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ABSTRACT: With the help of the Computer Unified Device Architecture, we have developed the Adaptive Differential
Evolution with Optional External Archive, using the Compute Unified Device Architecture. The reason is to bring down the
time for the run-time algorithm. We have tested the proposed algorithm with Sphere and presented the organization of the
run-time which is reduced. The advantage is the use of voluminous data and the better performance of the results, even not
assured in this work.
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1. Introduction

Evolutionary Algorithms (EA) are search and optimization procedures inspired by the biological world, they are characterized
by imitating adaptive processes of natural systems and are based on the survival of the best individual. They work on
populations of solutions that evolve from generation to generation through genetic operators adapted to the problem. One of
them is the Differential Evolution algorithm proposed by Storn and Price in 1995, which has received much attention within the
field of evolutionary computing because it  has proven to be a simple, precise, and robust optimization method [9]. Evolutionary
Algorithms have proven to be a good alternative to classical optimization methods, providing solutions to practical problems
in various areas of knowledge such as design, finance, bioinformatics, pattern recognition among others, an EA is used given
the enormous number of possible configurations and the need for an efficient search. As an example of the application of these
methods to solve real problems we can mention the optimization of the duration cycles of the traffic lights [15] and the control
of the flow of water that passes through a turbine to generate energy [13] among others.

The Differential Evolution algorithm (DE) [11] is used as an optimization method belonging to the evolutionary computation
category, applied in solving complex problems. Like other algorithms in this category, DE maintains a population of candidate
solutions, which recombine and mutate to produce new individuals that can be chosen according to the value of their perfor-
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mance function [1]. Which characterizes ED is the use of test vectors, that compete with individuals in the current population in
order to survive.

A limitation that is immersed when using sequential versions of DE algorithms when it is necessary to solve real optimization
problems is their execution time. In works such as [4], [7], [12], [3] parallel versions of the algorithms have been implemented to
reduce this inconvenience. Therefore, the use of Graphical Processing Units (GPUs) used as a means of parallelization are
gaining more and more importance due to their great computing potential, scalability, and low cost. There are different architec-
tures that show the advantages of differential evolution parallelization (MPI, CUDA, etc.), among which the CUDA architecture
stands out, because is a programming model and a calculation architecture [14] that presents a good cost benefit relation.

According to specialized literature, the JADE algorithm is a DE algorithm widely used in solving real problems and to date we
have not found any parallelized version using the technology of GPUs. Therefore, in this work the parallelized version of the
JADE algorithm proposed by Zhang and Sanderson in 2009 [18] was implemented to reduce its execution time using
the CUDA architecture.

2. JADE: Adaptive Differential Evolution with Optional External File

JADE is an adaptive differential evolutionary algorithm with optional external file proposed by Zhang and Sanderson [16] [6],
which implements a neighborhood-based mutation strategy and an optional external file used to improve the performance of the
DE.

The steps of the algorithm are as follows:

2.1 Step 1. Initialization
JADE follows the basic procedure of differential evolution. The initial population {x
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JADE enters in a loop of evolutionary operations (mutation, crossing, and selection) and parameter adaptation operations.

2.2 Step 2. Mutation
Equation 1 shows the mutation vector generated by DE / current-to-pbest, with file:
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The two proposed parameters are initialized as 0.5 and at the end of each generation they are generated with equations 4 and 5:
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generations; mean
A
(•) denotes the usual arithmetic mean, and mean

L
(•) is the Lehmer mean, which is defined in equation 6:

(6)

2.3. Step 3. Cross
After the mutation, the cross-binomial operation u
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) forms the vector test as shown in equation 7:
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i
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average fraction of the vector components that are inherited from the mutation vector.

2.4. Step 4. Selection
The selection operation chooses the best between the parent vector x

i,g
 and the test vector u

i,g
 according to the values of the

evaluation function. For example, if we have a minimization problem, the selected vector is defined as shown in equation 8:
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are called the successful mutation factor and successful  crossover probability, respectively.

3. Graphic Processing Units

Driven by market demand for high-definition 3D interactive graphics, Graphic Processor Units (GPUs) have evolved into highly
parallel architectures with many processors and a large computing power [6].

The GPUs are specialized microprocessors that allow the acceleration of the representation of the graphics from the Central
Processing Unit (CPU) to lighten its workload, that is, while the GPU is responsible for the representation of the graphics, the
CPU is doing other calculations. Current GPUs are more efficient in manipulating graphics in a computer, they have a highly
parallel architecture that has been shown to be more efficient than CPUs for the implementation and execution of certain
algorithms [10]. A GPU can be present  in a PC in the form of a video card or at present it can even be the base card.

In 2006 NVIDIA introduced a new general-purpose parallel computing architecture called CUDA (Compute Unified Device
Architecture) capable of taking full advantage of the capabilities of GPUs in order to solve complex computational problems in
a more efficient way. CUDA enables developers to use the C language as a high-level implementation language.

CUDA allows C code to be translated almost directly to the device. This model unifies the CPU (host) and the GPU (device) in
a heterogeneous computing system, to get the best out of both devices, it contains three types of functions the Host Function
which are called and executed in the CPU, the Kernel Function which are called on the host and executed on the device; and the
third is the Device Function which are called and executed on the GPU. CUDA presents in its structure the concepts of  “thread”,
”block” and ”grid” and the threads are organized in blocks and can be upto 3 dimensions, and the blocks are organized in grids
which can also be 3 dimensions. Each block of threads is executed in a Streaming Multiprocessor (SM). Each SM allows a
number of blocks to be executed, once the maximum block capacity per SM is reached, the remaining blocks have to wait to be
executed in the SM.

4. Algorithm Parallelization

This section describes the parallelization of the algorithm according to its previously described phases:

(7)

(8)
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4.1. Initialization
The population is generated randomly within the host for each generation (g), the population has a size NP(i = 1, 2, 3, ..., N P),
and each individual in a population has D characteristics (j = 1, 2, 3, ..., D); therefore a population is represented by a matrix
(Figure
1), where the rows represent each individual and the columns their characteristics, it is important to note that the matrix
coincides with the way the population data is stored in the host, which facilitates the manipulation of the data through the
phases.

For example, when creating a population of N P = 2 with D = 5 characteristics, with values in x [100, 100], a matrix x is obtained:

4.2. Function Evaluation
Once the initial population or first generation (g) is generated, it is sent to the kernel to carry out the function evaluation, Taking
the example of the population matrix from the previous phase when evaluating the Sphere 9 function:

Where x is the population matrix, or are values in a range of [-100,100], these values are provided in the CEC [17] and z is the result
of the difference between the matrix x minus the matrix o z = x  o, x = [x
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, x
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, . . . , x

D
], and o = [o

1
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2
, . . . , o

D
]. Following matrix

z and o are presented:

Applying the Sphere function described in equation 9 the vector with the best f(x) values is obtained:

The best value is taken and based on its index within the vector, the individual from the population matrix x is taken, in this case
it is individual 1, which is the one that is closest to the objective function creating the vector xbest:

xbest = (45, 72, 38, 64, 54)

Figure 2 shows how the population data is arranged within the grid, in the form of a matrix, where each data is evaluated
independently. The size of the grid is calculated by applying equation 10:

f(x) = (8811.55, 64384.92)

where NP is the size of the population, D indicates the number of dimensions or characteristics, and blockWidth is the length of
the block. For example, when using a population of NP = 100, a dimension  with D = 10 and a length of the block width Block =
32, since the maximum capacity of the hardware is 1024 threads, blocks with dimensions of 32x32 threads were used; substituting
the values in equation 10, the following result is obtained:

Each of the population data is evaluated by a thread, in this phase the objective function is applied to generate a vector with the
objective values:




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4.3. Mutation
Figure 3 shows how the population changes when applying the mutation process. Once the individuals have been evaluated in
phase 2, the “DE/current “ to “pbest” mutation strategy is implemented, which consists of evaluating each individual. To
determine its degree of aptitude, that is, whether or not it approaches the solution, applying the mutation strategy of equation
11 to the example, we have the mutation matrix v:

where x is the population matrix, the mutation factor F = 0.5, the vector with the best individual xbest, r1 and r2 are random
individuals from the current population.

Figure 1. Population initialization

Figure 2. Function evaluation Figure 3. Mutation

4.4. Crossing
Once the mutation phase has been applied, a recombination of the population generated in the matrix x and the mutation matrix
v is carried out, forming a test matrix u, as shown in equation 12:


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where rand(0, 1) is a vector of random numbers between 0 and 1, the probability of crossing CR = 0.5 and the vector j are the
values of the indices of the population matrix; the crossing function loads the characteristics of the individuals according to the
conditions of equation 12 where if the values of the rand vector are greater than or equal to the probability of crossing CR or if
the indices of vector j are equal to the random indices of the jrand vector then the value of the mutation matrix v is taken,
otherwise the characteristic of the population matrix x is loaded:

Figure 4 shows the change within the grid when performing the crossing phase:

4.5. Selection
The selection operation chooses the best individual between the parent vector x and the test vector u generated in the cross
operation; according to the values of the evaluation function, as shown in equation 13 to generate the population of the new
generation resulting in the matrix x2:

where it takes the first individual from the population matrix and the second is obtained from the cross matrix:

Figure 5 shows the selection process within the grid.

5. Experimentation

5.1. Test Environment
The test environment was established under the following conditions: A laptop with an Intel core i7 processor, 6 GB of RAM
memory, 1 TB hard disk, Windows 10 operating system was used. A GeForce GT 650M graphics card with 384 CUDA cores,
processor clock 900 MHz.

The Sphere test function was used during the evaluation of the algorithms, which was extracted from the CEC 2005 (Congress
on Evolutionary Computation) [17]. The Sphere function is a well-known simple function with a single global minimum. The
configuration used for the JADE algorithm in its parallel and sequential version was the following: Mutation factor (F) = 0.5,
Probability of crossing (Cr) = 0.5, Generations (G) = 200.

Regarding the population size used during the experimentation, five population sizes 30 D x 100 NP, 100 D x 100 NP, 100 D x 1,000
NP, 100 D x 10,000 NP and 100 D x 20,000 NP were used. These five population sizes were defined according to state-of-the-art
tests [8]. Each of the five configurations were executed in the parallel and sequential version; and each version was executed
with the three evaluation functions mentioned previously. It is important to mention that all the experiments were executed 30
times.

5.2. Evaluation of the Sequential against the Parallel JADE using the Sphere Function
This section shows a comparison between the performance of the sequential JADE algorithm and the parallel version proposed
in this work. The results are expressed in terms of execution times (seconds) and acceleration factor known as “Speed “ up”.

Speed-up [2] represents the performance growth ratio between sequential execution time and parallel execution time. The
expression 14 corresponds to the “Speed “ up” calculation, where S represents the “Speed “up”, while CPU Time and GPU Time




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Figure 4. Crossing

Table 6 presents the results of the experimentation using the evaluation function ”Sphere”, where the first column shows the
size of the population used in the experiment, in the column CPU Time and GPU Time the average times are shown of 30
executions carried out in their respective versions. The column “Speedup” shows the acceleration that the parallel version
presented against the sequential one. As an example, we can interpret the penultimate row of the table as follows, for a
population of 100 D x 10,000 NP the sequential version of the algorithm took 542.262100s, while the parallel version took 8.6684s,
therefore, the version parallel is 62.5561 times faster. It is worth mentioning that a total of 300 tests were performed using the
“Sphere” test function as a result of executing the 10 experiments presented in Table 6 30 times.

In Figure 6 the information reported in Table 1 is presented, where the “x” axis represents the different population sizes used in
the experimentation, the “y” axis shows the average latency times in the experiments carried out, particularly due to Since the
experiment with the population 100 D x 20,000 NP yields a very high time in the CPU (1866.1677s), it was necessary to scale the
“y” axis of the graph, so that small values can be visualized in the first experiments and a High value in the last experiment, as
observed in the “y” axis of Figure 21, the time of the experiments ranges from 0.01s to 1000s; the blue bars correspond to the
execution times of the parallel version and the gray bars correspond to the execution times of the sequential version.

It is noteworthy that in the 100 D x 10,000 NP experiment using the “Sphere” test function, the parallel version of the JADE
algorithm is 62 times faster, as can be seen in Figure 21, to interpret the graph it is necessary to take into account the scaling of
the “y” axis.

The performance of the parallel version increases as the amount of data that must be processed increases. Also, the “Speed-up”
values vary according to the test function used. Due to the overhead of making a kernel function call, the parallel version does
not have an advantage over the sequential version when processing small amounts of data [10].

correspond to the execution times according to the hardware where the experiment is carried out. If the obtained accuracy factor
is less than or equal to one (S1), it means that no benefit is obtained from the parallel version.


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D x NP CPU Time (s) GPU Time (s) Speed-up(S)

30 x 100 0.079067 0.2366 0.3341

100 x 100 0.1976 0.3973 0.4973

100 x 1,000 1.634867 13.5976 0.6277

100 x 10,000 542.2621 8.6684 62.5561

100 x 20,000 1866.1677 50.5901 36.8879

Table 1. Comparison between CPU Time against GPU Time using the Sphere function

Figure 6. Comparison of CPU Time against GPU Time using the Sphere function.

Figure 5. Selection
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The performance of the parallelized JADE algorithm proposed in this work in large populations is noteworthy. According to [5]
it is advantageous to have a large population because there is a positive relationship between population size and population
variation. If the population size is small, the algorithm has a probability of converging prematurely, that is, the population
variation occurs abruptly and local minima are reached; or have a stagnation, this occurs when the population remains diverse,
but does not converge, therefore the optimization process does not progress. In most cases, large populations are more stable.

6. Conclusion

The CUDA architecture of NVIDIA cards allows to efficiently solve problems that can be expressed under the scheme ”one
instruction, multiple data” (SIMD, Single  Instruction, Multiple Data). The differential evolutionalgorithm adapts to the SIMD
scheme, since the stages of this algorithm (mutation, crossing and selection) execute the same instruction on a set of data
(population).

In particular, the parallel version of the JADE algorithm, proposed in this work, showed a performance that widely exceeded, in
terms of execution times, the sequential version of the JADE algorithm, resulting in an increase in the acceleration factor “Speed
“ up”.

The performance evaluation of the parallel version of the JADE algorithm was carried out as follows, using the Sphere test
function and five population sizes 30 D x 100 NP, 100 D x 100 NP, 100 D x 1,000 NP, 100 D x 10,000 NP, and 100 D x 20,000 NP, due
to the randomness characteristics of the algorithms, each one (sequential and parallel) was executed 30 times, using each of the
previously mentioned population sizes.

The results show that the parallel version of the JADE algorithm achieves the best computation times and the best values for the
acceleration factor when using the 100 D x 10,000 NP setting. The parallel version was observed to be 62.5 times faster than the
sequential version.

It can be concluded that the performance of the parallel version increases in relation to the amount of data processed, the larger
the size of the dimensions (D) and the size of the population (NP), a considerable benefit will be obtained from the parallel
version.
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