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ABSTRACT: This paper proposes a new type of a sliding mode control algorithm based on Takagi-Sugeno fuzzy model for a
class of nonlinear systems. Firstly, we choose the sliding surface which gives a good behaviour during sliding mode. It is
formulated as an assignment of the poles of nonlinear system in a convex optimization area. Secondly, we design a nonlinear
control law leading the state trajectory on the sliding surface in a finite time. Finally, a flexible joint manipulator is given to
validate the theoretical results of our approach.
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1. Introduction

TAKAGI–SUGENO (T-S) models [1] have recently become a powerful practical engineering tool for modeling and control of
complex systems. In T-S fuzzy model, the nonlinear system can be approximated by the sum of several linear subsystems,
because of the difficulty of designing a model that takes into account the full complexity of a nonlinear system. The basic
principle of T-S is to represent the system as an interpolation of simple local Takagi-Sugeno models, by idea of sector nonlinearity.
Each sub-model describes the behavior of the system in a limited part of the operating space. The local validity of sub-model is
specified by an associated weighting function. The T-S models have been widely applied in many fields such as control [2].
Indeed, many control techniques have been reported, one of them is being the Variable Structure Control (VSC). This latter is a
robust control strategy characterized by a sliding mode and its robustness with respect to parameter variations and external
perturbations [3-4-5-6]. The sliding mode control (SMC) [11] is attained by designing the control laws which drive the system
state to reach and remain on the intersection of a set of prescribed switching surfaces. When in the sliding mode, the system
exhibits invariance properties, such as robustness to certain internal parameter variations and external disturbances.

Many approaches based on sliding mode control have been proposed to treat several control problems such as the uncertain
systems with uncertainties type norm bounded [2-7-8-9]. However, a little number of works has been proposed on the sliding
mode control of nonlinear systems based on Takagi-Sugeno fuzzy model [2-10].

The present work extends the results on hyperplane VSC design for nominal linear systems reported by Sellami et al. [8] to a class
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of nonlinear system described by a set of T-S model. Firstly, we design a robust fuzzy sliding mode surface. Secondly, once the
fuzzy sliding mode surface has been fixed, we propose the control law method such that the global fuzzy model presents the
desired dynamic characteristics.

This paper is organized as follows. In section II, a brief review of the T-S fuzzy modelling formulation is given. The proposed
approach is detailed in section III and IV. A numerical example will be is presented in section V treated to validate the theoretical
concepts. Finally, section VI summarizes the important features of proposed approach.

2. T-S Fuzzy Model

Consider a nonlinear system described by
x(t) = f (x(x)) + g(x(t)) u (t)
y(t) = h(x(t))

.

⎩
⎨
⎧

where f (.), g (.) and h(.) are the nonlinear functions with appropriate dimensions, x(t) ∈R n and u(t) ∈R m are respectively the
state and the input vectors.

The T-S modelling approach represents the behavior of the nonlinear system (1) by the interpolation of a set of linear sub-
models. Each sub-model contributes to the global behavior of the nonlinear system through a weighting function µi  (x (t)). The
system (1) can be represented with the Takagi-Sugeno fuzzy model (2), its i-th rule is given by [1]:

Model rule i

IF z1(t) is M1i and zp(t) is Mpi

THEN
x(t) = Ai x(t) + Biu(t)
yi (t) = Ci x(t)

.

⎩
⎨
⎧

where i = 1, 2,...r, M ji is fuzzy set and r is the number of fuzzy rule. Ai∈R n×n, Bi∈R n×m. z1(t) ~ z2(t) are known premise variable
may be function of the states measurable. We will use z(t) to denote the vector containing all the individual elements z1(t) ~ zp(t).

Given a pair of [x(t), u(t), z(t)], the final output of the fuzzy system is inferred by using the center of gravity method for
defuzzification

hi (z(t)) (Ai x(t) + Bi u (t)).

⎩
⎨
⎧ ∑

i = 1

r

x(t) =

y(t) =∑
i = 1

r
hi (z (t)) Ci x (t)

Here hi  are calculated as follow:
hi (z (t)) =

wi (z (t))

∑
i = 1

r
wi (z(t))

where wi  is given by:

Mji (zj (t))wi (z (t)) =
j = 1

p

∏

hi (z(t)) is regarded as the normalized weight of each model rule and Mji (zj (t)) is the grade of membership of zj (t) in Mji. The
membership values hi  have to satisfy the following conditions

hi (x(t)) = 1

⎩
⎨
⎧ ∑

i = 1

r

0 ≤  hi (x(t)) ≤ 1∀ i ∈{1, 2,..., r}

(1)

(2)

(3)

(4)

(5)

(6)
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Our objective is to achieve x(t) − xd (t) → 0 as t → ∞, where xd (t) is the desired state vector under the following assumptions:
Assumption 1: The matrix Bi  has full rank.

Assumption 2: Each linear sub-system of the global model is controllable if rank (Vi ) = n with Vi = [Bi , Ai Bi ,..., Ai     Bi ] for i =
1,..., r

n−1

3. Design of Fuzzy SMC Control Law

We can always design the SMC ui for each subsystem of (3) such that Si = ∩ Sj = {x ∈ Rn : Ci x = 0} are usually intersecting hyper-

planes passing through the state space origin. The sliding mode occurs when the state reaches and remains in the intersection
S i of the l hyper-planes. Geometrically, the subspace S i is the null space (or Kernel) of Ci.

Differentiating Si with respect the time

j = 1

l

S i= Ci x = 0
From (3) and (7), we get:

. .

S i= Ci Ai x (t) + Ci Bi ui (t) = 0
.

if (Ci Bi)
−1 exists, then

ueq, i = −(Ci Bi)
−1 Ci Ai x = −ki x

with
ki = (Ci Bi)

−1 Ci Ai

As a result, the dynamics x = (I − Bi (Ci Bi)
−1Ci ) Ai x describes the motion on the sliding surface which is independent of the actual

value of the control and depends only on the choice of the matrix Ci .

In order to achieve our objective, we choose the sliding surface that gives good behaviour during the sliding mode, and the
reaching step in which we select the control to ensure that the reaching condition is met.

3.1 Design of fuzzy Sliding Surface
The canonical form used in [13] for VSC design can be applied for all the local models in order to select the gain matrix Ci.

Assumption 3: There exists an (n × n) eorthogonal transformation matrix Ti such that Y =Ti x and Ti Bi  =               where Bi has
null rank m and B2, i is non-singular.

The transformed state variable vector is defined as

0
B2, i⎣

⎡ ⎤
⎦

Y =Ti x
The state equation becomes

Y = Ti  Ai Ti   Y + Ti Bi u
T

The sliding condition is
Ci x = Ci Ti   Y = 0    with  Ci Ti   = [C1, i C2, i]

T T

If the transformed state is partitioned as Y T =[Y1,i Y2,i ], with Y1,i ∈ Rn−m and Y2,i∈ Rm such asT T

Ti  Ai Ti   =
A11, i   A12, i
A21, i   A22, i⎣

⎡ ⎤
⎦

T

Then the system is given by
Y1 = A11, i Y1 + A12, i Y2

Y2 = A21, i Y1 + A22, i Y2 + B2, i u

.

⎩
⎨
⎧

.

Assumption 4: Ci Bi non singular implies that C2, i must also be non singular and the condition defining the sliding mode is:

Y2 = −C2, i  C1, i Y1 = −FiY1

Fi = C2, i  C1, i⎩
⎨
⎧

− 1

(7)

(8)

(9)

(11)

(10)

(12)

(13)

(14)

(15)

(16)

.

− 1



   52                          Transactions on Machine Design   Volume   1   Number  2   August   2013

with Fi is matrix of dimension m × (n − m) and the order of the uncertain system is (n − m).

The sliding mode is governed by the following system equations

Y1 = (A11, i − A12, i Fi ) Y1

⎤
⎦

Y1 = A11, i Y1 + A12, i Y2

Y2 = − Fi Y1⎩
⎨
⎧

.

where Y2 playing the role of a state feedback control.

The closed loop system is

This indicates that the design of a stable sliding mode requires the selection of gain matrix Fi such that Ψi = A11, i − A12, i Fi  has
(n− m) left-half-plane eigen-values.

3.2 Determination of the gain matrix Fi
To determine the matrix Ci and the gain Fi, the method of the LMI seems to us very effective. Indeed to improve the performance
of the control law and the response of system. We select to place the poles in a defined area [14], called area LMI who will allow
us to obtain from good result. For that we propose to choose all the eigen-values of the matrix in an area defined by equation (14)
such that is stable and its eigen-values are localised in:

• Conic sector centred at (0, 0) with inner angle θ
• Disc of radius r, and centre (q, 0)

• Vertical strip λ (Ψi ) ≺ σ

Chilali and Gahinet [14] have proven that the following inequalities will describe these regions

(Pi Ψi + Ψi Pi )s −(Pi Ψi − Ψi Pi )c

⎣
⎡

T

(Pi Ψi + Ψi  Pi )c   (Pi Ψi − Ψi  Pi )s

T

T T

⎤
⎦

− rPi         Pi Ψi − qPi

⎣
⎡

Ψi Pi − qPi     − rPi
T

where s = sinθ and c = cosθ

Figure 1. The damping sector Ω for root clustering

(17)

(18)

(19)

(20)

(21)Pi Ψi + Ψi  Pi − 2σ Pi ≺ 0T

LMI region Ω
r

Re

Im

π
2

− θ

σ

.

≺ 0

≺ 0
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Once the stabilizing matrix Fi is determined, the matrix Ci can be obtained by

Ci = [ Fi  Im ] Ti
4. Control Law Design

Once the existence problem has been solved that is the matrix has been determined, attention must be turned to solving the
reachability problem. This involves the selection of a feedback control function u(x) which ensures that trajectories are directed
towards the switching surface from any point in the state space.

The proposed control law consists of the sum of a linear control law uL, i and a nonlinear part uN, i , which has the following form:

u(x) = Li x + ρ
Ni x

|| Mi x || + δ
= uL, i + uN, i

where Li is an m × n matrix, the null spaces of the matrices Ni , Mi ; and Ci are coincident, and δ  is a small positive constant to
replace the discontinuous component by a smooth nonlinear function, yielding chattering-free system response. ρ is a design
parameter.

Starting from the transformed state [Y1, i Y2, i]
T , we form a second transformation T2, i : R n → R n such that:T T

z = T2, i  Y = [z1  z2  ]
TT T

with z1 ∈ R n− m and z2 ∈ R m where

⎤
⎦

In−m    0

Fi     Im⎣
⎡T2, i =

⎤
⎦

In−m    0

−Fi     Im⎣
⎡T2, i   =

− 1

Then the state variables z1 and z2 are

⎩
⎨
⎧ z1 = Y1

z2 = FiY1+ Y2

The transformed system is given by

⎩
⎨
⎧ z1 = Σ1, i z1 + Σ2, i z2

z2 = Σ3, i z1+ Σ4, i z2 + B2, i ui

.

.

with

⎩
⎨
⎧Σ1, i = Α11, i − Α12, i Fi

Σ2, i = Α12, i

Σ3, i = Fi Σ1, i − Α22, i Fi + Α21, i

Σ4, i = Α22, i + Α12, i Fi

4.1 Design of the linear fuzzy control law uL, i
The linear control law uL, i is obtained by taking z1 = z2 = 0, which is defined as.

uL, i (x) = − Β2, i  [ Σ3, i (Σ4, i − Σ4, i )]Τ2, i Ti x = Li x
− 1 ∗

with

Li = − Β2, i [Σ3, i (Σ4, i − Σ4, i )]Τ2, i Ti
− 1 ∗

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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where Σ4, i ∈ R m × m is a matrix such that its eigen-values are in the left half complex plane.

4.2 Design of the non-linear fuzzy control law uN, i

∗P2, i Σ4, i + Σ4, i P2, i Im = 0

V2, i (z2) = z2 P2, i z2
T1

2
−

where P2, i  is a positive definite matrix solution of
∗T

with P2, i z2 = 0 if and only if  z2 = 0

By differentiating (32), we obtain
V2, i (z2) = − z2 P2, i z2

T1
2
− + z2 P2, i z2

T1
2
−

. . .

and taking P2, i Σ4 = −
Im

2
⎛
⎝ ⎠

⎞ , (34) begin

V2, i (z2) =
|| z2||

2 + z2 P2, i B2, i uN, i
1
2
−

.

Using equation (23), the following equation can be obtained:

|| P2, i z2 || + δ
z2 P2, i uN, i = − ρ

P2, i z2 B2, i
− 1

then, the existence of V2, i (z2) < 0 is provided.

Finally, using Ti et T2, i , we find
Ni = −B2, i  [0  P2, i ] T2, i Ti

− 1

Mi = [0  P2, i ] T2, i Ti

5. Numerical Application

We consider the single link robot with flexible joint (Figure 2). This benchmark problem is investigated as a case study for the
control method proposed in this paper.

The single link flexible joint manipulator and its dynamics given as [12]

⎩
⎨
⎧ x1 = x2

x2 = x3

x3 = x4

x4 =
MgL

I
cos x1 + I

ksin x1 ⎣
⎡ ⎤

⎦
x2 +

MgL
I

+ ⎛
⎝ ⎠

⎞sin x1x3 +
MgL

I cos x1 + I
k

⎣
⎡MgL

I J
k+ ⎤

⎦ IJ+ k

.

.

.

.

where I is the link inertia moment, J is the motor inertia moment and M is the link mass. k is the joint elastic constant, is the L
distance from the axis of the rotation to the link center of mass, g (9.8ms−2) is the gravitational acceleration and u control input.

We assume that I =1Kgm2, J =1Kgm2, M =1Kg and k =1Nm−1 for the simplicity of calculation.

Figure 4 is the surface viewer, which defines the relationship between 2 inputs of the x1(t) and x1(t) with 1 output.

The membership functions for the states are shown in Figure 3. The fuzzy rules can be obtained by linearizing the nonlinear
equation at the point [x1 , x2] = [−π, 0, π]as follows

Rule 1 IF x1 is about 0 and x2 is about 0, THEN

(32)

(33)

(34)

(35)

(36)

(37)

(38)

u

*

*

.

2
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Figure 2. A flexible joint mechanism

Figure 3. Membership functions

Figure 4. Surface viewer
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.x (t) = A 1x(t) + B1u (t)

Rule 2 IF x1 is about 0 and x2 is about π, THEN
.x (t) = A2 x(t) + B2 u (t)

Rule 3 IF x1 is about 0 and x2 is about −π, THEN
.x (t) = A3 x(t) + B3 u (t)

Rule 4 IF x1 is aboutπ and x2 is about 0 , THEN
.x (t) = A4 x(t) + B4 u (t)

Rule 5 IF x1 is aboutπ and x2 is about π, THEN
.x (t) = A5 x(t) + B5 u (t)

Rule 6 IF x1 is aboutπ  and x2 is about −π , THEN
.x (t) = A6 x(t) + B6 u (t)

Rule 7 IF x1 is about −π and x2 is about 0 , THEN
.x (t) = A7 x(t) + B7 u (t)

Rule 8 If x1 is about −π and x2 is about π, THEN
.x (t) = A8 x(t) + B8 u (t)

Rule 9 IF x1 is about −π and x2 is about −π, THEN
.x (t) = A9 x(t) + B9 u (t)

where

   0         1         0          0
   0         0         1          0
   0         0         0          1
−9.8       0      −11.8     0

⎤
⎦⎣

⎡
A1 =

, A2 = A3 =

   0         1         0          0
   0         0         1          0
   0         0         0          1
86.9       0      −11.8     0

⎤
⎦⎣

⎡ ,

A4 = A7 =

   0         1         0          0
   0         0         1          0
   0         0         0          1
 9.8        0       7.8         0

⎤
⎦⎣

⎡

A5 = A6 = A8 = A9 =

   0         1         0          0
   0         0         1          0
   0         0         0          1
 86.9     0        7.8         0

⎤
⎦⎣

⎡ , Bi = [0   0  0  1]T, i = 1, 2, ..., 9

Using LMI feasibility problem (19) to (21), the eigen-values of the sliding motion represented by the system matrix Fi were
required to lie in the intersection of the following regions

• A conic sector symmetric about the real axis, with inner angle θ  =
π
8
− (rad)

• A circle of centre (0,0) and radius10

• A vertical upper bound at σ  = −3.5
Fi = [180, 6534    −17, 8599    −99,5267],   for i = 1, 2, ..., 9

Ci = [−180, 6534    −99, 5267   −17,8599     −1],   for i = 1, 2, ..., 9

We get for Σ4, i = {−30}, ρi = 28 and  δi = 0.001the following results:

L1 = 103 [−5, 4098    −3, 1665   −0,6235     −0,0479]

L2 =  L3 = 103 [−5, 5065    −3, 1665   −0,6235     −0,0479]

*
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Figure 5.  The evolution of state variables
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Figure 8. Closed-loop modes

The robustness of the proposed sliding mode control law is shown Figures 5 and 6. A similar analysis can be seen also in Figures
7 and 8.

6. Conclusion

A sliding mode control design approach for nonlinear-time invariant systems has been proposed in two steps. The first step
consists in the synthesis of the sliding surface which gives a good behaviour during the sliding mode. It corresponds to the
study of the problem of existence. In the second step, a nonlinear control scheme is introduced. It provides a bounded motion
about the ideal sliding mode. Numerical simulation has been presented showing the efficiency and the robustness of the
proposed method.
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