the call arrival rate, in particular the number of calls expected to arrive during the average holding
time. Let N be this number of calls, then

N = no of callsarrivals during a period of equal to the average holding time
=hx call arrival rate per unit of time
=hxc/T
=chT=A

In other words, the number of calls expected to be generated during the average holding time of a call is equal to the traffic
intensity A.

2.5Sationary Sate Probability
The stationary state probability versus the number of needed cables. For this simulation , the variables used are as follows:

* population =100
* server =20

* storage =20
sload=1

3. Dimensioning Cir cuit-Switched networ k

Thecircuit requirement for route of acircuit-switched network (such astelephone, telex etc) can be determine from the Erlang
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lost call formula. This can be done by substituting the predicted offered traffic intensity A, and using trial and error valuesof N
to determine the value which gives aslightly better performance than the target blocking or grade of service (GoS) B.

Itisnot an easy task by direct calculation to determinethe value of N (circuitsrequired), and for thisreason we use Mathematica
(asuitable simulation technique) [3]. Theformulation isbase on Erlang lost-call formulaand isgivenin equation (1), which can
simply bewritten as

ANN!

B(N,A)=

WhereB (N, A) = proportion of lost calls, and probability of blocking
A=offered trafficintensity

N = available number of circuits

N! =factorial of N

4. Resultsand Discussions

Theresult of our problem istabul ated bel ow (Table 2), thetableillustrates atraffic intensity based on some GoS (0.001 —0.00001).
Sincein our assumptions A < 1, we consider thefirst values 1.67 to beimmaterial.

Down the left hand column of the table the number of needed cables are listed. Across the top of the table various different
grades of service (GoS) are shown. In the middle of the table, the values represent the maximum offered Erlang capacity
corresponding to the route size and grade of service chosen. A graphical representation of the result isalso shown in Figure 7.

No. Cables, k | Stationary State Prob. (Pk)
1 5.8374e-021
2 2.9187e-019
3 9.6318e-018
4 2.3598e-016
5 4.578e-015
6 7.3248e-014
7 9.9408e-013
8 1.168e-011
9 1.207e-010
10 1.1104e-009
11 9.1862e-009
12 6.8896e-008
13 4.7167e-007
14 2.9648e-006
15 1.7196e-005
16 9.2428e-005
17 0.00046214
18 0.0021567
19 0.0094212
20 0.038627

Table 2. Stationary State Prob. (Pk) vs. No. of Cables
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Stationary Proboblity (Pk) vs Number of Needed Cables
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Figure 6. Stationary State Prob. vsNo. of Cables

The optimum solution isto provide six cables, with an offered traffic load of 0.34 Erlang, and a blocking probability of 0.001.
Similarly, an increase in one cableis only acceptable when we simul ate base on the next subsequent GoS as shown in Table 3.

Therefore, the optimum solution depends on the GoS assumed (in our case we considered 0.001 GoS). It isclear from Figure 8
that aroute of six cablesworking to adesign grade of service of 0.001 has a maximum offered traffic capacity of 0.034 Erlangs.

The problem with traffic routes of only afew cablesisthat only asmall increase in traffic is needed to cause congestion. It is
therefore good practice to ensure that a minimum number of cables are provided. It should be noted that we tabulate the real

values of the output as shown in table 3 (Excluding the complex and negative output values).

Itisnot easy to simulatefor higher traffic intensity (say 0.9, 0.8, 0.7..), the highest value we can get is 0.02 (approximately). This

Gradeof service (B [N, A])
Numberof | 1lostcallin llostcallin llostcalin
cables 1000(0.002) 10000(0.0001) | 100000 (0.00001)
Erlangs Erlangs Erlangs
1 167 1.67 1.67
2 0.00011 0.000033 0.000011
3 0.00062 0.0003 0.00012
4 0.00019 0.00094 0.0005
5 0.0052 0.0024 0.0013
6 0.034 (max) 0.0056 0.003
7 0.021 (max) 0.0063
8 0.02 (max)

Table 3. Trafficintensity
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isdueto thelimitation of the software asit providesall the possible values of A including negative and complex values. However,
from the result obtained we can design amethod of obtaining these values, asall the valuestend to belinear after some few steps.
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Figure 8. No. of cablevsload (base on GoS 0.001)
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