FPGA Based Rapid Prototyping of a Crosstalk-resistant Adaptive Decorrelator
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ABSTRACT: This paper describes a method of rapid prototyping of a Field-Programmable Gate Array (FPGA) based
adaptive decorrelator. The decorrelator has the ability to separate two acoustically mixed sound sources in real-time. The
separation method used is known as a Crosstalk Resistant Adaptive Noise Canceller (CRANC) or often a Symmetric Adaptive
Decorrelator (SAD). The implementation is performed on a National Instruments Compact Rio and programed in a subset
language of LabView (or G code). The algorithm runs two concurrent least-mean squares (LMS) which are cross-coupled to
each other. The nature of the implementation means that several CRANC filters can be cascaded and pipelined to speed up the
throughput.
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1. Introduction

The problem of separating random unknown noise and a desired random signal (e.g a speech signal) has been one of interest
since the pioneering work of Wiener [1] and Kalman [2]. Such approaches require accurate models of the time-varying charac-
teristics of signal and noise in order to be successful. In areal environment rarely do we have the opportunity to have such
information at hand, and a noise or signal source can arrive in various forms from any direction. So with no such apriori
information available, it was not until the early work of Widrow and co-workers[3] that algorithmsthat “ self-learned” character-
istics obtainable from more than one sensor became available. The approach made use of an earlier invention based on the
mathematical method of steepest descent and isknown asleast-mean squares (LM S) [4]. The Widrow method had applications
in environments where the geometry wasfixed (ie the layout of the room and position of the signal and noise sources) and used
asecond (or more) reference sensor to pick up the noise on itsown. (often adistance away from the signal) Thisnoise, although
correlated with the additive noise to be removed, needsto be aligned in frequency and amplitude by means of the LM Salgorithm
and subtracted from the signal plus noise.

The above approach can be made to work under certain restricted environments, but it soon became apparent that having the
two (or more) sensors far apart was not as practical as having them close together. Many approaches have been used to try and
solve the problem where the sensors are close together. These include switching techniques which require a voice-activity
detector (VAD) to distinguish signal from noise[5]. The problem with thisisthat the cancellation is only as good as the speed
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and accuracy of the VAD which often fails at low signal to noise ratios (SNRs) or is unable (or fast enough) to distinguish
between two competing talkers. Ordinary LM S noise cancelling and its variants have aready been implemented el sewhere on
FPGA deviceg 6-12].

A more modern approach is known as blind-source separation (BSS)[13] where aVVAD is not required and the sensors can be
closetogether. The BSS approach isfar more computationally difficult to implement on an FPGA, though some attempts have
been made already eg [14] for aconstant mixing matrix and [15] for convolutive mixtures.

A compromi se between the more complex BSS method and the moretraditional LM S approachesisfound in adaptive decorrelation
methods] 16-21]. These methods do not attempt to do any filtering as such, but instead remove the interlinking cross-coupling
transfer functions between the sources. | n essence, these methods are aform of diagonalization of the cross-correl ation matrix.
The simplest form of these decorrelators is often known as a crosstalk-resistant adaptive noise canceller (CRANC) or even a
symmetric adaptive decorrelator (SAD)[22]. The method uses two cross-coupled L M S algorithms as shown in the next section.
It isthistechnique whichisimplemented herein using an FPGA programmed in LabView “G” code. Thisisnot thefirst timethat
LabView has been used to implement an adaptivefilter on aCompactRio (eg[23] ), but thisisthefirst such implementation of the
two-input decorrelator. A much earlier implementati on was performed on aMasscomp mini-computer obtaining up to 11dB SNR
improvement for asampling frequency of 8kHz with 24 taps/L M S[19]. The advantages of using FPGAsarewell known. These
include the inherent parallelism leading to faster run-times and lower power consumption than DSP processors.

2. Theory

We have two random signals t&, tlfwhich are mixed viathe natural acoustics occurring in aroom. Figure 1 illustrates this. The
object of the exercise is to separate these two signals using so-called blind-source separation. In other words no apriori
information isknown other than the fact that there are only two random signals. If thetwo received signals (after having passed

through some acoustic mixing transfer functions) are known as Skl Skzthen we have a2 x 2 coupling matrix of FIR transfer
functions H, , (provided it is non-singular),and
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Figure 1. Showing acoustic mixing and the FPGA separator. Microphones are 6¢cm apart
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If H,, issingular then the two sources cannot be separated. This would be the case when two signal's originated in the same
geometric position.

In equation (1), (g ) is defined as the backwards shift operator such that for a discrete signal Y, we have q? Y& Y 1
A block-diagram of the mixing processis shownin Figure 2.
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Figure 2. Block diagram of the acoustic mixing process

It is the cross-coupling terms which are to be removed. However, they are unknown along with the forward path terms. To
proceed, we must further assumethat h.,, and h, , are both minimum-phase and writein matrix format

1 1 9, @ | [r)
[:?]:[guml) 1 ]H @
wherer =h, t! andr—h

11t o L 912— h.,/h,,,9,,=h, /h andweestimatether, termsinstead of thet, terms. Ther signalswill

differ from the tksgnals only by FIR transfer functlons h,,and h,,. Hence we are only mtere;ted in separation and not
necessarily obtaining ideal estimates of the signals themselves (which if required need further single-channel deconvolution).
Wefind that in practice, convolution by these (unknown) FIR acoustic transfer functions make no differenceto the quality of the
decorrelated signal. Thisisillustrated below in Figure 3.
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Figure 3: Simplified mixing process where there are only two unknown cross-coupling terms and the forward paths are unity

Separation is then found via the weight-vector updates of the two LMS algorithms. For n weights/LM S we have
1 _ 1 LT
W,y = W+ 14, €} (X)
If+1_W2+‘u2 ek (Xk)T

(3ab)

kK
i =1, 2. Wemake the assumption for strict causality that thetwo polynomialsg,,(0) =g,, (0) =0. The i, u, coefficientsarethe
step sizes of the individual LMS algorithms. Since the algorithm is symmetric, we usually make u = u,= u,The two-input
decorrelator isillustrated in Figure 4 and its adaptive counterpart in Figure 5.

Whereei=s/-X wi ,i=1,2,X —[ek 1 82-.62]TandX=[el,el....e1 ]".Thetwo de-correlated randomsignalsaref, = el'(
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Figure 4: Backwards eparation method[17]
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Figure 5: Two input decorrelator showing cross-coupled LMS.

It isknown from several theoretical studies[18, 24] that the above algorithm givesriseto biased estimates and as such does not
give rise to “optimal” estimates in the sense of |least-squares. However, the algorithm is a good compromise when limited
resources are avail able for implementation in areal -time environment and still give excellent performance.

3.Architectureof theReal-timeTar get

An FPGA rapid-prototyping architecture was chosen as the target for implementing the real-time adaptive decorrelator -the
National Instruments CompactRio (Trademark of National Instruments). Thetwo LM Salgorithms can easily berunin parallel
and an FPGA isideal for this. Ordinary sequential programming islimited by the so-called Van Neumann bottleneck of fetch and
decode for each instruction. Even though threaded programming is possible on aconventional processor, the effect ispurely an
illusion, as the processor merely time-division multiplexes between different threads and is not truly concurrent. Of course
multiple processors can be used as an alternative approach to this problem provided one can communicate fast enough between
them.

An FPGA array on the other hand has no processor at all and runs code as a digital circuit often at much lower clock speeds.
However, sinceit isadigital circuit, any code must run concurrently unlike threads in a conventional processor. This enables
applications for low power consumption with fast speed.

TheRio runsasastand-alone unit and is programmed in the high-level data-flow language LabView. The Rio used in thefirst set
of experimentsisbased ontheVirtex 5 integrated circuit from Xilinx and has an eight-slot reconfigurable embedded chassisthat
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Figure 6: Compact Rio structure.

acceptsany CompactRIO I/O module. In fact little knowledge of hardware descriptivelanguages such asVHDL arerequired at
all and we can implement the complete algorithm using this rapid prototyping approach. The Rio islinked to ahost PC viathe
Ethernet for programming purposesand initial testing (Figure 6) . A 4-input sigma-deltaA/D convertor was used and a4-ouput
D-A convertor. We only use two of these inputs and outputs and the remainder are left for future algorithm expansion when
using more sensors. The sampling rateis easily changed on the host computer. The Rio hasits own processor onboard, but for
thisapplication only the FPGA was used in the end module. Early versions of the program used the PC as an oscill oscopeto view
the estimated signals. Thisis done by a FIFO and using the onboard co-processor on the Rio. This overhead is not required on
thefinal working module however.

For n weights, the algorithm in equations (3a,b) requires approximately 4n multiplications and 4n additions, twice as many as
ordinary LMS. Two cross-coupled L M S algorithm has many advantages however. Onein particular which has not been exploited
until now, isthe ability to split the overall filter of order ninto two cascaded filters of order n/2. Thisis because there are two
outputs (errors) unlike the usual one output for conventional LM S and these feed naturally into the two inputs of the next stage.
Normally there would be no advantage of doing so, but on an FPGA we can use pipelining to execute the two stagesin parallel
offering further computational efficiency at the expensive of atime-delay of n/2 sampleswhilst thefirst stage “fillsup”.

Pipelining isthe use of feedback nodes or shift-registersin order to allow itemsthat would normally execute serially to execute
in parallel. Within a negative feedback loop it is not possible to add pipelining, since this adds a time-delay which in turn de-
stabilizestheloop. Thisiswhy the decorrelator is split into two separate decorrelators as shown in Figure 7. This of course can
be extended to more stages, but this uses more space on the FPGA. Likewise several parts of the individual LM S algorithms
themselves were sped up considerably by exploiting parallelisms. A computation Xkka such asused in ordinary LM S (a dot
product of two vectors) can be split into two parallel loops by the following.Let X = [x;(,l xf] and w, = [W’IL(, V\?k] .Then the dot

product becomes XkTWk: ()Zkl )T vT/ll(+ ()”(k2 )T Wﬁ which will run twice asfast due to the parallel computation. This does not affect
the stability of the loops (unlike pipelining), because the two computations which run in parallel have to wait for each other to
finish before they can add the result for the dot product.

The update equation of the weight vectors (3a,b) were al so split into two parallel updatesto give further improvement. Splitting
up dot productsin this manner however uses more space (gates) on the FPGA as the cost of the improvement in speed. Thisis
because the LabView code will not “unwrap” a FOR loop, and creating two of them must double the silicon space used. There
aretwo methods used to store weight vectors on the FPGA. Thefirst method isby using arrays, which isvery expensiveon dlice
registers.

Asfar aspossiblethelength of any arraysare usually quitelimitedin size. It was possibleto obtain arrays of length 50 terms (X4
for two LM Salgorithms). In order to get more weights, asecond ANC (ANC2 in Figure 7) of equal sizewas used in cascade using
pipelining and block Ram. It was not possible to use the block ram approach on both ANC’sfor agood sampling rate so amixture
of thearray method and block Ram method were used. In thisway, asampling frequency of 33.3kHz was obtained. TheADC was
24 bitsand the whole algorithm used 24 bitswith 4 bitsinteger and 20 bitsfraction. A simulation was carried out using the fixed-
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point algorithm in ordinary LabView first in order to verify that these values were sufficient for the dynamic range of theADC.
Thisasogaveavaluefor thestepsizeof u =y, =y, around 0.008. Thisin turnisimplemented for speed using integer arithmetic
using apower of 2, inthiscaseu=2""= 20.0078125.

A small part of the array-based cross-coupled LM S graphical codeis shown in Figure 8 bel ow.

ANCH1
so /] :
Inputs from E Store Values
ADC in registers
ANC1 out
O 7 | »
ANC2
A :
Retrieve g
ANC2 out to
ANC1 out
from DAC
registers >
-+

Figure 7. Pipelining two stages of decorrelation (adaptive noise cancelling ANC)
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Figure 8. Implementation of equation (3a) using arrays.

ThisisaFOR loop which isauto-indexed (that is the loop runsfor the length of the input array) and runs as many times asthe
number of weights. At the two ends of the graphical FOR loop are registers which store the updated weights sample by sample.
Thisisstandard “G” based programming except it isin Fixed-Point arithmetic. The same bit of code but run using the memory
method instead of arraysis shownin Figure 9 below.

Alsointhiscodeisatimed while-loop. Thisisincluded as an extrafinesse. Using atimed-loop executesthe codewithinit in one

clock cycle (40MHz base clock) instead of one clock cycle per operation. It isnot always possible to do thisand the compiler will
indicate an error where there are timing problems. In this case however it satisfies the hardware requirements.

Figure 10 showshow X, w, issplitinto two summationswhich exploit the parallelism of an FPGA.
X = (5) "W ()" o

Finally, Figure 11 shows how simpleit isto implement pipelining by introducing registers (here shown asadelay for both inputs)
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between the two cross-coupled LM S algorithms.
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Figure 9: Implementation of equation (3a) from memory RAM method.
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Figure 10: Dot product of two vectors split into two parallel pieces of code. (RAM method).
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Figure 11: Pipelining of thetwo CRANC algorithms.
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Optional FPGA software automatic gain controls (AGCs) were put on both A/D inputs asafurther precaution against saturation
of the input signals. These are discussed in the Appendix .

4. Performance of the Real-timeAdaptive Decor relator.

Thedecorrelator (in fact two decorrelatorsin pipelined cascade), used atotal of 92 weightsat asampling frequency of 33.33kHz.
Thiswas not an equal split, but asplit of 50 weights on the array based decorrelator and 42 on the block Ram based correlator.
For a sampling freq of 33.33kHz, and the speed of sound taken to be 340m/s, we can easily calculate that an acoustic transfer
function with maximum delay of 92Ts secs can be accounted for, where Ts is the sampling interval of 30%s. The distance
travelled in thistimefor 92 weightsis 0.94m. We therefore assume that path lengths (the length of signal source to microphone)
can be no longer than thisdistance. Thisisquite adequate for some applications but unsuitable for roomswith large reverberation
times.

In order to compare with similar algorithms, we used a pre-recorded stereo file obtained from L ee at the Salk institute. Thiswas
recorded in aroom of a person speaking numbers from one to ten with aradio acting as interference. In his work, he used an
infomax approach in afeedforward neura network implemented in the frequency domain using apolynomial filter matrix algebra
technique.

Thisfile was repeatedly played and re-recorded by a digital audio recorder and used as the source. It was then played into the
compact Rio and the output was recorded digitally with the decorrelator periodically switched on and off for comparison. A
block diagramisshownin Figure 12.

Compact
Rio DAC+LPF
recorder , recorder
Play [record

(can be replaced with
microphones)

Figure 12: Block diagram of experimental setup.
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Figure 13: Channel 1 recording of FPGA error output 1. The decorrelator is switched off half way through and showsthe re-
emergence of the background music.
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This method was chosen rather than a “live’” method with two microphones, because of repeatability of the experiment. The
same section of mixed speech (or speech plus noise) can then betried on any algorithm for comparison purposes. The SNR was
measured before and after the FPGA decorrel ator was used and an improvement of around 11dB was measured. (see Figure 13)
The results obtained were clear of any audio distortion but not as good as the Infomax solution. However, the Infomax solution
was not obtained in real-time and isfar more complex to implement than this approach.

We see the range of the decorrelator for different bandwidth (ie sampling frequencies) in Table 1.So at the expensive of less
available bandwidth and poorer quality of speech, more weights are available for use and hence more distance from the
microphone at which the signals can be separated.

Bandwidth(kHz) | Total Noof weights | Distancefrom Microphones(m)
5 70 048
16.65 % 0HA
6.25 m 3
5 130 44
416 150 6.1

Table 1. Maximum number of wei ghtsfor agiven bandwidth.

5. Further Improvements

Withmoremodernimprovementsto FPGA logic gates(inthiscaselarger arrays), it will alwaysbeableto improvesuch algorithms.
At thetime of writing, aRio unit based on the Spartan 6 L X 150 which has 147K logic cellswas used for asecond experiment.
Further s mplification wasused by reducing theword length used. 16 bit wordswereused asis more common, with 13 bit fraction
and 3 bit integer. Thedynamic range of the anal ogue datawasthen 3.999 to -4 volts. (Often written as Q3.13 or <16,3>format) It
wasfound that despite the amount of resourcesused by arrays, that the trade-off with using memory instead did not offer any
improvements of significance, sincethe ROM memory fetch cycle and write slowed down the overall speed and hencethe
sampling rate. With the new architectureit was possibleto implement adecorrel ator with 300 weightsin total pipelined across
three cascaded decorrel ators each of length 100. (shownin Figure 14 below). The ability to handlelarger-order decorrelatorsis
important in that for roomswith large reverberation times (normally measured and defined asthe T60 timefor sound to diminish
to 60dB of itsoriginal value), thefilter orders must also belarger. Thisisaside from the sasmpling rate which determinesthe
bandwidth (Nyquist rate) and the avail able maximum distance from the microphonesto the sound sources.
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i et E)l[é]
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? ] Scale Output DAC g
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| lﬁ% Rleset? o False *Hf
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Figure 14: Showing three pipelined CRANC algorithms
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Thisarchitecture was ableto have asampling time of 33.3kHz. The Speech-Speech mixturewav files of Girolami were processed
using thismethod [25]. Thefileswere played through the digital recorder directly into the ADC of the FPFA decorrel ator. A good
level of separation was achieved for each channel. Crosstalk from the respective other channel was detectabl e by the human ear
for both channels, but the level was quite insignificant and barely audible. The speech signals are shown in Figure 15 below.

6.Conclusions

The implementation of areal-time decorrelator for separating two random (but correl ated) signals has been shown. The FPGA
approach offers many advantages over straight DSP implementationsin that parallelism isinherent in the design together
with lower power consumption. The decorrelator has been successfully applied to the separation of real-time speech signalsand
should prove useful in many areas of speech processing. The work also highlights the fact that in such specialized areas of
signal processing it is not aways possible to have small filter sizes and the hardware is only just coming to a stage whereit is
becoming of practical use and could facilitate the devel opment of many new products.

Speech Mixture
0.5 T T T T T

(=1
(5]

Channel 1 Estimate
T

0 2 4 6 8 10

Channel 2 Estimate

Time (Samples)

Figure 15: Shows original acoustic speech mixture and the two separated channels.

Appendix Automatic Gain Contral

The automatic gain control used (AGC) isbest explained from Figure 16.

Setpoint
Filter
Multiplier abs ()
Signal In +
—
AGC out

Figure 16. Automatic Gain-Control (AGC)

TheAGC consists of avoltage-controlled amplifier (hereamultiplier isused), adetector for amplitude (here an absolutevalueis
used but a squarer could be used instead at the expense of greater computational load), a setpoint and afilter. Typicaly the
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setpoint is set to unity and definesthe size of the envel ope of the AGC ouput. There is no advantage herein using asquare-law
instead of the absolute value as both give similar results. The filter output will be slowly varying and in the case of a constant
envelope at the signal input, will be dc,with asmall amount of ac feed-through added to this depending on the bandwidth of the
filter. Thisdc will, by the principle of negative feedback either get bigger or smaller ininverse proportion to the envelope of the
input signal. Asthe signal gets bigger the filter output will get smaller and hence reduce the AGC output back to stable level.

A pureintegrator could be used instead of thelowpassfilter, but thisresultsin an overflow condition (theintegrator triesto ramp
to infinity) when the signal input is theoretically zero or not connected. So instead a “leaky” integrator (or lowpass filter) is
used. This gives afinite steady-state error to step changed in signal envelope, but thisis not critical for this application. The
bandwidth of theloop isonly afew Hz, since making the bandwidth too high, resultsin amplification of additive noise and even
distortion and flattening of the signal envelope. Typically the octerm must be lessthan unity (for stability) and avalueof oc=0.5
=2 ~'was used for the real-time application which is conveniently anegative power of 2, asis1 — .
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