Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN:
Online ISSN:


  About JIO
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
Journal of Multimedia Processing and Technologies (JMPT)
International Journal of Web Application (IJWA)

 

 
Electronic Devices

Field Programmable GateArray Devices and their Applications. The Hardware Aspects
Adnan Ghaderi, Masoud Daneshtalab, Mohammad Ashjaei, Mohammad Loni, Saad Mubeen, Mikael Sjodin
Malardalen University, Vasteras & Sweden
Abstract: The timeliness and low latency communication with Ethernet Switch is given importance in standardization activities. The need for modern camera-based vechicles, lidars and high power sensors make it mandatory for the intensive data transmission. The standards relating to Time-Sensitive Networks are emerging and improving for which proper hardware requirements have to be moved. Besides, to get full benefits from the standards, high performance hardware is felt. The current work designed models to contribute to the modular hardware of the multistage time sensitive networking in the Very High Speed Integrated Circuits. It uses the hardware description language which is based on Field Programmable GateArray devices. The major issues in this direction are properly addressed in this work.
Keywords: Time-Sensitive Network, FPGA, Predictability, Memory Management Field Programmable GateArray Devices and their Applications. The Hardware Aspects
DOI:https://doi.org/10.6025/ed/2020/9/2/35-41
Full_Text   PDF 561 KB   Download:   214  times
References:

[1] Reinhardt, D., Kucera, M. (2013). Domain controlled architecture - a new approach for large scale software integrated automotive systems, In: International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2013), p. 221-226, (February).
[2] Gut, G., Allmann, C., Schurius, M., Schmidt, K. (2012). Reduction of Electronic Control Units in Electric Vehicles Using Multicore Technology, p. 90-93.
[3] IEEE Std. 802.1Q, IEEE Standard for local and metropolitan area networks, bridges and bridged networks.
[4] IEEE Std. 802.1Qbv, IEEE standard, amendment 25: Enhancement for scheduled traffic, 2015.
[5] IEEE Std. 802.1Qbu, IEEE standard, amendment: frame pre-emption, 2015.
[6] Sridhar, K., Ooghe, S., Vissers, M. P. J., Suhail, A. (2010). System and method for monitoring end nodes using ethernet connectivity fault management (cfm) in an access network, Mar. 30 2010. US Patent 7,688,742.
[7] Felser, M. (2005). Real-time ethernet—industry prospective, Proceedings of the IEEE, 93 (6) 1118-1129.
[8] Lastovetsky, A., Mkwawa, I.-H., O’Flynn, M. (2006). An accurate communication model of a heterogeneous cluster based on a switch-enabled ethernet network, In: 12th International Conference on Parallel and Distributed Systems-(ICPADS’06), 2, p. 6, IEEE.
[9] Xu, A., Wang, H., Yang, Z. (2000). Industrial automation network based on ethernet, Information and Control-shenyang-,
29 (2) 182-186.
[10] Teener, M. D. J., Garner, G. M. (2008). Overview and timing performance of ieee 802.1 as, In: 2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, p. 49-53, IEEE.
[11] IEEE Std. 802.1Qca, IEEE standard, amendment: Path Control and Reservation, 2015.
[12] Alderisi, G., Patti, G., Bello, L. L. (2013). Introducing support for scheduled traffic over IEEE audio video bridging networks, In: 18th IEEE Conference on Emerging Technologies Factory Automation, (September).
[13] Kehrer, S., Kleineberg, O., Heffernan, D. (2014). A comparison of fault-tolerance concepts for ieee 802.1 time sensitive networks (tsn), In: Proceedings of the IEEE Conference on Emerging Technology and Factory Automation (ETFA), p. 1- 8, (September).
[14] Arif, F. A. R., Atia, T. S. (2016). Load balancing routing in time-sensitive networks, In: 3rd International Scientific- Practical Conference on Problems of Info communications Science and Technology, (October).
[15] Umadevi, K. S., Sridharan, R. K. (2017). Multilevel ingress scheduling policy for time sensitive networks, In: International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), (August).
[16] Farzaneh, M. H., Knoll, A. (2017). Time-sensitive networking (tsn): An experimental setup, In: IEEE Vehicular Networking Conference (VNC), p. 23-26, (November).
[17] Reimann, F., Graf, S., Streit, F., Gla, M., Teich, J. (2013). Timing analysis of Ethernet avb-based automotive e/e architectures, In: 18th IEEE Conference on Emerging Technologies Factory Automation, (September).
[18] Bordoloi, U. D., Aminifar, A., Eles, P., Peng, Z. (2014). Schedulability analysis of Ethernet AVB switches, In: The 20th IEEE International Conference on embedded and Real-Time Computing Systems and Applications, (August).
[19] Cao, J., Cuijpers, P. J., Bril, R. J., Lukkien, J. J. (2016). Independent yet tight wcrt analysis for individual priority classes in ethernet avb, In: Proceedings of the 24th International Conference on Real-Time Networks and Systems, RTNS ’16, p. 55-64, ACM.
[20] Maxim, D., Song, Y.-Q. (2017). Delay analysis of avb traffic in time-sensitive networks (tsn), In: Proceedings of the 25th International Conference on Real-Time Networks and Systems, p. 18-27.
[21] Zhao, L., Pop, P., Zheng, Z., Li, Q. (2018). Timing analysis of avb traffic in tsn networks using network calculus, In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), (April).
[22] Kuon, I., Rose, J. (2007). Measuring the gap between fpgas and asics,” IEEE Transactions on computer-aided design of integrated circuits and systems, 26 (2) 203-215.
[23] Trimberger, S. M., Moore, J. J. (2014). Fpga security: Motivations, features, and applications, Proceedings of the IEEE, 102 (8) 1248-1265.
[24] Falsafi, B., Dally, B., Singh, D., Chiou, D., Joshua, J. Y., Sendag, R. (2017). Fpgas ersus gpus in data centers, IEEE Micro, 37 (1) 60-72.
[25] Loni, M., Daneshtalab, M., Sjodin, M. (2018). Adonn: Adaptive design of optimized deep neural networks for embedded systems, In: 2018 21st Euromicro Conference on Digital System Design (DSD), p. 397-404, IEEE.
[26] Papaphilippou, P., Luk, W. (2018). Accelerating database systems using fpgas: A survey, In: 2018 28th International Conference on Field Programmable Logic and Applications (FPL), p. 125-1255, IEEE.
[27] Akbari, N., Modarressi, M., Daneshtalab, M., Loni, M. (2018). A customized processing-in-memory architecture for biological sequence alignment, In: 2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP), p. 1-8, IEEE.
[28] Uchida, T. (2008). Hardware-based tcp processor for gigabit ethernet, IEEE Transactions on Nuclear Science, 55 (3) 1631-1637.
[29] Alachiotis, N., Berger, S. A., Stamatakis, A. (2010). Efficient pc-fpga communication over gigabit ethernet, In: 2010 10th IEEE International Conference on Computer and Information Technology, p. 1727-1734, IEEE.
[30] Shreejith, S., Mundhenk, P., Ettner, A., Fahmy, S. A., Steinhorst, S., Lukasiewycz, M., Chakraborty, S. (2017). Vega: A high performance vehicular ethernet gateway on hybrid fpga, IEEE Transactions on Computers, 66 (10) 1790-1803.
[31] Groß, F., Steinbach, T., Korf, F., Schmidt, T. C., Schwarz, B. (2014). A hardware/software co-design approach for ethernet controllers to support time-triggered traffic in the upcoming IEEE tsn standards, In: 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin), p. 9-13, IEEE.
[32] Liß, C., Ulbricht, M., Zia, U. F., Muller, H. (2017). Architecture of a synchronized low-latency network node targeted to research and education, In: 2017 IEEE 18th International Conference on High Performance Switching and Routing (HPSR), p. 1-7, IEEE.
[33] Balarin, F., Giusto, P., Jurecska, A., Chiodo, M., Hsieh, H., Passerone, C., Sentovich, E., Lavagno, L., Tabbara, B., Sangiovanni-Vincentelli, A. (1997). Hardware-software co-design of embedded systems: the POLLS approach. Springer Science & Business Media.
[34] Atallah, A. A., Hamad, G. B., Mohamed, O. A. (2018). Reliability-aware routing of avb streams in tsn networks, In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, p. 697-708, Springer. [35] Smirnov, F., Glaß, M., Reimann, F., Teich, J. (2016). Formal reliability analysis of switched ethernet automotive networks under transient transmission errors, in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), p. 1-6, IEEE.
[36] Alvarez, I., Proenza, J., Barranco, M. (2018). Mixing time and spatial redundancy over time sensitive networking, In: Proc. IEEE/IFIP Int. Conf. Depend. Syst. Netw. Workshops (DSN-W), p. 63-64.
[37] Chrysos, N. I. (2006). Request-grant scheduling for congestion elimination in multi-stage networks.
[38] Hassen, F., Mhamdi, L. (2017). A scalable multi-stage packet-switch for data center networks, Journal of Communications and Networks, 19 (1) 65-79.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright © 2011 dline.info