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Modeling of 3-dimensional objects by subdivision schemes
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ABSTRACT: In this paper, we model the different objects with the help of one of the optimize subdivision algorithm. First,
least squares method has been used to fit bivariate cubic polynomial to the (2n+1)2-observations. Then from this polynomial
the construction of (2n + 1)2-point approximating subdivision schemes are presented for n ³ 2. The proposed schemes can be
used for the modeling of different objects in three dimensional spaces. Applications and visual performances of the proposed
schemes have also been presented to show the performance of proposed work.
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1. Introduction

The method of least squares is one of the golden techniques in statistics. In 1805, Frenchman Legendre and  American Adrian
in 1808 independently presented the idea about least squares analysis. The least squares method is identified by an equation
with certain parameters to observed data and to estimate these statistical properties of the data. In Figure 1, the solid line
displays the curve formed by least squares method. One can see that the solid line does not consistent with the initial sample/
polyon (doted line). Therefore, an alternative technique to represent data is required.

The most important, significant and emerging modeling tool in computational science, computer applications, computer aided
geometric design, engineering, space science, medical image processing and scientific visualization is subdivision. Subdivision
is a process of generating curves and surfaces as a limit of sequence of successively refined control polygons. By this
technique, at each refinement level, the new injected points on a improved grid are calculated by affine combination
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of previously existing points. In the limit of the recursive procedure, data is defined on a dense set of points. The objective of
subdivision schemes is to make a smooth and visually nice limit curve or surface whose shape is controlled by primary data.
Their foremost benefit is the ease with which they accommodate the construction of smooth surfaces in the arbitrary topology
setting. They also offer many favorable computational properties for applications ranging from surface compression to physical
modeling.

               Figure 1. Dots show the initial polygon where as solid line shows the curve formed by least square method

A subdivision surface, in the field of 3D computer graphics, is a method of representing a smooth surface through the specification
of a thicker piecewise linear polygon mesh. The smooth surface can be calculated from the coarse mesh as the limit of a recursive
process of subdividing each polygonal characteristic into smaller faces that better approximate the smooth surface.

Chaikin [2] extended the algorithm to generate 3D curves with techniques for their application to surface representation. Doo
and Sabin [3] extended the Chaikin algorithm to subdivision surfaces and could be applied to control meshes of arbitrary
topology. Conti and Romani [4] presented an algebraic perspective of the de Rham transform of a binary subdivision scheme and
propose well-designed approach for constructing dual m-ary approximating subdivision schemes of de Rham-type. Antonelli et
al. [5] discussed two main problems which limited the usage of subdivision surfaces in computer-aided design (CAD) systems
and concerned the integration into the modeling work flows. They proposed integration of subdivision surfaces in a CAD
system and also introduced new CAD system paradigm with an extensible geometric kernel.

Kosinka et al. [6] discussed univariate and bivariate binary subdivision schemes based on cubic B-splines through double
knots and also analyzed bivariate cubic schemes through double knots at extraordinary points. Beccari et al. [7] defined non
tensor product subdivision schemes interpolating regular grids of control points and generated limit surfaces with a better
behavior than the well-established tensor product subdivision and spline surfaces. Least squares progressive and iterative
approximation (LSPIA) constructs a series of fitting curves/surfaces by adjusting the control points iteratively, and the limit
curve/surface. Deng and Lin [8] developed progressive and iterative approximation for least squares fitting. Shi and Liang [9]
presented a novel integration method that can fuse registered partially overlapping multi-view range images into a single-layer,
smooth and detailed point set surface. Vilca et al. [10] proposed and discussed a bivariate Birnbaum- Saunders regression model
and its properties. These method was efficient only overlapping points were processed and the non-overlapping points are
remained as they were.

Dyn et al. [11] firstly introduced and analyzed univariate, linear, and stationary subdivision schemes for refining noisy data by
fitting local least squares polynomials. They also discussed their convergence, smoothness, basic limit functions and several
numerical experiments that demonstrate the limit functions generated by these schemes from initial noisy data. Mustafa et al.
[12] introduced the l1-regression based subdivision schemes with fast numerical optimization method which properly handle
noisy data with impulsive noises and outliers. They also extended the least squares regression based subdivision schemes from
the fitting of a curve to the set of observations in 2-dimensional space to a p-dimensional hyperplane to a set of point
observations in (p+1)-dimensional space. In this paper, we extended Dyn et al. (2015) and Mustafa et al. (2015) work by fitting
bivariate cubic polynomial to the (2n + 1)2-observations.

2. Non-Tensor Product Scheme Based On Bivariate Cubic Polynomial

We first fit the bivariate cubic polynomial to the (2n+1)2- observations/data by using the least squares method. Then we drive
the (2n + 1)2-point approximating subdivision scheme.
Let

  2 2 3 2 2 3
1 2 3 4 5 6 7 8 9 10( , ) ,f x y x y x xy y x x y xy yβ β β β β β β β β β= + + + + + + + + + (1)
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be the bivariate cubic polynomial to be fitted of the data x = r, y = s, -n ≤  r, s ≤  n, n  ≥  2. So a general bivariate polynomial function
of degree three with respect to the observations (x = r, y = s, fr,s) can be written as

Since the method of least squares calls for the selection of polynomial that minimizes R, the sum of the squares of differences
between observed value f(r, s) and the corresponding exact value fr,s. So by differentiating

with respect toβ1,β2,. . . , β10 and then setting them to 0, we get the ten normal equations. After solving and simplifying those
equations, we get the values of Beta’s. By substituting the values of β1, β2,. . . , β10 in equation (1) and after simplifying, we get,

and

By replacing r by s and s by r, we can get β
3
 from β

2
, β

6
 from β

4
, β

9
 from β

8
 and β

10
 from β

7
. So by least squares

method the bivariate polynomial (2) is the unique polynomial to fit the data points in three dimensional space.

Evaluating the polynomial (1) at particular points changing the following notations:
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and then by substituting the values of β1, . . . , β9,β10, in equation (1), we get (2n+1)2-point approximating subdivision scheme
with following four rules to fit a surface to the set of data points at rectangular grid/mesh.
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where
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and
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where

and

where

                                                                                   K represents subdivision level whereas
 represent control points (data points) at level k + 1 and k respectively.

2.1 First refined rule
Figure 2 shows the geometrical arrangement (i.e. stencil) of the coarse points of course mesh to calculate a new  point                               of
refined mesh. The weights a1 to a15 in this figure are

These weights are taken from the rule defined in (2).

and
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2.2 Second refined rule
Figure 3 shows the geometrical arrangement of the course points of coarse mesh to calculate a new point                                of  refined
mesh. The weights b1 to b25 in this figure are

These weights are taken from the rule defined in (3).

2.3 Third refined rule
Figure 4 shows the geometrical arrangement of the course points of coarse mesh to calculate a new point                          of refined
mesh. The weights c1 to c25 in this figure are

These weights are taken from the rule defined in (4).

2.4 Fourth refined rule
Figure 5 shows the geometrical arrangement of the course points of coarse mesh to calculate a new point                      of refined
mesh. The weights d1 to d15 in this figure are
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These weights are taken from the rule defined in (5).

Figure 2. Geometrical arrangement to insert new point                          which is shown by solid filled circle. Solid lines show coarse grid/
mesh while solid diamonds are coarse points.

Figure 3. Geometrical arrangement to insert new point                            which is shown by solid filled circle. Solid lines show coarse
grid/mesh while solid diamonds are coarse points.

Remark 1. By substituting the different values of n (i.e. n = 2, 3, 4, . . .) in (2n  + 1)2-point approximating subdivision scheme, we
get different schemes.

2.5 Applications of proposed scheme
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Here we present the numerical experiment to check the efficiency and validity of the proposed  (2n + 1)2-point approximating
subdivision scheme. Figure 6 shows the vertex insertion by subdivision rules                                                and

Figure 7 shows the course mesh with refined mesh and Figure 8 shows the refined mesh only. Figure 9 (a) shows the initial
mesh by which the subdivision process will goes on, Figure 9 (b)-(c) shows the subdivision at first and second

Figure 4. Geometrical arrangement to insert new point                         which is shown by solid filled circle. Solid lines show coarse
grid/mesh while solid diamonds are coarse points.

Figure 5. Geometrical arrangement to insert new point                 which is shown by solid filled circle. Solid lines show coarse grid/
mesh while solid diamonds are coarse points.

level respectively by the proposed scheme for 2n = . Finally Figure 9 (d) shows the limit surface generated by successive
refinement steps.

3. Conclusion

We have generated  (2n + 1)2-point approximating subdivision scheme for surface modeling by fitted the bivariate cubic
polynomial to the data with the help of least squares method. The rules for implementations of the schemes are clearly described.
The visual smoothness of the proposed schemes are presented by different refinement levels.

In future, we can extend the proposed work from regular topology to arbitrary topology which will be more useful in many
engineering applications.
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                                               Figure 6. Shows the insertion of vertices by using the refinement rules

                                                               Figure 7. Shows the course mesh with refined mesh

                                                                            Figure 8. Shows the refined mesh only
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(a) (b)

(c) (d)

                     Figure 9. (a)-(d) show the initial mesh, first level, second level and limit curve respectively
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