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FPGA Based Rapid Prototyping of a Crosstalk-resistant Adaptive Decorrelator
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ABSTRACT: This paper describes a method of rapid prototyping of a Field-Programmable Gate Array (FPGA) based
adaptive decorrelator. The decorrelator has the ability to separate two acoustically mixed sound sources in real-time. The
separation method used is known as a Crosstalk Resistant Adaptive Noise Canceller (CRANC) or often a Symmetric Adaptive
Decorrelator (SAD). The implementation is performed on a National Instruments Compact Rio and programed in a subset
language of LabView (or G code). The algorithm runs two concurrent least-mean squares (LMS) which are cross-coupled to
each other. The nature of the implementation means that several CRANC filters can be cascaded and pipelined to speed up the
throughput.

Keywords:FPGA, Adaptivve filtering, Decorrelation, LabView, CRANC, SAD, LMS

Received: 22 May 2013, Revised 29 June 2013, Accepted 5 July 2013

© 2014 DLINE. All Rights Reserved

1. Introduction

The problem of separating random unknown noise and a desired random signal (e.g a speech signal) has been one of interest
since the pioneering work of Wiener [1] and Kalman [2]. Such approaches require accurate models of the time-varying charac-
teristics of signal and noise in order to be successful. In a real environment rarely do we have the opportunity to have such
information at hand, and a noise or signal source can arrive in various forms from any direction. So with no such apriori
information available, it was not until the early work of Widrow and co-workers [3] that algorithms that “self-learned” character-
istics obtainable from more than one sensor became available. The approach made use of an earlier invention based on the
mathematical method of steepest descent and is known as least-mean squares (LMS) [4]. The Widrow method had applications
in environments where the geometry was fixed (ie the layout of the room and position of the signal and noise sources) and used
a second (or more) reference sensor to pick up the noise on its own. (often a distance away from the signal) This noise, although
correlated with the additive noise to be removed, needs to be aligned in frequency and amplitude by means of the LMS algorithm
and subtracted from the signal plus noise.

The above approach can be made to work under certain restricted environments, but it soon became apparent that having the
two (or more) sensors far apart was not as practical as having them close together. Many approaches have been used to try and
solve the problem where the sensors are close together. These include switching techniques which require a voice-activity
detector (VAD) to distinguish signal from noise[5]. The problem with this is that the cancellation is only as good as the speed
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and accuracy of the VAD which often fails at low signal to noise ratios (SNRs) or is unable (or fast enough) to distinguish
between two competing talkers. Ordinary LMS noise cancelling and its variants have already been implemented elsewhere on
FPGA devices[6-12].

A more modern approach is known as blind-source separation (BSS)[13] where a VAD is not required and the sensors can be
close together. The BSS approach is far more computationally difficult to implement on an FPGA, though some attempts have
been made already eg [14] for a constant mixing matrix and [15] for convolutive mixtures.

A compromise between the more complex BSS method and the more traditional LMS approaches is found in adaptive decorrelation
methods[16-21]. These methods do not attempt to do any filtering as such, but instead remove the interlinking cross-coupling
transfer functions between the sources. In essence, these methods are a form of diagonalization of the cross-correlation matrix.
The simplest form of these decorrelators is often known as a crosstalk-resistant adaptive noise canceller (CRANC) or even a
symmetric adaptive decorrelator (SAD)[22]. The method uses two cross-coupled LMS algorithms as shown in the next section.
It is this technique which is implemented herein using an FPGA programmed in LabView “G” code. This is not the first time that
LabView has been used to implement an adaptive filter on a CompactRio (eg [23] ), but this is the first such implementation of the
two-input decorrelator. A much earlier implementation was performed on a Masscomp mini-computer obtaining up to 11dB SNR
improvement for a sampling frequency of 8kHz with 24 taps/LMS[19]. The advantages of using FPGAs are well known. These
include the inherent parallelism leading to faster run-times and lower power consumption than DSP processors.
.
2. Theory

We have two random signals t
k
, t

k 
which are mixed via the natural acoustics occurring in a room. Figure 1 illustrates this. The

object of the exercise is to separate these two signals using so-called blind-source separation. In other words no apriori
information is known other than the fact that there are only two random signals. If the two received signals (after having passed
through some acoustic mixing transfer functions) are known as S

k
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 then we have a 2 × 2 coupling matrix of FIR transfer

functions H
11

(provided it is non-singular),and
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Figure 1. Showing acoustic mixing and the FPGA separator. Microphones are 6cm apart
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geometric position.
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In equation (1), (q−1) is defined as the backwards shift operator such that for a discrete signal y
k
 we have q−1 y

k
= y

k −1
.

A block-diagram of the mixing process is shown in Figure 2.
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Figure 2. Block diagram of the acoustic mixing process

It is the cross-coupling terms which are to be removed. However, they are unknown along with the forward path terms. To
proceed, we must further assume that h
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differ from the t
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signals only by FIR transfer functions h
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and h
22

. Hence we are only  interested in separation and not
necessarily obtaining ideal estimates of the signals themselves (which if required need further single-channel deconvolution).
We find that in practice, convolution by these (unknown) FIR acoustic transfer functions make no difference to the quality of the
decorrelated signal. This is illustrated below in Figure 3.
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Separation is then found via the weight-vector updates of the two LMS algorithms. For n weights/LMS we have
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Figure 3: Simplified mixing process where there are only two unknown cross-coupling terms and the forward paths are unity
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step sizes of the individual LMS algorithms. Since the algorithm is symmetric, we usually make µ = µ1= µ2The two-input
decorrelator is illustrated in Figure 4 and its adaptive counterpart in Figure 5.
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Figure 4: Backwards eparation method[17]

Figure 5: Two input decorrelator showing cross-coupled LMS.

It is known from several theoretical studies[18, 24] that the above algorithm gives rise to biased estimates and as such does not
give rise to “optimal” estimates in the sense of least-squares. However, the algorithm is a good compromise when limited
resources are available for implementation in a real-time environment and still give excellent performance.

3. Architecture of the Real-time Target

An FPGA rapid-prototyping architecture was chosen as the target for implementing the real-time adaptive decorrelator -the
National Instruments CompactRio (Trademark of National Instruments). The two LMS algorithms can easily be run in parallel
and an FPGA is ideal for this. Ordinary sequential programming is limited by the so-called Van Neumann bottleneck of fetch and
decode for each instruction. Even though threaded programming is possible on a conventional processor, the effect is purely an
illusion, as the processor merely time-division multiplexes between different threads and is not truly concurrent. Of course
multiple processors can be used as an alternative approach to this problem provided one can communicate fast enough between
them.

An FPGA array on the other hand has no processor at all and runs code as a digital circuit often at much lower clock speeds.
However, since it is a digital circuit, any code must run concurrently unlike threads in a conventional processor. This enables
applications for low power consumption with fast speed.

The Rio runs as a stand-alone unit and is programmed in the high-level data-flow language LabView. The Rio used in the first set
of experiments is based on the Virtex 5 integrated circuit from Xilinx and has an eight-slot reconfigurable embedded chassis that
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Figure 6: Compact Rio structure.

accepts any CompactRIO I/O module. In fact little knowledge of hardware descriptive languages such as VHDL are required at
all and we can implement the complete algorithm using this rapid prototyping approach. The Rio is linked to a host PC via the
Ethernet for programming purposes and initial testing (Figure 6) . A 4-input sigma-delta A/D convertor was used and a 4-ouput
D-A convertor. We only use two of these inputs and outputs and the remainder are left for future algorithm expansion when
using more sensors. The sampling rate is easily changed on the host computer. The Rio has its own processor onboard, but for
this application only the FPGA was used in the end module. Early versions of the program used the PC as an oscilloscope to view
the estimated signals. This is done by a FIFO and using the onboard co-processor on the Rio. This overhead is not required on
the final working module however.

For n weights, the algorithm in equations (3a,b) requires approximately 4n multiplications and 4n additions, twice as many as
ordinary LMS. Two cross-coupled LMS algorithm has many advantages however. One in particular which has not been exploited
until now, is the ability to split the overall filter of order n into two cascaded filters of order n/2. This is because there are two
outputs (errors) unlike the usual one output for conventional LMS and these feed naturally into the two inputs of the next stage.
Normally there would be no advantage of doing so, but on an FPGA we can use pipelining to execute the two stages in parallel
offering further computational efficiency at the expensive of a time-delay of n/2 samples whilst the first stage “fills up”.

Pipelining is the use of feedback nodes or shift-registers in order to allow items that would normally execute serially to execute
in parallel. Within a negative feedback loop it is not possible to add pipelining, since this adds a time-delay which in turn de-
stabilizes the loop. This is why the decorrelator is split into two separate decorrelators as shown in Figure 7. This of course can
be extended to more stages, but this uses more space on the FPGA. Likewise several parts of the individual LMS algorithms
themselves were sped up considerably by exploiting parallelisms. A computation X
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 w

k
 such as used in ordinary LMS (a dot

product of two vectors) can be split into two parallel loops by the following.Let  X
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 which will run twice as fast due to the parallel computation. This does not affect

the stability of the loops (unlike pipelining), because the two computations which run in parallel have to wait for each other to
finish before they can add the result for the dot product.

The update equation of the weight vectors (3a,b) were also split into two parallel updates to give further improvement. Splitting
up dot products in this manner however uses more space (gates) on the FPGA as the cost of the improvement in speed. This is
because the LabView code will not “unwrap” a FOR loop, and creating two of them must double the silicon space used. There
are two methods used to store weight vectors on the FPGA. The first method is by using arrays, which is very expensive on slice
registers.

As far as possible the length of any arrays are usually quite limited in size. It was possible to obtain arrays of length 50 terms (X4
for two LMS algorithms). In order to get more weights, a second ANC (ANC2 in Figure 7) of equal size was used in cascade using
pipelining and block Ram. It was not possible to use the block ram approach on both ANC’s for a good sampling rate so a mixture
of the array method and block Ram method were used. In this way, a sampling frequency of 33.3kHz was obtained. The ADC was
24 bits and the whole algorithm used 24 bits with 4 bits integer and 20 bits fraction. A simulation was carried out using the fixed-
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Figure 7. Pipelining two stages of decorrelation (adaptive noise cancelling ANC)

Figure 8. Implementation of equation (3a) using arrays.

This is a FOR loop which is auto-indexed (that is the loop runs for the length of the input array) and runs as many times as the
number of weights. At the two ends of the graphical FOR loop are registers which store the updated weights sample by sample.
This is standard “G” based programming except it is in Fixed-Point arithmetic. The same bit of code but run using the memory
method instead of arrays is shown in Figure 9 below.

Also in this code is a timed while-loop. This is included as an extra finesse. Using a timed-loop executes the code within it in one
clock cycle (40MHz base clock) instead of one clock cycle per operation. It is not always possible to do this and the compiler will
indicate an error where there are timing problems. In this case however it satisfies the hardware requirements.

Figure 10 shows how X
k 
w

k 
is split into two summations which exploit the parallelism of an FPGA.

Finally, Figure 11 shows how simple it is to implement pipelining by introducing registers (here shown as a delay for both inputs)

point algorithm in ordinary LabView first in order to verify that these values were sufficient for the dynamic range of the ADC.
This also gave a value for the step size of µ  = µ

1 
= µ

2 
around 0.008. This in turn is implemented for speed using integer arithmetic

using a power of 2, in this case µ = 2−7 =  20.0078125.

A small part of the array-based cross-coupled LMS graphical code is shown in Figure 8 below.
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between the two cross-coupled LMS algorithms.

Figure 9: Implementation of equation (3a) from memory RAM method.

Figure 10: Dot product of two vectors split into two parallel pieces of code. (RAM method).

Figure 11: Pipelining of the two CRANC algorithms.
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Optional FPGA software automatic gain controls (AGCs) were put on both A/D inputs as a further precaution against saturation
of the input signals. These are discussed in the Appendix .

4. Performance of the Real-time Adaptive Decorrelator.

The decorrelator (in fact two decorrelators in pipelined cascade), used a total of 92 weights at a sampling frequency of 33.33kHz.
This was not an equal split, but a split of 50 weights on the array based decorrelator and 42 on the block Ram based correlator.
For a sampling freq of 33.33kHz, and the speed of sound taken to be 340m/s, we can easily calculate that an acoustic transfer
function with maximum delay of 92Ts secs can be accounted for, where Ts is the sampling interval of 30¼s. The distance
travelled in this time for 92 weights is 0.94m. We therefore assume that path lengths (the length of signal source to microphone)
can be no longer than this distance. This is quite adequate for some applications but unsuitable for rooms with large reverberation
times.

In order to compare with similar algorithms, we used a pre-recorded stereo file obtained from Lee at the Salk institute. This was
recorded in a room of a person speaking numbers from one to ten with a radio acting as interference. In his work, he used an
infomax approach in a feedforward neural network implemented in the frequency domain using a polynomial filter matrix algebra
technique.

This file was repeatedly played and re-recorded by a digital audio recorder and used as the source. It was then played into the
compact Rio and the output was recorded digitally with the decorrelator periodically switched on and off for comparison. A
block diagram is shown in Figure 12.

Figure 12: Block diagram of experimental setup.

Figure 13: Channel 1 recording of FPGA error output 1. The decorrelator is switched off half way through and shows the re-
emergence of the background music.
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Bandwidth(kHz)

25

16.65

6.25

5

4.16

Total No of weights

70

92

111

130

150

Distance from Microphones(m)

0.48

0.94

3

4.4

6.1

Table 1. Maximum number of weights for a given bandwidth.

5. Further Improvements

With more modern improvements to FPGA logic gates (in this case larger arrays), it will always be able to improve such algorithms.
At the time of writing, a Rio unit based on the Spartan 6 LX 150 which has 147K logic cells was used for a second experiment.
Further simplification was used by reducing the word length used. 16 bit words were used as is more common, with 13 bit fraction
and 3 bit integer. The dynamic range of the analogue data was then 3.999 to -4 volts. (Often written as Q3.13 or <16,3> format) It
was found that despite the amount of resources used by arrays, that the trade-off with using memory instead did not offer any
improvements of significance, since the ROM memory fetch cycle and write slowed down the overall speed and hence the
sampling rate. With the new architecture it was possible to implement a decorrelator with 300 weights in total pipelined across
three cascaded decorrelators each of length 100. (shown in Figure 14 below). The ability to handle larger-order decorrelators is
important in that for rooms with large reverberation times (normally measured and defined as the T60 time for sound to diminish
to 60dB of its original value), the filter orders must also be larger. This is aside from the sampling rate which determines the
bandwidth (Nyquist rate) and the available maximum distance from the microphones to the sound sources.

Figure 14: Showing three pipelined CRANC algorithms

This method was chosen rather than a “live” method with two microphones, because of repeatability of the experiment. The
same section of mixed speech (or speech plus noise) can then be tried on any algorithm for comparison purposes. The SNR was
measured before and after the FPGA decorrelator was used and an improvement of around 11dB was measured. (see Figure 13)
The results obtained were clear of any audio distortion but not as good as the Infomax solution. However, the Infomax solution
was not obtained in real-time and is far more complex to implement than this approach.

We see the range of the decorrelator for different bandwidth (ie sampling frequencies) in Table 1.So at the expensive of less
available bandwidth and poorer quality of speech, more weights are available for use and hence more distance from the
microphone at which the signals can be separated.
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Figure 15: Shows original acoustic speech mixture and the two separated channels.

Appendix Automatic Gain Control

The automatic gain control used (AGC) is best explained from Figure 16.

Figure 16. Automatic Gain-Control (AGC)

The AGC consists of a voltage-controlled amplifier (here a multiplier is used), a detector for amplitude (here an absolute value is
used but a squarer could be used instead at the expense of greater computational load), a setpoint and a filter. Typically the

This architecture was able to have a sampling time of 33.3kHz. The Speech-Speech mixture wav files of Girolami were processed
using this method [25]. The files were played through the digital recorder directly into the ADC of the FPFA decorrelator. A good
level of separation was achieved for each channel. Cross talk from the respective other channel was detectable by the human ear
for both channels, but the level was quite insignificant and barely audible. The speech signals are shown in Figure 15 below.

6.Conclusions

The implementation of a real-time decorrelator for separating two random (but correlated) signals has been shown. The FPGA
approach offers many advantages over straight DSP implementations in that parallelism is inherent in the design together
with lower power consumption. The decorrelator has been successfully applied to the separation of real-time speech signals and
should prove useful in many areas of speech processing. The work also highlights the fact that in such specialized areas of
signal processing it is not always possible to have small filter sizes and the hardware is only just coming to a stage where it is
becoming of practical use and could facilitate the development of many new products.
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setpoint is set to unity and defines the size of the envelope of the AGC ouput. There is no advantage here in using a square-law
instead of the absolute value as both give similar results. The filter output will be slowly varying and in the case of a constant
envelope at the signal input, will be dc,with a small amount of ac feed-through added to this depending on the bandwidth of the
filter. This dc will, by the principle of negative feedback either get bigger or smaller in inverse proportion to the envelope of the
input signal. As the signal gets bigger the filter output will get smaller and hence reduce the AGC output back to stable level.

A pure integrator could be used instead of the lowpass filter, but this results in an overflow condition (the integrator tries to ramp
to infinity) when the signal input is theoretically zero or not connected. So instead a “leaky” integrator (or lowpass filter) is
used. This gives a finite steady-state error to step changed in signal envelope, but this is not critical for this application. The
bandwidth of the loop is only a few Hz, since making the bandwidth too high, results in amplification of additive noise and even
distortion and flattening of the signal envelope. Typically the α term must be less than unity (for stability) and a value of α = 0.5
= 2 −1 was used for the real-time application which is conveniently a negative power of 2, as is 1 − α .
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