Modeling of 3-dimensional objects by subdivison schemes
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ABSTRACT: In this paper, we model the different objects with the help of one of the optimize subdivision algorithm. First,
least squares method has been used to fit bivariate cubic polynomial to the (2n+ 1)2-observations. Then from this polynomial
the construction of (2n + 1)?-point approximating subdivision schemes are presented for n 3 2. The proposed schemes can be
used for the modeling of different objectsin three dimensional spaces. Applications and visual performances of the proposed
schemes have also been presented to show the performance of proposed work.
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1. Introduction

The method of |east squaresis one of the golden techniquesin statistics. In 1805, Frenchman Legendre and American Adrian
in 1808 independently presented the idea about least squares analysis. The least squares method is identified by an equation
with certain parameters to observed data and to estimate these statistical properties of the data. In Figure 1, the solid line
displays the curve formed by least squares method. One can see that the solid line does not consistent with the initial sample/
polyon (doted line). Therefore, an alternative technique to represent datais required.

The most important, significant and emerging modeling tool in computational science, computer applications, computer aided
geometric design, engineering, space science, medical image processing and scientific visualization issubdivision. Subdivision
is a process of generating curves and surfaces as a limit of sequence of successively refined control polygons. By this
technique, at each refinement level, the new injected points on a improved grid are calculated by affine combination
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of previously existing points. In the limit of the recursive procedure, datais defined on a dense set of points. The objective of
subdivision schemesis to make a smooth and visually nice limit curve or surface whose shape is controlled by primary data.
Their foremost benefit is the ease with which they accommodate the construction of smooth surfacesin the arbitrary topology
setting. They also offer many favorable computational propertiesfor applications ranging from surface compression to physical
modeling.

Figure 1. Dots show theinitial polygon where as solid line shows the curve formed by |east square method

A subdivision surface, inthefield of 3D computer graphics, isamethod of representing asmooth surfacethrough the specification
of athicker piecewiselinear polygon mesh. The smooth surface can be cal culated from the coarse mesh asthe limit of arecursive
process of subdividing each polygonal characteristic into smaller faces that better approximate the smooth surface.

Chaikin [2] extended the algorithm to generate 3D curves with techniques for their application to surface representation. Doo
and Sabin [3] extended the Chaikin algorithm to subdivision surfaces and could be applied to control meshes of arbitrary
topology. Conti and Romani [4] presented an al gebrai c perspective of the de Rham transform of abinary subdivision scheme and
propose well-designed approach for constructing dual m-ary approximating subdivision schemes of de Rham-type. Antonelli et
al. [5] discussed two main problemswhich limited the usage of subdivision surfacesin computer-aided design (CAD) systems
and concerned the integration into the modeling work flows. They proposed integration of subdivision surfaces in a CAD
system and also introduced new CAD system paradigm with an extensible geometric kernel.

Kosinka et al. [6] discussed univariate and bivariate binary subdivision schemes based on cubic B-splines through double
knots and also analyzed bivariate cubic schemes through double knots at extraordinary points. Beccari et al. [7] defined non
tensor product subdivision schemes interpolating regular grids of control points and generated limit surfaces with a better
behavior than the well-established tensor product subdivision and spline surfaces. Least squares progressive and iterative
approximation (LSPIA) constructs a series of fitting curves/surfaces by adjusting the control points iteratively, and the limit
curve/surface. Deng and Lin [8] developed progressive and iterative approximation for least squaresfitting. Shi and Liang [9]
presented anovel integration method that can fuse registered partially overlapping multi-view rangeimagesinto asingle-layer,
smooth and detailed point set surface. Vilcaet al. [ 10] proposed and discussed a bivariate Birnbaum- Saunders regression model
and its properties. These method was efficient only overlapping points were processed and the non-overlapping points are
remained asthey were.

Dyn et a. [11] firstly introduced and analyzed univariate, linear, and stationary subdivision schemesfor refining noisy data by
fitting local least squares polynomials. They also discussed their convergence, smoothness, basic limit functions and several
numerical experiments that demonstrate the limit functions generated by these schemes from initial noisy data. Mustafa et a.
[12] introduced the | -regression based subdivision schemes with fast numerical optimization method which properly handle
noisy datawith impulsive noisesand outliers. They also extended the least squares regression based subdivision schemesfrom
the fitting of a curve to the set of observations in 2-dimensional space to a p-dimensional hyperplane to a set of point
observationsin (p+1)-dimensional space. Inthispaper, we extended Dyn et a. (2015) and Mustafaet al. (2015) work by fitting
bivariate cubic polynomial to the (2n + 1)?-observations.

2.Non-Tensor Product SchemeBased On Bivariate Cubic Polynomial

Wefirst fit the bivariate cubic polynomial to the (2n+1)2- observations/data by using the |east squares method. Then we drive
the (2n + 1)?-point approximating subdivision scheme.
Let

f(X,y) =B+ BoX+ By + ﬁ4xz + BsXy + ﬂeyz + ﬂ7X3 + ﬂ8X2y+ ﬂgxy2 + ﬁ10y31 @
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bethe bivariate cubic polynomid to befitted of thedatax=r,y=s,-n< r,s< n,n = 2. Soagenera bivariate polynomial function
of degree three with respect to the observations (x =r, y = s, f ) can be written as

f xf(r:sj:ﬁ+ﬁlr+fgs+ﬁ4r:+ﬁim+ﬁ55: +ﬁr5+,@rls+ﬁ}m:+,ﬁ3f.

Since the method of least squares calls for the selection of polynomial that minimizes R, the sum of the squares of differences
between observed valuef(r, s) and the corresponding exact valuef .. So by differentiating

R R

R=Y N [f,.~(B+ B+ Bs+ By’ + Bys+Bss’ + B + Byr's + Brs™ + Bys'T,

F o 1] S 1

with respect toﬁl, Bz,. C ﬂlo and then setting them to 0, we get the ten normal equations. After solving and simplifying those
equations, we get the values of Beta's. By substituting the val ues of ﬂl, /32,. e Blo in equation (1) and after simplifying, we get,

TL=

1
@

Z{ Y (8+ ﬁ;x—p@y—ﬁ.r]—ﬁf.@—ﬁf—ﬁ-.r-:—ﬁsx’y—ﬁ;u‘—Aa,r:)f,_s}]}..]

By =(n=1)(n+2)n* (n+1)* (14n? + 14n-15r1 - 1557 -3),
By=Sm(n 1180+ 36 - 07+ 20r" £ - (2r* 95+ 2n+ T 4185745},
By =—15n(m" —1)(n+ 2) (7" = n—377),
Bs —9rs(m—1)(m+2M2r—1) (2 +3).
B =—3Srr(rr+= 1335 =3 — Srt — 1),

Be ——45s(n—1)(r=2) ("t = n—3r2)

w=m-D(n+2)2n-1)2n+3)n’ (n+1)* 2n+1)".

By replacing r by sand sby r, we can get g, from g, B, from g,, B, from B, and B from .. So by least squares
method the bivariate polynomial (2) isthe unique polynomial to fit the data pointsin three dimensional space.

Evaluating the polynomial (1) at particular points [:l_ i}_ El—- i)_ (i_ l)_ (E ) E)_ changing the following notations:
2733793 i

j.:_' = f:‘ +_='_ H +_r=

Signals and Telecommunication Journal Volume 5 Number 2 September 2016 51




52

f(_ _) fk+12|—121 -1, f(_ _) fk+12| 2j-1,

f (ZZ): Foaag f (Z'Z): aa

and then by substituting the values of ﬂl ..... ﬁg, ﬂm, in equation (1), we get (2n+1)2-point approximating subdivision scheme
with following four rulesto fit a surface to the set of data points at rectangular grid/mesh.

f2l|<j::Ll2] -1 Z (z (Xl +x2r s)) f|+r j+s, (2)

I’ —N S=—
where

., 135 , 135, 27 45 , 1305 , 525 735 ., 945 , ., 555 ,
X o= s+ rs——ns - ——n’S+—Ns+——ns’ ———n’s’————n’s
' 32 32 8 8 64 64 64 64 16
—@n“sﬂ—1245 n4s+@n5s+£nﬁs—@n“ss+Enr3—%n2r3+@n5r
2 32 2 2 4 64
—@ngrﬁ4—35n252+£n6r—@n4r3 405 n’s® —15n°r* —15n°s® — 45n°r* — 45n°s’
2 16 2 4 '8
and
stz—@n“s2 9B s+ 2ntrss Dntrs— S rs s son” 414 + 232 22 1245 ey
' 16 16 4 2 16 16 32
—@n“rz—gnar——1305n2r+4¥.5n3r2+%nr—Enrz—?’mn‘r’jtA'Ogn‘s—m?n3
16 16 64 8 64 8 8 8 8
+§n2—5;99 N —1575 nris+ 85 n’r’s— En“rs2 1575 nrs® + @nzrs R n‘r’s
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5 n’rs® _% nr?s,
2
k+1 3 4
f2|+2]—1 - Z(Z(X +X )) f|+r ]+S’ (3)
r**n S=n
where

%3 :_1215r52_@r2 81rs_@nS2 —5595n23+ 2415n 6405 3+l365 23

S+
e 32 32 8 8 64 64 64
_29% 3s—g n’s’ + 2475 n*s+ 405 n°s+ 135 n°s— 315 s +E nre A5 s
16 2 32 2 2 4 64 64
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2 2 16 2
—45n°r? — 45n°s? + 165 n*s? — % nrs,
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X:fs—ZTZn rs-2L rs— 389 g s sen” 4 14n8 4 22 ppp2 , 1000 195

32 16
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- - —nrt e ——nr2 - ==+ == n®+—n*+—n
16 64 8 64 8 8 8
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where
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where
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) )
where

g =n(n=1)(2n+3)(2n-1)(n+2)(n+1) (2n+1)", K representssubdivision level whereas /o = and f
represent control points (data points) at level k + 1 and k respectively.

21Firstrefinedrule
Figure 2 showsthe geometrical arrangement (i.e. stencil) of the coarse pointsof coursemeshto calculateanew point #3577

=172 ;-1

refined mesh. Theweightsa, to a inthisfigure are

Theseweights aretaken from therule defined in (2).
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2.2 Second refined rule

Figure 3 showsthe geometrical arrangement of the course points of coarse mesh to calculate anew point _f: = :. _y Of refined
mesh. Theweights b, to b, in thisfigure are

o e e
DM W0 W
TR e e a0
LI I U I

0 1 e EJ1'22400 - 11200
6] Ligy 657 6 . M W15, I

b.‘l:_ ..|'j11=_ ,‘— b :51.;=___.
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0 b= e

Theseweightsaretaken from theruledefined in (3).

2.3Thirdrefined rule

Figure 4 showsthe geometrical arrangement of the course points of coarse mesh to calcul ate anew point f £+l of refined
mesh. Theweightsc, to c,, inthisfigure are <
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Theseweights aretaken from therule defined in (4).

2.4Fourthrefined rule

Figure 5 shows the geometrical arrangement of the course points of coarse mesh to calculate anew point j":"_::t of refined
mesh. Theweightsd, to d ; inthisfigure are
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Figure 2. Geometrical arrangement toinsert new point f}:iﬂd_l whichisshown by solidfilled circle. Solid lines show coarse grid/

mesh while solid diamonds are coarse points.

B

B -

Figure 3. Geometrical arrangement to insert new point
grid/mesh while solid diamonds are coarse points.

JFiias- whichisshown by solidfilled circle. Solid linesshow coarse

Remark 1. By substituting the different valuesof n(i.e.n=2, 3,4, ...) in(2n + 1)>-point approximating subdivision scheme, we

get different schemes.

2.5Applicationsof proposed scheme
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Here we present the numerical experiment to check the efficiency and validity of the proposed (2n + 1)?-point approximating
subdivision scheme. Figure 6 shows the vertex insertion by subdivision rules lr_%l- I-:n . ]r_{;_-_Jj L _r;'cr_- L and _|-_'}.
Figure 7 shows the course mesh with refined mesh and Figure 8 showsthe refined mesh only. Figure 9 (a) showstheinitial
mesh by which the subdivision process will goes on, Figure 9 (b)-(c) shows the subdivision at first and second

[y W N ]

& * - £ r-r
" L L3 r |
"3 “h =+ 3 |
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Figure 4. Geometrical arrangement to insert new point ,f}'i;:]l_:_;- whichisshown by solid filled circle. Solid lines show coarse
grid/mesh while solid diamonds are coarse points.
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Figure 5. Geometrical arrangement toinsert new point £+ whichisshown by solidfilled circle. Solid lines show coarse grid/
mesh while solid diamonds are coarse points.

level respectively by the proposed scheme for n = 2. Finally Figure 9 (d) shows the limit surface generated by successive
refinement steps.

3.Conclusion
We have generated (2n + 1)%-point approximating subdivision scheme for surface modeling by fitted the bivariate cubic
polynomial to the datawith the help of least squares method. The rulesfor implementations of the schemesare clearly described.

The visual smoothness of the proposed schemes are presented by different refinement levels.

In future, we can extend the proposed work from regular topology to arbitrary topology which will be more useful in many
engineering applications.
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Figure 6. Shows the insertion of vertices by using the refinement rules
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Figure 8. Shows the refined mesh only
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Figure 9. (a)-(d) show theinitial mesh, first level, second level and limit curve respectively
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