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ABSTRACT: Actually, in the majority of mechanical systems such as industrial robots, mobile robots with embarked structure,
etc… the end-effector mass widely exceeds that of the supported load, and lot of works do not take it into account in their
algorithms. These systems must be designed based on dynamic model; moreover the synthesis of the algorithm of an autonomous
manipulator must be accomplished by taking into account nonlinearity and complexity of its dynamic model, this is in order
to increase the control effectiveness.

Currently, tasks involving a high precision welding of complex forms with high characteristics are very required in industry
in general. This paper introduces the modeling of the end-effector movement equations to allow a tracking of welding cords
with complex forms in the acceptable working zone.
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1. Introduction

Currently, the welding of complex forms is very requested, for example in the railway transport where we interest more and more
in arc welding control. During the production, the panels are bended according to the required forms. Due to the inaccuracy of
the forming operation and the inability of a simple robot to compensate the position errors, 3D laser vision systems proved to
be very competitive for the detection and the tracking of joint. The Welded groups can be complex and diversified considering
the slight differences, the thickness and the boundary forms of the pieces to be welded. To solve certain problems related to the
tracking of assembly forms, servo-robot laser vision systems were installed on robots handled on huge immense porticos
intended to weld aluminum passenger cars, goods wagons, bogies and other assemblies.

Two arc welding robots handled on a portico aimed to weld the roof and its arc in the form of saddle. It would be impossible for
robots which are not endowed with vision to perform the necessary angle welding, owing to the difficulty in assembling,
supporting and positioning these immense pieces with enough precision under a portico of 20 m x 6 m.

The welding of apparatuses with pressure and reservoirs is performed by devoted welding machines when they are cylindrical,
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and by articulated robots in other cases.

Some big stainless steel or aluminum reservoirs used for transporting liquids through highway use joints detectors to locate
preformed holes precisely, correct the robot programmed trajectory and measure the spacing in order to optimize the welding
parameters.

For the welding of pieces in mechano-welding, classic machines  typically look like milling machines having rotation tool and
animated by relative movements in comparison with a piece firmly fixed on a table or on a support are used for the realization of
simple forms welding cord.

Some machines, such as the digital milling machines, can have 5 axes to accomplish complex cord geometries (‘Gaussian forms’).
The necessary efforts for the welding operation require the machines to have a rigid structure. In general, these machines have
a human/machine interface allowing the parameterization of the tool applied effort or the welding penetration depth following an
axis, as well as the trajectory of the welding head.

This type of equipment allows ensuring the repetitiveness the process control of the industrial applications. In the frame of
Microsoud project, Cewac, Centre of Services Study and of Applied Researches to the advantage company, acquired a new
welding robot for its micro-welding platform. It will allow accomplishing even more complex 3D forms welding.

The Desmarais and Gagné Inc. au Québec [1] achieved a positioning robot for the welding of complex and irregular form with
very high quality and high precision. This robot allows a better control of the temperature in order to reduce the pieces
distortions.Haut du formulaire.

The car industry is the main application field of the Wolf laser robots. These robots are used for the welding of components of
small or medium size. The laser welding is adapted there because the result is perfectly airtight, what protects the sensitive
pieces against liquids and dusts. Besides, laser technology allows welding pieces having complex geometric forms.

There are also anthropomorphizing robots working in learning mode intended to paint complex form pieces and studied for every
application area. During the direct auto-learning programming, the user manually guides the robot in a complete pulverization
cycle on a sample piece using a lever.

The control computer save all trajectories and carried out commands then repeat them truthfully with the desired running speed.
This method tremendously facilitates the use of the robot because the user can control the program which is memorizing and
eventually correct its possible errors during the sample piece machining without problems.

After, having introduced some applications and some means used in robotized welding, the necessity to introduce some works
relate to this research field.

In literature, a little works were developed to solve the problem of tracking simple and complex curves. In [2] an approach which
tracks the evolution of an implicit function versus time was accomplished; the zero level corresponds to the origin or to the initial
position defining the boundary of the curve.

This approach is flexible and stable, but it is too slow for real time applications. In effect, in this method the updating requires
the calculation of function for all points of the curve or of the surface. In general, the tracking starts by the determination of the
boundary to be followed. We pointed out that if the initial boundary is not defined, the tracking algorithm risks hard failing. As
a result, the development of a quick and efficient algorithm is of big importance.

In [3] a comparison of tools machines and robots during the pieces machining was treated, an analysis of the influence of the
machine or the robot mechanical behaviour on task was made; the performances of the task realization quality were modeled,
simulated and assessed. In the conclusion, the taking into consideration of the triplet task/Haut du formulaire machine/commands
was proposed, i.e., to define new criteria allowing qualifying the influence of the structure on the task realization quality, the
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control law adaptation to the structure and to the constraints task.

In this paper we propose a method to solve the problem of tracking of curve and surfaces containing a multitude of welding
cords. It allows accomplishing quick prototypes of welding techniques [4]; it is quick in the standard algorithm calculation.

The paper is organized as follows: the second point is dedicated to the problematic; in the third point we introduce the methods
for models solving; the fourth point gives the generalized coordinates variation laws, whereas the fifth point is dedicated to the
inverse dynamic model of manipulator robots for complex forms tracking, and we end by a conclusion and perspectives.

2. Problematic

Actually, in the majority of mechanical systems such as industrial robots and mobiles robots with embarked structures, the
weight of the end-effector largely exceeds that of the supported load, thus the algorithms of these systems must be designed
basing on their dynamic models; moreover, the synthesis of an autonomous arm control algorithm must be realized by taking
into account the nonlinearity and the complexity of its dynamic model, this in order to increase the control efficiency.

The dynamic equation of the end-effector movement of a manipulator mechanism can be given by (1):

q (t) = f  ( q, q, M )
→ → → → →.. .

Where:  q , q represent the generalized position and speed coordinates,
→ →.

M  :  the vector of forces and moments.

The end-effetor acceleration can be given by (2):

→

→ → → → →.. .x (t) = J ( q ) q (t) + P ( q, q ). . → →

Where:

x (t) : represents the coordinate’s vector of an end-effector point,→

 q : represents the generalized acceleration coordinates vector of the end-effector point,

J ( q ) : Jacobain matrix,

P ( q, q ) : the vector of the load supported by the end-effector.

From the formula (2) we obtain:

→

→ →

→.

. .

→ →

→ → → →.. .q (t) = J    ( q )  x (t) − P ( q, q )
. . →−1 ⎤

⎦
⎡
⎣

3. Models Solving Method

The aim is to determine the generalized coordinates ϕp , Sp , Lp of the manipulator shown in Figure 1, by using the successive
approximation method.

By drawing up the Denavit and Hartenberg table, we obtain the passage matrices Ai (i = 1, 2, 3). The general case transformation
matrix is:

Tn =

(tn)11   (tn)12    (tn)13    (tn)14

(tn)21   (tn)22    (tn)23    (tn)24

(tn)31    (tn)32   (tn)33    (tn)34

   0          0          0           1

⎤
⎦

⎡
⎣

(3)

(1)

(2)

(4)
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A1 =

cosϕ1   -sinϕ1     0     0
sinϕ1    cosϕ1     0     0
   0            0         1      0
   0            0         0      1

⎡
⎣

⎤
⎦

The product of the transformation matrices Ai (i = 1, 2, 3) will be:

T3 =
⎤
⎦

⎡
⎣

−cosϕ1   0   −sinϕ1     S3 sinϕ1

−sinϕ1    0   cosϕ1     S3 cosϕ1

      0       1       0            L2
      0       0        0           1

(tn)µv : represents the elements of the matrix Tn.

The last column represents the end-effector position.

The coordinates of the point are given by:
x0 = −S3 sinϕ1

y0 = S3 cosϕ1

Z0 =  L2
⎩

⎧
⎨

This equation system allows us to obtain the inverse kinematic solution as follow:

ϕ1 = arctg
x0
y0

x0 + y0
;   L2 = Z2 ;    S3 = ± 2 2

⎠
⎛
⎝

⎞

3.1 Inverse Kinematic Model Solving Using Successive Approximation Method
It is not often possible to solve the inverse kinematic model by analytical methods, thus we use other methods which enable us
to control calculations. In the following, we present this method of transcendences equation systems solving.

The problem consists to find the value of m generalized coordinates as function of m given elements of the matrix Tn so that:
m ≤ 6.

In the case where we consider the robot have six degrees of freedom (6DOF), in this case m = n = 6 and we have six unknowns
which are (q1 ,..., q6)we suppose that the elements which are in the right and above the diagonal of      matrix are known; i.e., the
elements of the following matrix:

Tn

Tn =

.     (tn)12    (tn)13    (tn)14

.        .        (tn)23    (tn)24

.        .            .        (tn)34

.        .            .          .

⎤
⎦

⎡
⎣

For zero order approximation, the arbitrary generalized coordinates in the starting point are (q1  ,  q2   ,  q3  ,  q4   ,  q5  ,  q6    )
(0) (0) (0) (0) (0) (0)

The matrix nT as function of the generalized coordinates in form of Taylor development for n = 6 and limiting to the linear model
will be:

T6 = T6
(k−1)

∑+
j=1

6 dT6

dqj

(k−1)

(qj  _ qj       )
(k−1)(k)

Where
k : represents the interpolation number,
T6          : is an element of T6 matrix expressed by the approximate value of the generalized coordinates.k−1

(5)

(6)

(7)

(8)

(9)

(10)
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In the case where the manipulator has n < 6DOF and the number of the generalized coordinates unknown are equal to n, the
linear equation system can be written under the form (11):

(tn)µv = (tn        )µv +∑
j=1

n
(k−1) (qj  _ qj       )

(k−1)(k)(tn)vµ
(k−1)

The application for the case of 3DOF robot, of type RTT is shown in Figure 1. The position of the end-effector is M (x0 = 30, y0
= 100, z0 = 120).

3.2 Generalized Coordinates Determination Using Successive Approximation Method
From formula (4) we obtain:

(t3 )14 = 30..  (t3 )24= 100..  (t3 )34 = 120

The matrix obtained from the derivation with respect to (q1, q2, q3) will be:

u31 =

 sinq1     0   −cosq1   −q3 cosq1

−cosq1   0   −sinq1     −q3 sinq1

    0         0         0               0
    0         0         0               0

⎡
⎣

⎤
⎦

u32=

0     0    0     0
0     0    0     0
0     0    0     1
0     0    0     0

⎡
⎣

0     0    0     −sinq1

0     0    0     cosq1

0     0    0         0
0     0    0         0

u33= ⎡
⎣

The last column of the matrix (3) gives
(t3 )14 = −q3 sinq1; (t3 )24= q3 cosq1; (t3 )34 = q2 sinq1

The system (8) in this case accepts the form (15):

(tn)µ4 = (t3       )µ4 + (u31     )
(k−1) (k−1) (q1  _ q1      )

(k−1) + (u32     )µ4
(k−1) (q2  _ q2      )

(k−1) + (u33     )µ4
(k−1) (q3  _ q3      )

(k−1)

Taking into account of (12) and (14) and giving to µ the values 1, 2 and 3 successively we obtain the result (16)

30 = −q3     sinq1      − q3      cosq1
(k−1) (k−1) (k−1) (k−1)(q1  _ q1      )

(k−1) + 0 (q2  _ q2      )
(k−1) (q3  _ q3      )

(k−1)− sinq1
(k−1)

100 = −q3     cosq1      − q3      sinq1
(k−1) (k−1) (k−1) (k−1)  (q1  _ q1      )

(k−1) + 0 (q2  _ q2      )
(k−1) (q3  _ q3      )

(k−1)− cosq1
(k−1)

120 = q2       +  0
(k−1)   (q1  _ q1      )

(k−1) + 1 (q2  _ q2      )
(k−1) (q3  _ q3      )

(k−1)+ 0

We have obtained for the first sizes:
q1   = 0;  q2   = 0;  q3   = 0.

From (16) arise that: 30 = 0; 100 = q3    ;  100 = q2    ; 
(0) (1)

The obtained system does not have a solution. The presented example explains that any initial size is suitable. But it explains
also that the choice of the size sets is not important. For q3 = 0; the rotation of the 1st articulation with an angle q1 does not modify
the end-effector centre position in any case (such that the orientation changes). Thus, we must take the suitable positions for
our manipulator robot. In this case, we take:

q1    = 0; q2    = 0;  q3   = 50.(0) (0) (0)

(11)

(12)

(13)

(14)

(15)

(16)

(k) (k) (k)

(k)(k)(k)

(k) (k) (k)

(k) (k) (k)

(0) (0) (0)

;

;⎤
⎦

⎤
⎦
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For k = 0 putting these values in (16) we obtain:

30 = −50q1    ; 100 = 50 + ( q3    − 50);  120 = q2
(1) (1) (1) and which gives us:

q1    = −0.60; q2   = 120.00; q3   = 100.00.(1) (1) (1)

For k = 2, the 2nd approximation:

30 = −100  sin (− 0.6) −100  cos (− 0.6) ( q1    + 0.6 ) −sin (− 0.6) ( q3    − 100 );(2) (2)

100 = 100  cos (− 0.6) −100  sin (− 0.6) ( q1    + 0.6 + cos (− 0.6) ( q3    − 100 )(2) (2)

120 = 120  + ( q2    − 100 )(2)

which gives :

q1    = −0.283; q2   = 120.00; q3   = 99.47.(2) (2) (2)

For k = 3, the 3rd approximation:

30 = −99.47  sin (− 0.283) −99.47  cos (− 0.283) ( q1    + 0.283 ) − sin (− 0.283) ( q3    − 99.47 )(3)

100 = 99.47  cos (− 0.283) −99.47  sin (− 0.283) ( q1    + 0.283 + cos (− 0.283) ( q3    − 99.47 )(3) (3)

120 = 120  + ( q2    − 120 )(3)

(3)

which gives :

q1    = −0.292; q2   = 120.00; q3   = 104.40;(3) (3) (3)

For k = 4, the 4th approximation: q1 value becomes smaller than 10−3 and q3 smaller, which explain the end the calculation process.

Figure 1. 3DOF manipulator robot

(17)

(18)
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4. The Determination of the Generalized Coordinates Variation Law Corresponding to the end - Effector Displacement
Following A Given Trajectory

4.1 Rectilinear Trajectory
Let’s τ be the trajectory length traveled by the end-effector, δl is the small necessary displacement for describing the trajectory
set, ni is the corresponding intervals number, l is the traveled distance during one interval of period tl .For better approximation,
it is necessary to choose the smallest possible time interval (t0, t1). At the time t0the generalized coordinates are known and at
the end of this interval, i.e., at time t1we know the end-effector position. As the generalized coordinates corresponding to time
are obtained, we can use them for obtaining that which corresponds to time and so on.

The generalized coordinate corresponding to (t1, t2) is given by the formula (19):

qj   (tl) = qj (tl−1) + (qj (tl−1)) − (qj (tl−2))
(0) tl − tl−1

tl − tl−2

After having defined the calculation precision, there exists a case where the calculation volume is minimal when the interval
number ni is very high, the inverse kinematic model calculation loop is higher, in contrast, the imposed precision can be attained
by the 1st approximation. If ni is small, the inverse kinematic model calculation number will be weak, in the contrary, the precision
can be attained by the 2nd approximation.

Let’s determine the generalized coordinate’s variation law of the robot shown in Figure 1; we suppose that the end-effector move
following a rectilinear trajectory passing by two A and B as shown in Figure  2.

Putting ni = 10 and solving the inverse kinematic model by using the preceding formulas, the results are presented on table 1.
The table 1 shows that the generalized coordinates are obtained by the 1st, 2nd and the 3rd approximation. The initial approximations
started for l = 2, calculated from the formula (19). For q2 the 1st approximations give precise results yet. For q1 and q3 the 2nd

approximation gives a sufficient precision at the first and the last point; for the points existing in the middle of the trajectory
where q1 decrease, it is necessary to use the 3rd approximation.

4.2 Helicoïdal Trajectory [5]
Considering the case where the trajectory to be tracked is helicoidally (Figure 3).  R is the radius and b is the helices step

Figure 2. The end-effector displacement following AB

(19)
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0

30
100
120

120

-0.292
-0.292
-0.292
-0.292

104,40
104,40
104,40
104,40

1

22
85
114

114

-0.292
-0.259
-0.253
-0.253

104,40
87 .74
87 .80
87 .80

2

14
70

108

108

-0.215
-0.197
-0.197
-0.197

71.20
71.38
71.39
71.39

3

6
55

102

102

-0.141
-0.108
-0.109
-0.109

54.97
55.30
55.33
55.33

4

-2
40
96

96

-0.020
-0.051
-0.050
-0.050

39.26
39.95
40.05
40.05

6

-1
80
84

84

0.711
1.226
1.054
1.054

13.30
19.53
20.32
20.59

8

-34
-20
72

72

2.458
2.034
2.107
2.102

32.36
36.98
39.30
39.45

10

-50
-50
60

60

2.429
2.355
2.356
2.356

69.89
70.53
70.71
70.71

  l
x
y
z

q1

q1

q1

q1

q3

q3

q1

q3
q3

(1)

(0)

(2)

(3)

(1)

(0)

(2)

(3)

Table 1. The inverse kinematic model results

v is the displacement speed to describe the trajectory. The helices parametric equations in the landmark (XT , YT , ZT) are:

Z0 =  R sinϕ⎩

⎧
⎨r (ϕ) =

bϕ
2π

X0 = R cosϕ

Y0 =

In the contrary, in fixed landmark it will be:

p (ϕ) =

XT = x = − l1 + R cosϕ

YT = y = − l2 +

ZT = z = − l3 + R sin ϕ

bϕ
2π

⎩

⎧
⎨→

Figure 3. 2DOF helicoidally welding Robot

p (ϕ) =

x = − Rϕ  sinϕ

 y =

z = Rϕ cos ϕ

bϕ
2π

⎩

⎧
⎨→

.

.

.

.
.

.

.

R Calculation:

x2 + y2 + z2 = ϕ2 R2 +. . . . b2ϕ2

.

.

4π 2
= v2



   34                          Transactions on Machine Design   Volume   1   Number  1   February   2013

− R  sin ct
b

2π
.

ks2.

and :  k =

. .

4π 2

t + ϕ0

ϕ  = 2π v

4π 2 R2 + b2

.

By integrating this variable versus time t we obtain :

ϕ  = 2π v

4π 2 R2 + b2

.

Determination of the Frenet trihedral [5] (shown in Figure 4) :

4π 2 R2 + b2
=

p

||p||

.

.

→

→=eT
→

Rcos ct

⎡
⎣

⎤
⎦

= c
v

− R  sin ct
b

2π
Rcos ct

⎡
⎣

⎤
⎦

.

s = = 0s.
..

.p p..
→ →

s = v , eN
→ =

p

||p||

..

.

→

→

p..
→

s2.

Rc2

s2
cos ct−

Rc2

s2
sin ct−

= ⎡
⎣

⎤
⎦

p..
→

s2.

with :

c  = 2π v

4π 2 R2 + b2

1) The angular speed and acceleration of the trihedral:
Speed: From the Frenet-Serret theorem [6] we obtain :

ω  = − s (τeT + keB )
→→ τ =

k 2

(p ∧ p  ) p→→→ (3)

with : and :

p  =
p
s

.
.. .

.. .
..

.

→

→ p  =→ ps − ps
s3

..→ →

s = || p || = v
→

k = || p  ||     s =→ p p...→ →

s.

p     =→(3) (p    s − s     p) s − 3s (ps − sp)→(3) (3)→ .. ... .. .. .. →→

s5.

p→
Rc3 sin ct

= ⎡
⎣

⎤
⎦

0
− Rc3 cos ct

(3)

Acceleration:

ω  = − s (τeT + keB )
→→ − s (τeT + keB )

→→→ . ....

p→
Rc4 cos ct

= ⎡
⎣

⎤
⎦

0
− Rc4 sin ct

(4)

And the matrix which describes the desired position and orientation with respect to the landmark R0will be:

  st    nn    ab   p  =
→ → → → et    en    eb   p E−1⎡

⎣
⎤
⎦⎣ ⎦

.

. .

, ,,, .

→
,

,

→ → → →

,

′ ′

′

″

″→

.
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Figure 4. The trihedral vector of Frenet for the helicoidally trajectory

By using the inverse kinematic model calculation algorithm we obtain the articulated deflections. The articulated parameters
allow the end-effector to follow a helecoidal trajectory.

4.3 Case of a curve given by their movement equations
In the majority of industrial robots, the end-effector weight widely exceeds the load supported by it. Thus, the necessity of
taking into account of the effect of this weight in order to increase the efficiency of the robot control.

The movement of a 2DOF manipulator (Figure 5) is described by the following expressions: 

a11q1 + a12q2 = M1

a21q1 + a22q2 = M2

.. ..

....
where:

a11= m1.l1+ J1+ 4m2l1+ J1+ l2m2+ 4ml1l2 cos q2+ J2

a12= m2.l2 + 4m2l1l2 cos q2+ J2

M1= M1 + 2m2l1l2 sin q2 q1+ 2m2l1l2 sin q1 q2
2

a21= m2.l2+ 2m2l1l2 cos q2+ J2
2

a22= −(m2. l2 + J2)
2

M2= M1 + 4m2l1l2 sin q2 q1q2+ 2m2l1l2 sin q2 q1

l1 , l2 : the length of the link,

m1 , m2 : the weight of the link,

J1 , J2 : the inertial moments,

M1 , M2  : motors moments,

 M1 , M2 : the moments exerted on the articulations 1 and 2,′

So, the functions f1(q, q, M ) and f2(q, q, M )
 
which enter into the equation are presented under the form:..→ → → → → →

f1(q, q, M ) = (M1a22 − M2 . a12) / ∆f→ → →

f2(q, q, M ) = (M2a11 − M1 . a21) /∆f→ → →

0.9

0.8

0.6

0.5

0.7

-1.5 -1.45 -1.4 -1.35 -1.3 -1.25
-1.15-1.2 0

0.5

1

1.5

-11

... 2

2

.

.

.

′

′

′

2

(16)
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 where: ∆f = a11. a22 − a12. a21

From the kinematic equations of the manipulator we find:

x1 = −l1. cos q1q1 − x2 . q1− l2. cos (q1− q2) . (q1+ q2) − l2. sin (q1+ q2) q2
2.. .. ..... 2

Figure 5. Schéma d’un manipulateur plan à 2DDL

x2 = x1. q1− l2. cos (q1+ q2) . q2− l1 . sin q1 − l2. sin (q1+ q2) (q1+ q2)
2.. . ..2

Thence we determine the Jacobian matrix and the kinematic functions:

( p)
→

− x2 −2.l2. sin(q1+ q2)
=⎡
⎣

⎤
⎦

J
x1 − 2.l2. cos(q1+ q2)

P1(q, q ) = − l1 . cos q1. q1 − l2 . cos (q1+ q2) . (q1+ q2). . . . 22

P2(q, q ) = − l1 . sin q1. q1 − l2 . sin (q1+ q2) (q1+ q2). . . . 22

→ →

→ →

According to equation (7) and taking into account (16) we writ the prescribed value expression of the function f *(q, q, M *);→ → →

Μ1. a22 − Μ2 . a12⎡
⎣

⎤
⎦Μ2. a11 − Μ1 . a21

**

* *

1
∆f

= 1
∆

2.l2. cos (q1+ q2) x1⎡
⎣2.l2. sin (q1+ q2) − x2

X

.(k11. x1− k12 (x1− x1) − p1(q, q ))⎡
⎣

X
(k21x2− k22 (x2− x2) − p2(q, q)).

.

.

→

→

By solving (19) with respect to M1 , M2  we obtain:* *

M1  = a11 ; D1 + a12 ; D2

M2  = a11 ; D1 + a12 ; D2

*

*

where:

D1  = {2l2. cos (q1+ q2) .[k11x1− k12 (x1− x1) − P1(q, q)]* ..

+ x1.[k21. x2− k22 (x2− x2) − P2(q, q)].* }/∆

D2  = {2l2. sin (q1+ q2) .[k11x1− k12 (x1− x1) − p1(q, q)]* ..

+ x1.[k21. x2− k22 (x2− x2) − P2(q, q)].* }/∆

. .

.

⎤
⎦

⎤
⎦

.

.

(17)

(18)

(19)
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We find also the required motor moments:

M1  = a11.D1 + a12 . D2− 2m2 . l1. l2 sin q2 . q2 − 4.m2 . l1. l2 .sin q2 q1q2 ;
...2′*

M2  = a21.D1 + a22 . D2− 4m2 . l1. l2 sin q2 . q1.q2 − 2.m2 . l1. l2 .sin q2 q1  ;
.. . 2 2

For the motor functions we can write:

u =
Ria

kkM
M‘*+ 1

k
[(kω+ kv) . q + q ]

.

4.4 The tracking of any curve
Consider the case of the end-effector tracking a curve which is given by its multiple integral:

ϕ1 (x1, x2, x3)  and  ϕ2 (x1, x2, x3)
The boundary conditions are:

x( 0 )= x ;→
→ x( 0 )= 0 ;

→
x(α)= x  ;→→ x(α)= 0;→. .*

The motion equations along each coordinate are given as:

x1 − x1(t) = C11e
α11 12

t
+ C11e

α t
k→ →

;

x2 − x2(t) = C21e
α

21
22t + C22e

α t

*

→ →

;

x3 − x3(t) = C31e
α31 32t + C32e

α t*→ →

;

Where: xi  (i = 2, 3) : represent the solution of the system (22) for a fixed value of  x1  
;

xi (t) (i = 2, 3) : represent the current coordinates of the end-effector position.

The 1st equation ensures the exponential law of the end-effector displacement from the start point to the target of 1x coordinates.

The 2nd and 3rd equations characterize the difference between the trajectories passing through x2 and x3.the case (23) also
guarantees the asymptotic stability of the clamp motion along a given path. By the differential of the formula (23), we find the
corresponding acceleration vector.

x1 = α11α12  x1− x1(t)  + (α11  + x12) x1(t)⎣ ⎦k ...

x2 = α21α22  x2− x2(t)  + (α21  + x22)  x2− x2  + x2⎣ ⎦k ... ⎦⎣ . . *..
*

x3 = α31α32  x3− x3(t)  + (α31  + x32)  x3− x3  + x3⎣ ⎦ ... ⎦⎣ . . *..
*

xi  and  xi  values represent the 1st and the 2nd derivatives of the formula (22). Making the differential of (22) we obtain:... * *

xk = 0∑
3

*
∂ ϕi

k =1 ∂ xk

..

xj = 0
3

*
∂ ϕi

k =1 ∂ xk

.. +∑
k =1
∑

3

j =1
∑

3 ∂ 2ϕi

∂ xj∂ xk

∂ xk xb  xk = 0 i = 1, 2;. .

After we obtain : x1, x2 and x1, x2. as solution of the linear equations system (24); by changing in (23), x2 , x3  and x3, from. . .. ..* * * * . . .* * *

(20)

ϕ1 (x1 , x2, xn)  = 0
The problem is the determination of differential equations of the manipulator from the multiple integral so that the expression
(21) is the integral of these equations.

Given the motion trajectory in the form:

(21)

(22)

(23)

(24)

(25)

;

′*
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solutions (24) we obtain the programmed acceleration of the clamp
 
xk ,  with (k = 1, 2, 3) according to the coordinates of their 1st

derivatives and xk 
, is a quantity which can be loaded, using the 1st equation of the system (23).

In this way the unknown acceleration of the clip, obtained by the program (22), is a function of speed and coordinates. By
solving the equations (23), and (24) we find the generalized forces programmed as:

..*

..

→f (q, q, M ) = J −1 (q)[x(x, x ) - P(q, q)]
→→→ .. . .. → → → → →∗

Note that the obtained function is nonlinear which allows building the control system based on the inverse relations.

u  =
RI

kkM

→

m2 x = Q2 + N. n. i

[J −1(q)(−k1x1− k2) (x − x) − P (q, q  ))] + kW + kV) q + q* .. →→.→→→→ ***

Where : Ri, kM ,kW , kV , represent the motor parameters.

u * : the voltage.

The diagram of the control algorithm, realizing the motion of the manipulator along a given path is given in Figure 6.

4.5 Inverse dynamic model of manipulators for tracking of complex forms
The control algorithm construction of a manipulator for tracking a surface knowing the normal force at the contact point and the
speed of movement of the end-effector (instrument) (Figure 7) is given by.

→

→→..

(m1 + m2) . y = −P2 − P2 × Q1+ N. n. j.. → →

m1 , m2 : the weight of the manipulator links;

x, y : the coordinates of the centers of mass relative to the fixed coordinate systems xoy.

P1 , P2: the weights of the links 1 and 2,

Figure 6. The structural diagram of the robot controlling algorithm for tracking a given curve

Q1, Q2 :  active forces of the actuators,
N : the modulus of the normal force at the contact point of the end-effector with the surface,

n : the vector normal to the surface,
grad  f

| grad  f  |n =→

(26)

(27)

(28)

(29)

2 1 4

5 6 7 8 9

q q q q q q

q

q

q

−−−−−

M

M*

u*

. .

.

.−−−−−

3

f*(q, q*, M*)

−−−−−X(t)

.
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f (x, y) = 0 : Equation of the curve to be followed by the robot,

i, j : unit vectors,
→ →

grad  f  = . i + . j∂ f
∂ x ∂ y

∂ f→ →

grad  f  = +
∂ f
∂ x ⎠

⎛
⎝

⎞ ∂ f
∂ y ⎠

⎛
⎝

⎞2 2

m2 x = Q2 +
..

(m1 + m2) . y = −P2 − P2 × Q1+
..

N.

G

∂ f
∂ x

N.

G

∂ f
∂ x⎩

⎧
⎨

with G = | grad f |

The motor differential equation:
uv = Qv.k1 + Qv.k2

..

Figure 7. Robot diagram for tracking a complex 2D curve

uv : control voltage in v. m

k1, k2 : constant coefficient characterizing the motors, from (31) we find the expression of  Q2 ,

Q2 = − N.
∂ f
∂ x G + m2x

..

Taking the differential (34),

(30)

(31)

(32)

(33)

(34)

,
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.∂ f
∂ x

∂ f
∂ y

Q2 =

.

+ m2 . x

.

−N
G

∂ f
∂ x

N.

G
−

. x +∂ 2f
∂ x2 ⎠

⎛
⎝

⎞ ∂ f
∂ x ⎠

⎛
⎝

⎞
2

∂ 2f
∂ y2

. y. 1 − / G2⎡
⎣

⎤
⎦

N. . x +∂ 2f
∂ x∂ y

⎛
⎝

∂ 2f
∂ y2

. y. .
⎠
⎞. ...

G3

By solving (33) and (35) we obtain the expression:

.

∂ f
∂ x

∂ f
∂ y

u =

.

+ k1.m2. x

.
k1.N.

G G

. x +∂ 2f
∂ x2 ⎠

⎛
⎝

⎞ ∂ f
∂ x ⎠

⎛
⎝

⎞
2

∂ 2f
∂ y2

. y. 1 − / G2⎡
⎣

⎤
⎦

. x +∂ 2f
∂ x∂ y

⎛
⎝

∂ 2f
∂ y2

. y. .

⎠
⎞.

...
G3

. − −

k1.N.
−

k1.N. ∂ f
∂ x ⎠

⎞⎛
⎝

−
k2.N. ∂ f

∂ x
G

+ k2m2. x..

N = λ. (N − Npr) λ < 0

Npr : the programmed normal force module,

.

∂ f
∂ x

∂ f
∂ y

u = .

+ k1m2. x

.
k1.λ
G

. x +∂ 2f
∂ x2 ⎠

⎛
⎝

⎞ ∂ f
∂ x ⎠

⎛
⎝

⎞
2

∂ 2f
∂ y2

. y. 1 − / G2⎡
⎣

⎤
⎦

. x +∂ 2f
∂ x∂ y

⎛
⎝

∂ 2f
∂ y2

.

.

.

⎠
⎞.

...
G3

. − −
k1.N

+

k1.N. ∂ f
∂ x ⎠

⎞⎛
⎝

−
k2.N. ∂ f

∂ x
G

+ k2m2. x
..

(N − Npr).
G

. y.

We obtain :
.
u =− k1.λ (N − Npr). . ∂ f

∂ x / G + k2.Q2 + k1.Q2 + k1.Ν. ∂ f
∂ x / G

To ensure the tracking of the trajectory along a curve given by its equation and respecting the normal force acting on the end-
effector we have to choose an actuator delivering a load of Q2.

→

v = γ. (v − vpr ) γ  < 0

.

This formula guarantee the stability of the value of the end-effector motion speed relative to the surface.

v : the speed module,

x, y : the projection of the speed v along the axes of the coordinate system,

Deriving (14) with respect to time yields:

v = x2+ y2. .

γ  = γ. (v − vpr) = x.x / v + y. − P1− P2 + Q1 + N ∂ f
∂ x ⎠

⎞⎛
⎝ / G /  (m1 +m2). v

Drawing Q1 from (43) we obtain :

.

.. .

.
(35)

(36)

(37)

(38)

(39)

(40)

(41)

γ. (v − vpr) = x.y . y / v
Drawing y from (29) we obtain:

... . (42)

(43)

−

.

.

.

. .

.
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.
∂ f
∂ x

∂ f
∂ y

Q2 =

.∂ f
∂ x . y +∂ 2f

∂ x2 ⎠
⎛
⎝

⎞

∂ f
∂ x ⎠

⎛
⎝

⎞
2

∂ 2f
∂ y2

. x.

1 − / G2

⎡
⎣

⎤
⎦

.

− ∂ 2f
∂ x∂ y

⎛
⎝

∂ 2f
∂ y2

. x. .

⎠
⎞

G3

. (m1 +m2)
v
y

γ. (v − vpr) − v

.
+ (m1 +m2).

.. x.x

⎡
⎣

⎤
⎦

v
y

γ. v −
v

.
−.

 x2 + x.x

⎩

⎧
⎨

⎭

⎫
⎬

.
..

N
G

.
.

N
G

+

⎠
⎞⎛

⎝
N ⎛

⎝ ⎠
⎞ . y +

Using the formula (33) we obtain:

∂ f
∂ x

∂ f
∂ y

u2 =

.∂ f
∂ x . y +∂ 2f

∂ x2 ⎠
⎛
⎝

⎞ ∂ f
∂ x ⎠

⎛
⎝

⎞
2

∂ 2f
∂ x∂ y

. x. 1 − / G2

⎡
⎣

⎤
⎦

. − ∂ 2f
∂ x∂ y

⎛
⎝

∂ 2f
∂ y2

. x. .

⎠
⎞

G 3

. (m1 +m2)
v
y

γ. (v − vpr) − v

.
+ (m1 +m2)

.. x.x ⎡
⎣

⎤
⎦

v
y

γ. v −
v

.
−

 x2 + x.x

⎩

⎧
⎨

⎭

⎫
⎬

.
..

N
G

.
.

N
G

+ ⎠
⎞⎛

⎝
N ⎛

⎝ ⎠
⎞ . y +

.

.

k1+

+ v
y

.(m1 +m2) γ. (v − vpr) − v

. .. x.x
⎠
⎞⎛

⎝
∂ f
∂ x

N
G

.− + P1 + P2
⎤
⎦

k 2

5. Conclusion

During the execution of a tracking task, the end-effector is actually in contact with the curve or the surface. For this purpose, the
kinematic structure of the robot passes from an open structure chain to an enclosed structure. Contact with the environment
imposes additional kinematic and dynamic constraints that must be considered.

The approach used in the algorithm has significantly reduced the number of iterations needed to reach our result. The combination
of an alternative approach has improved the robustness of the tracking algorithm.

We obtained the control formulas for tracking a curve given by its equations and can be used to tracking an area by decomposing
it to parallel curves.

For future work, we state the need to continue this work to reflect the environment in which the robot will move, simulating
various applications in design software. The comparison of theoretical results with practical results is highly desirable.
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