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ABSTRACT: This paper presents the backstepping nonlinear control of an induction motor. This control is based on the
stability of the system from the Lyapunov theory with taking account the nonlinearity of our system. To validate the effectiveness
and robustness of the proposed solution some simulation results are provided.
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1. Introduction

Induction motor is the most used in industrial applications compared to other electric machines, due to its excellent reliability,
great robustness and reduced maintenance… [1]. Moreover, the induction motor is complex because its dynamic model is
nonlinear [2-5]. In industrial application, the design of control law is essentially based on classical regulator for their simple
structures; however this type of controllers ignores the nonlinearity of the system. Several types of nonlinear control have been
introduced in the last two decades and have been applied to the induction motor as the backstepping method. This type of
control is a systematic and recursive design of controlling nonlinear system.

The backstepping technique is applied to the induction motor to design a speed controller. The present paper is organized as
follows; in section II, the model of induction motor as defined. Section III is devoted to developing the control law by the
backstepping technique. Improving performance and robustness of the proposed control is established in section [3-4].

2. Induction Motor Modeling

The model of the induction motor on the axis “d ” can be described in a reference connected to the rotating field by the following
equation [3-6]:

Backstepping Control of an Induction Motor

Chiheb Ben Regaya, Fathi Farhani, Abderrahmen Zaafouri, Abdelkader Chaari
Unit C3S, High School of Sciences and Techniques of Tunis (ESSTT)
5 Av. Taha Hussein, BP 56
1008 Tunis, Tunisia
University of Tunisia
chiheb_ben_regaya@yahoo.fr, f.farhani@live.fr, abderrahmen.zaafouri@isetr.rnu.tn, assil.chaari@esstt.rnu.tn

d
dt

ids = α1 + δVds

d
dt

iqs = α2 + δVqs

(1)
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d
dt

φdr = Mβr ids− βr φdr

d
dt

ω = φdr iqs −jLr
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With is, φr , are stator currents, rotor flux, the index s and r representing stator and rotor, ω is the rotor speed and σ is the mutual
and leakage inductance.

Where:
α1 = −γ ids + ωr iqs + kβr φdr + Mβr

iqs
φdr

2

α2 = −ωrids − Mβr

ids iqs

φdr
−γ iqs − kωr φdr

The constants are defined as follows:

γ = δRsr , δ  =
σ Lr

1 ,   Rsr = Rs + Lr

M2

2 Rr ,  υ =
Lr

M

βr =
1
Τr

,   k = δυ, σ = 1 −
LrLs

M

3. Backstepping Control

The backstepping control law can be obtained in several steps. Each step will provide a reference for the next step. Stability and
performance of our system will be studied using Lyapunov theory [4-6].In the first step, we consider the trajectories of speed
and flux as a reference, and we define the tracking errors as follows:

eω = ωref − ω

eφ = φref − φdr

By deriving equation (2) we obtain:

eω = ωref − ω

eφ = φref − φdr

. . .

...

When replacing ω, φdr with these expressions from the system of equations (1), equations (3) become:. .

eω = ωref − ω +φdr iqs +
n2

p
np

j Tl
f

jjLr

M.

eω = φref − M βr ids + βr φref
. .

The Lyapunov function associated with the error and flux velocity, to achieve the objective of pursuit is chosen as follows:

f1 =
1
2

(eω+ eφ )
22

The derivate of equations (5) is written as follows:

f1 = − kω eω − kφ eφ
22

.

With kω and kΦ are positive constant, chosen so as to guarantee the exponential convergence errors of flux and speed.

To satisfy equation (6), we must choose the dynamic errors as the following form:

(2)

(3)

(4)

(5)

(6)

ω
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eω = − kωeω

eφ = − kφeφ

.

.

Considering that iqs and ids as virtual control inputs, then equations (3) and (7) can generate the stabilizing functions based on
the stability condition of Lyapunov theory to achieve the objective of pursuit, which can be written as follows:

(iqs )ref = (φref  + βr φdr + kφ edφ)
1

Mβr

(iqs )ref =
jLr ω +

n2 M φdrp

np

j Tl
f

jωref + + kω eω
⎞
⎠

⎛
⎝

.

The system of equations (4) highlights the desired behavior of flux and the stator currents to ensure the pursuit of speed and
rotor flux.

To achieve these desired behaviors, we will define in the second step the error between stator currents, direct flux and their
references as follows:

eiq= (iqs )ref − iqs

eid= (ids )ref − ids

By replacing equation (8) into equation (9) we obtain:

eiq=
jLr ω +

n2 M φdrp

np

j Tl
f

jωref + + kω eω
⎞
⎠

⎛
⎝

.

eid = φref  + βr φdr + kφ eφ
1

Mβr

⎞
⎠

⎛
⎝ − ids

Then we can write equation (3) as follows:

eω= − kωeω + jLr

n2 M φdrp

+ kω eiq − (α1 + δ Vqs)

eiq

eφ= − kφeφ+Mβr eid

2

.

.

The dynamics errors of eiq and eid are respectively given by:

eiq=
jLr

n2 M φdrp
j
f

ωref + ω − kω eω
⎞
⎠

⎛
⎝

..

eid = φref  − M βr ids + βr φdr − kφ eφ
1

Mβr

⎛
⎝

⎞
⎠

2 2
+ kφ eid − (α1 + δ Vds)

. ..

(7)

(8)

(9)

(10)

(11)

(12)

To have an exponential decrease error of eiq and eid we must impose that:

eiq = − kiqeiq

eid = − kid eid

.

.

Where kiq and kid are positives parameters.

Final step in the design of the control law is to determine the expressions of the stator voltages Vds and Vqs from a suitable choice
of the new Lyapunov function associated with flux errors, speed and errors of currents which is given by the following
expression:

(13)

.

− iqs

.

. .
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f2 =
2 kiq eiq + (iqs)ref

2
+ eiqφ

− kω eω
⎞
⎠

⎛
⎝

.22− kφ eφ − kiq eiq − kid eid  − (α1 + δ Vqs)

Figure 1. Block diagram of Backstepping control

Stator resistance Rs 4.580Ω

Rotor resistance Rr 4.468Ω

Stator self-inductance Ls 253mH

Rotor self-inductance Lr 253mH

Mutual inductance M 242.3mH

Moment of inertia  j 0.023kgm2

Friction coefficient  f 0.0026Nm

Number of poles np 2

Rated power Pn 1.5Kw

Rated voltage Vsn 220V

Designation        Notations      Rating values

Table 1. Parameters Of Induction Motor

f2 =
1
2

(eω+ eφ  + eiq  + eid )
22 2 2

By replacing equations (7) and (13) in the derivative of the Lyapunov function f2 we have:

(14)

kid eid + (iqs)ref+ kid
⎞
⎠

⎛
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.
 − (α2 + δ Vds)

(15)
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kiq eiq + (iqs)ref

.
 − (α1 + δ Vqs) = 0

kid eid + (iqs)ref

.
 − (α2 + δ Vds) = 0

Using the equation system (16), the expression of the control law can be writing as follows:

(kiq eiq + (iqs)ref

.
 − α1) µVqs = /

To ensure that the derivative of the Lyapunov function f2 must be negative:
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Figure 2. Simulated results to a step speed 1500tr/mn
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Figure 3. Simulated results for tracking speed
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Figure 4. Torque response (second test)
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4. Simulation Results

To verify the proposed solution of the nonlinear control using backstepping control of induction motor, a discrete model in
Matlab-Simulink is built with a 10ms sample time. The parameters of induction motor are shown in table 1.

Figure 1 shows the architecture of the vector control algorithm incorporating backstepping technique to design the control law.

Tem
Tl

Direct flux
Quartadic flux

(kid eid + (iqs)ref

.
 − α2 )Vds = µ/′



                                  Transactions on Machine Design   Volume   1   Number  1   February   2013                     25

Figure 2 shows the first test of the machine to a step speed 1500r/mn under a load torque of 10Nm. In 0.21s the motor reach the
steady state. Figure 3 shows the second test concerning the tracking speed. The electromagnetic torque developed by the
motor in the second test is showing in figure 4.

Figure 5 shows the dynamic responses of the rotor flux for the tracking speed.

5. Conclusion

In this paper, the nonlinear control of induction motor has been presented and verified with simulation results by using Matlab-
Simulink environment. The proposed concept is based on the backstepping technique. The different results illustrate the good
performance on the tracking speed and flux regulations which certify the robustness of the vector control using this type of
control.
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